Zuckerkandl E, Pauling L, Bryson V, Vogel H. Evolving genes and proteins. Science. 1965;147(3653):68–71.
Article
Google Scholar
Dickerson RE. The structure of cytochrome c and the rates of molecular evolution. J Mol Evol. 1971;1(1):26–45.
Article
CAS
PubMed
Google Scholar
Bromham L. Why do species vary in their rate of molecular evolution? Biol Lett. 2009;5:401–4.
Article
PubMed
PubMed Central
Google Scholar
Bromham L. The genome as a life-history character: why rate of molecular evolution varies between mammal species. Phil Trans Roy Soc B. 2011;366(1577):2503–13.
Article
Google Scholar
Barraclough TG, Savolainen V. Evolutionary rates and species diversity in flowering plants. Evolution. 2001;55:677–83.
Article
CAS
PubMed
Google Scholar
Bromham L, Hua X, Lanfear R, Cowman P. Exploring the relationships between mutation rates, life history, genome size, environment and species richness in flowering plants. Am Nat. 2015;185:507–24.
Article
PubMed
Google Scholar
Lanfear R, Ho SYW, Love D, Bromham L. Mutation rate is linked to diversification in birds. Proc Natl Acad Sci U S A. 2010;107(47):20423–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Eo SH, DeWoody JA. Evolutionary rates of mitochondrial genomes correspond to diversification rates and to contemporary species richness in birds and reptiles. Proc R Soc B. 2010;277:3587–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gillman LN, Keeling DJ, Gardner RC, Wright SD. Faster evolution of highly conserved DNA in tropical plants. J Evol Biol. 2010;23(6):1327–30.
Article
CAS
PubMed
Google Scholar
Gillman LN, Wright SD. Species richness and evolutionary speed: the influence of temperature, water and area. J Biogeogr. 2014;41(1):39–51.
Article
Google Scholar
Orton MG, May JA, Ly W, Lee DJ, Adamowicz SJ. Is molecular evolution faster in the tropics? Heredity (Edinb). 2019;122(5):513–24.
Article
CAS
Google Scholar
Ho SYW. The changing face of the molecular evolutionary clock. Trends Ecol Evol. 2014;29(9):496–503.
Article
PubMed
Google Scholar
Kumar S, Hedges SB. Advances in time estimation methods for molecular data. Mol Biol Evol. 2016;33(4):863–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kumar S. Molecular clocks: four decades of evolution. Nat Rev Genet. 2005;6(8):654–62.
Article
CAS
PubMed
Google Scholar
dos Reis M, Donoghue PC, Yang Z. Bayesian molecular clock dating of species divergences in the genomics era. Nat Rev Genet. 2016;17(2):71–80.
Article
PubMed
CAS
Google Scholar
Ho SYW, Duchêne S. Molecular-clock methods for estimating evolutionary rates and timescales. Mol Ecol. 2014;23(24):5947–65.
Article
PubMed
Google Scholar
Heath TA, Holder MT, Huelsenbeck JP. A Dirichlet process prior for estimating lineage-specific substitution rates. Mol Biol Evol. 2012;29(3):939–55.
Article
CAS
PubMed
Google Scholar
Yoder AD, Yang Z. Estimation of primate speciation dates using local molecular clocks. Mol Biol Evol. 2000;17(7):1081–90.
Article
CAS
PubMed
Google Scholar
Drummond AJ, Suchard MA. Bayesian random local clocks, or one rate to rule them all. BMC Biol. 2010;8(1):114.
Article
PubMed
PubMed Central
Google Scholar
Drummond AJ, Ho SYW, Phillips MJ, Rambaut A. Relaxed phylogenetics and dating with confidence. PLOS Biol. 2006;4(5): e88.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sanderson MJ. r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics. 2003;19(2):301–2.
Article
CAS
PubMed
Google Scholar
Smith SA, O’Meara BC. treePL: divergence time estimation using penalized likelihood for large phylogenies. Bioinformatics. 2012;28(20):2689–90.
Article
CAS
PubMed
Google Scholar
Sauquet H. A practical guide to molecular dating. CR Palevol. 2013;12(6):355–67.
Article
Google Scholar
Wilke T, Schultheiß R, Albrecht C. As time goes by: a simple fool’s guide to molecular clock approaches in invertebrates. Am Malac B. 2009;27(1/2):25–45.
Article
Google Scholar
Thorne JL, Kishino H, Painter IS. Estimating the rate of evolution of the rate of molecular evolution. Mol Biol Evol. 1998;15(12):1647–57.
Article
CAS
PubMed
Google Scholar
Kishino H, Thorne JL, Bruno WJ. Performance of a divergence time estimation method under a probabilistic model of rate evolution. Mol Biol Evol. 2001;18(3):352–61.
Article
CAS
PubMed
Google Scholar
Aris-Brosou S, Yang Z. Effects of models of rate evolution on estimation of divergence dates with special reference to the metazoan 18S ribosomal RNA phylogeny. Syst Biol. 2002;51(5):703–14.
Article
PubMed
Google Scholar
Lepage T, Lawi S, Tupper P, Bryant D. Continuous and tractable models for the variation of evolutionary rates. Math Biosci. 2006;199(2):216–33.
Article
PubMed
Google Scholar
Sarver BAJ, Pennell MW, Brown JW, Keeble S, Hardwick KM, Sullivan J, et al. The choice of tree prior and molecular clock does not substantially affect phylogenetic inferences of diversification rates. PeerJ. 2019. https://doi.org/10.7717/peerj.6334.
Article
PubMed
PubMed Central
Google Scholar
Duchêne S, Lanfear R, Ho SYW. The impact of calibration and clock-model choice on molecular estimates of divergence times. Mol Phylogenet Evol. 2014;78:277–89.
Article
PubMed
Google Scholar
Lepage T, Bryant D, Philippe H, Lartillot N. A general comparison of relaxed molecular clock models. Mol Biol Evol. 2007;24(12):2669–80.
Article
CAS
PubMed
Google Scholar
Foster CSP, Sauquet H, van der Merwe M, McPherson H, Rossetto M, Ho SYW. Evaluating the impact of genomic data and priors on Bayesian estimates of the angiosperm evolutionary timescale. Syst Biol. 2017;66(3):338–51.
PubMed
Google Scholar
Smith AB, Pisani D, Mackenzie-Dodds JA, Stockley B, Webster BL, Littlewood DTJ. Testing the molecular clock: molecular and paleontological estimates of divergence times in the Echinoidea (Echinodermata). Mol Biol Evol. 2006;23(10):1832–51.
Article
CAS
PubMed
Google Scholar
Battistuzzi FU, Filipski A, Hedges SB, Kumar S. Performance of relaxed-clock methods in estimating evolutionary divergence times and their credibility intervals. Mol Biol Evol. 2010;27(6):1289–300.
Article
CAS
PubMed
PubMed Central
Google Scholar
Worobey M, Han G-Z, Rambaut A. A synchronized global sweep of the internal genes of modern avian influenza virus. Nature. 2014;508(7495):254–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Crisp MD, Hardy NB, Cook LG. Clock model makes a large difference to age estimates of long-stemmed clades with no internal calibration: a test using Australian grasstrees. BMC Evol Biol. 2014;14:263.
Article
PubMed
PubMed Central
Google Scholar
dos Reis M, Thawornwattana Y, Angelis K, Telford Maximilian J, Donoghue Philip CJ, Yang Z. Uncertainty in the timing of origin of animals and the limits of precision in molecular timescales. Curr Biol. 2015;25(22):2939–50.
Article
PubMed
PubMed Central
CAS
Google Scholar
Welch JJ, Bromham L. Molecular dating when rates vary. Trends Ecol Evol. 2005;20(6):320–7.
Article
PubMed
Google Scholar
Lin G, Huang Z, Wang L, Chen Z, Zhang T, Gillman LN, et al. Evolutionary rates of bumblebee genomes are faster at lower elevations. Mol Biol Evol. 2019;36(6):1215–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lourenço JM, Glémin S, Chiari Y, Galtier N. The determinants of the molecular substitution process in turtles. J Evol Biol. 2013;26(1):38–50.
Article
PubMed
Google Scholar
Goldie X, Gillman L, Crisp M, Wright S. Evolutionary speed limited by water in arid Australia. Proc R Soc B. 2010;277(1694):2645–53.
Article
PubMed
PubMed Central
Google Scholar
Berv JS, Field DJ. Genomic signature of an avian Lilliput effect across the K-Pg extinction. Syst Biol. 2018;67(1):1–13.
Article
PubMed
Google Scholar
Barrera-Redondo J, Ramirez-Barahona S, Eguiarte LE. Rates of molecular evolution in tree ferns are associated with body size, environmental temperature, and biological productivity. Evolution. 2018;72(5):1050–62.
Article
PubMed
Google Scholar
Qiu F, Kitchen A, Burleigh JG, Miyamoto MM. Scombroid fishes provide novel insights into the trait/rate associations of molecular evolution. J Mol Evol. 2014;78(6):338–48.
Article
CAS
PubMed
Google Scholar
May JA, Feng Z, Orton MG, Adamowicz SJ. The effects of ecological traits on the rate of molecular evolution in ray-finned fishes: a multivariable approach. J Mol Evol. 2020;88(8–9):689–702.
Article
CAS
PubMed
Google Scholar
Welch JJ, Bininda-Emonds ORP, Bromham L. Correlates of substitution rate variation in mammalian protein-coding sequences. BMC Evol Biol. 2008;8(1):53.
Article
PubMed
PubMed Central
CAS
Google Scholar
Thomas JA, Welch JJ, Lanfear R, Bromham L. A generation time effect on the rate of molecular evolution in invertebrates. Mol Biol Evol. 2010;27(5):1173–80.
Article
CAS
PubMed
Google Scholar
Hua X, Cowman P, Warren D, Bromham L. Longevity is linked to mitochondrial mutation rates in rockfish: a test using Poisson regression. Mol Biol Evol. 2015;32(10):2633–45.
Article
CAS
PubMed
Google Scholar
Galtier N, Blier PU, Nabholz B. Inverse relationship between longevity and evolutionary rate of mitochondrial proteins in mammals and birds. Mitochondrion. 2009;9(1):51–7.
Article
CAS
PubMed
Google Scholar
Bromham L, Cowman PF, Lanfear R. Parasitic plants have increased rates of molecular evolution across all three genomes. BMC Evol Biol. 2013;13(1):126.
Article
PubMed
PubMed Central
Google Scholar
Mitterboeck TF, Adamowicz SJ. Flight loss linked to faster molecular evolution in insects. Proc R Soc B. 2013;280(1767):20131128.
Article
PubMed
PubMed Central
Google Scholar
Wong A. Covariance between testes size and substitution rates in primates. Mol Biol Evol. 2014;31(6):1432–6.
Article
CAS
PubMed
Google Scholar
Woolfit M, Bromham L. Population size and molecular evolution on islands. Proc Biol Sci. 2005;272(1578):2277–82.
CAS
PubMed
PubMed Central
Google Scholar
Lynch M, Ackerman MS, Gout J-F, Long H, Sung W, Thomas WK, et al. Genetic drift, selection and the evolution of the mutation rate. Nat Rev Genet. 2016;17(11):704–14.
Article
CAS
PubMed
Google Scholar
Gossmann TI, Keightley PD, Eyre-Walker A. The effect of variation in the effective population size on the rate of adaptive molecular evolution in eukaryotes. Genome Biol Evol. 2012;4(5):658–67.
Article
PubMed
PubMed Central
Google Scholar
Charlesworth B. Fundamental concepts in genetics: effective population size and patterns of molecular evolution and variation. Nat Rev Genet. 2009;10(3):195–205.
Article
CAS
PubMed
Google Scholar
Mindell DP, Sites JW Jr, Graur D. Speciational evolution: a phylogenetic test with allozymes in Sceloporus (Reptilia). Cladistics. 1989;5(1):49–61.
Article
PubMed
Google Scholar
Iglesias-Carrasco M, Jennions MD, Ho SYW, Duchene DA. Sexual selection, body mass and molecular evolution interact to predict diversification in birds. Proc R Soc B. 2019;286:1899.
Article
Google Scholar
Duchêne DA, Hua X, Bromham L. Phylogenetic estimates of diversification rate are affected by molecular rate variation. J Evol Biol. 2017;30(10):1884–97.
Article
PubMed
Google Scholar
Lancaster LT. Molecular evolutionary rates predict both extinction and speciation in temperate angiosperm lineages. BMC Evol Biol. 2010;10(1):162.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fontanillas E, Welch JJ, Thomas JA, Bromham L. The influence of body size and net diversification rate on molecular evolution during the radiation of animal phyla. BMC Ecol Evol. 2007;7:95.
Google Scholar
Pagel M, Venditti C, Meade A. Large punctuational contribution of speciation to evolutionary divergence at the molecular level. Science. 2006;314(5796):119.
Article
CAS
PubMed
Google Scholar
Webster AJ, Payne RJH, Pagel M. Molecular phylogenies link rates of evolution and speciation. Science. 2003;301:478.
Article
CAS
PubMed
Google Scholar
Ezard THG, Thomas GH, Purvis A. Inclusion of a near-complete fossil record reveals speciation-related molecular evolution. Methods Ecol Evol. 2013;4(8):745–53.
Article
Google Scholar
Hua X, Bromham L. Darwinism for the genomic age: connecting mutation to diversification. Front Genet. 2017;8:12.
Article
PubMed
PubMed Central
Google Scholar
Dobzhansky T. Genetics and the origin of species. New York: Columbia University Press; 1937.
Google Scholar
Muller HJ. Isolating mechanisms, evolution and temperature. Biol Symp. 1942;6:71–125.
Google Scholar
Gavrilets S. Fitness landscapes and the origin of species (MPB-41). Princeton: Princeton University Press; 2004.
Book
Google Scholar
Orr HA. The population genetics of speciation: the evolution of hybrid incompatibilities. Genetics. 1995;139(4):1805–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frankham R. Genetics and extinction. Biol Cons. 2005;126(2):131–40.
Article
Google Scholar
Venditti C, Pagel M. Speciation as an active force in promoting genetic evolution. Trends Ecol Evol. 2010;25(1):14–20.
Article
PubMed
Google Scholar
Janzen T, Bokma F, Etienne RS. Nucleotide substitutions during speciation may explain substitution rate variation. BioRxiv. 2021. https://doi.org/10.1093/sysbio/syab085.
Article
Google Scholar
Bromham L, Duchêne S, Hua X, Ritchie AM, Duchêne DA, Ho SYW. Bayesian molecular dating: opening up the black box. Biol Rev. 2018;93(2):1165–91.
Article
PubMed
Google Scholar
Warnock RCM, Parham JF, Joyce WG, Lyson TR, Donoghue PCJ. Calibration uncertainty in molecular dating analyses: there is no substitute for the prior evaluation of time priors. Proc Biol Sci. 2015;282(1798):20141013.
PubMed
PubMed Central
Google Scholar
Yang Z, Rannala B. Bayesian estimation of species divergence times under a molecular clock using multiple fossil calibrations with soft bounds. Mol Biol Evol. 2005;23(1):212–26.
Article
PubMed
CAS
Google Scholar
Zhu T, Dos Reis M, Yang Z. Characterization of the uncertainty of divergence time estimation under relaxed molecular clock models using multiple loci. Syst Biol. 2015;64(2):267–80.
Article
CAS
PubMed
Google Scholar
dos Reis M, Yang Z. The unbearable uncertainty of Bayesian divergence time estimation. J Systemat Evol. 2013;51(1):30–43.
Article
Google Scholar
Manceau M, Marin J, Morlon H, Lambert A. Model-based inference of punctuated molecular evolution. Mol Biol Evol. 2020;37(11):3308–23.
Article
CAS
PubMed
Google Scholar
Nabholz B, Lanfear R, Fuchs J. Body mass-corrected molecular rate for bird mitochondrial DNA. Mol Ecol. 2016;25(18):4438–49.
Article
CAS
PubMed
Google Scholar
Maliet O, Hartig F, Morlon H. A model with many small shifts for estimating species-specific diversification rates. Nat Ecol Evol. 2019;3(7):1086–92.
Article
PubMed
Google Scholar
Lanfear R, Ho SYW, Love D, Bromham L. Mutation rate influences diversification rate in birds. Proc Natl Acad Sci U S A. 2010;107(47):20423–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO. The global diversity of birds in space and time. Nature. 2012;491:444.
Article
CAS
PubMed
Google Scholar
Bouckaert R, Vaughan TG, Barido-Sottani J, Duchêne S, Fourment M, Gavryushkina A, et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLOS Comp Biol. 2019;15(4):e1006650.
Article
CAS
Google Scholar
Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu C-H, Xie D, et al. BEAST 2: a software platform for Bayesian evolutionary analysis. PLOS Comp Biol. 2014;10(4): e1003537.
Article
CAS
Google Scholar
Yang ZH. PAML 4: Phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007;24(8):1586–91.
Article
CAS
PubMed
Google Scholar
Kuhner MK, Felsenstein J. A simulation comparison of phylogeny algorithms under equal and unequal evolutionary rates. Mol Biol Evol. 1994;11(3):459–68.
CAS
PubMed
Google Scholar
Robinson DF, Foulds LR. Comparison of phylogenetic trees. Math Biosci. 1981;53(1):131–47.
Article
Google Scholar
Goldie X, Lanfear R, Bromham L. Diversification and the rate of molecular evolution: no evidence of a link in mammals. BMC Evol Biol. 2011;11(1):286.
Article
PubMed
PubMed Central
Google Scholar
Gernhard T. The conditioned reconstructed process. J Theor Biol. 2008;253(4):769–78.
Article
PubMed
Google Scholar
Stadler T. Recovering speciation and extinction dynamics based on phylogenies. J Evol Biol. 2013;26(6):1203–19.
Article
CAS
PubMed
Google Scholar
Duchêne D, Duchêne S, Ho SYW. Tree imbalance causes a bias in phylogenetic estimation of evolutionary timescales using heterochronous sequences. Mol Ecol Res. 2015;15(4):785–94.
Article
Google Scholar
Hedges SBK. Sudhir the timetree of life. New York: Oxford University Press; 2009.
Google Scholar
Hedges SB, Marin J, Suleski M, Paymer M, Kumar S. Tree of life reveals clock-like speciation and diversification. Mol Biol Evol. 2015;32(4):835–45.
Article
CAS
PubMed
PubMed Central
Google Scholar
McPeek MA, Brown JM. Clade age and not diversification rate explains species richness among animal taxa. Am Nat. 2007;169(4):E97-106.
Article
PubMed
Google Scholar
Marin J, Rapacciuolo G, Costa GC, Graham CH, Brooks TM, Young BE, et al. Evolutionary time drives global tetrapod diversity. Proc R Soc B. 1872;2018(285):20172378.
Google Scholar
Cardillo M. Latitude and rates of diversification in birds and butterflies. Proc R Soc B. 1999;266(1425):1221–5.
Article
PubMed Central
Google Scholar
Alfaro ME, Santini F, Brock C, Alamillo H, Dornburg A, Rabosky DL, et al. Nine exceptional radiations plus high turnover explain species diversity in jawed vertebrates. Proc Natl Acad Sci U S A. 2009;106(32):13410–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kozak KH, Wiens JJ. Testing the relationships between diversification, species richness, and trait evolution. Syst Biol. 2016;65(6):975–88.
Article
PubMed
Google Scholar
Scholl JP, Wiens JJ. Diversification rates and species richness across the Tree of Life. Proc R Soc B. 1838;2016(283):20161334.
Google Scholar
dos Reis M, Yang Z. Approximate likelihood calculation on a phylogeny for Bayesian estimation of divergence times. Mol Biol Evol. 2011;28(7):2161–72.
Article
PubMed
CAS
Google Scholar
Guindon S. Rates and rocks: strengths and weaknesses of molecular dating methods. Front Genet. 2020;11:526.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hugall AF, Lee MS. The likelihood node density effect and consequences for evolutionary studies of molecular rates. Evolution. 2007;61(10):2293–307.
Article
PubMed
Google Scholar
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2014;32(1):268–74.
Article
PubMed
PubMed Central
CAS
Google Scholar
Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010;59(3):307–21.
Article
CAS
PubMed
Google Scholar
Venditti C, Meade A, Pagel M. Detecting the node-density artifact in phylogeny reconstruction. Syst Biol. 2006;55(4):637–43.
Article
PubMed
Google Scholar
Sauquet H, Ho SYW, Gandolfo MA, Jordan GJ, Wilf P, Cantrill DJ, et al. Testing the impact of calibration on molecular divergence times using a fossil-rich group: the case of Nothofagus (Fagales). Syst Biol. 2011;61(2):289–313.
Article
PubMed
Google Scholar
Jarvis ED, Mirarab S, Aberer AJ, Li B, Houde P, Li C, et al. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science. 2014;346(6215):1320–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mitchell KJ, Cooper A, Phillips MJ. Comment on “Whole-genome analyses resolve early branches in the tree of life of modern birds.” Science. 2015;349(6255):1460.
Article
CAS
PubMed
Google Scholar
Cracraft J, Houde P, Ho SYW, Mindell DP, Fjeldså J, Lindow B, et al. Response to Comment on “Whole-genome analyses resolve early branches in the tree of life of modern birds.” Science. 2015;349(6255):1460.
Article
CAS
PubMed
Google Scholar
Meredith RW, Janečka JE, Gatesy J, Ryder OA, Fisher CA, Teeling EC, et al. Impacts of the Cretaceous terrestrial revolution and KPg extinction on mammal diversification. Science. 2011;334(6055):521–4.
Article
CAS
PubMed
Google Scholar
Phillips MJ. Geomolecular dating and the origin of placental mammals. Syst Biol. 2016;65(3):546–57.
Article
PubMed
Google Scholar
Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C, et al. Phylogenomics resolves the timing and pattern of insect evolution. Science. 2014;346(6210):763–7.
Article
CAS
PubMed
Google Scholar
Tong KJ, Duchêne S, Ho SYW, Lo N. Comment on “Phylogenomics resolves the timing and pattern of insect evolution.” Science. 2015;349(6247):487.
Article
CAS
PubMed
Google Scholar
Kjer KM, Ware JL, Rust J, Wappler T, Lanfear R, Jermiin LS, et al. Response to Comment on “Phylogenomics resolves the timing and pattern of insect evolution.” Science. 2015;349(6247):487.
Article
CAS
PubMed
Google Scholar
Rabosky DL, Chang J, Title PO, Cowman PF, Sallan L, Friedman M, et al. An inverse latitudinal gradient in speciation rate for marine fishes. Nature. 2018;559(7714):392–5.
Article
CAS
PubMed
Google Scholar
Wertheim JO, Sanderson MJ. Estimating diversification rates: how useful are divergence times? Evolution. 2011;65(2):309–20.
Article
PubMed
Google Scholar
Rabosky DL. Positive correlation between diversification rates and phenotypic evolvability can mimic punctuated equilibrium on molecular phylogenies. Evolution. 2012;66(8):2622–7.
Article
PubMed
Google Scholar
Pennell MW, Harmon LJ, Uyeda JC. Is there room for punctuated equilibrium in macroevolution? Trends Ecol Evol. 2014;29(1):23–32.
Article
PubMed
Google Scholar
Pennell MW, Harmon LJ, Uyeda JC. Speciation is unlikely to drive divergence rates. Trends Ecol Evol. 2014;29(2):72–3.
Article
PubMed
Google Scholar
Ritchie AM, Hua X, Cardillo M, Yaxley KJ, Dinnage R, Bromham L. Phylogenetic diversity metrics from molecular phylogenies: modelling expected degree of error under realistic rate variation. Divers Distrib. 2020. https://doi.org/10.1111/ddi.13179.
Article
Google Scholar
Hartmann K, Wong D, Stadler T. Sampling trees from evolutionary models. Syst Biol. 2010;59(4):465–76.
Article
PubMed
Google Scholar
Pybus OG, Harvey PH. Testing macro-evolutionary models using incomplete molecular phylogenies. Proc Biol Sci. 2000;267(1459):2267–72.
Article
CAS
PubMed
PubMed Central
Google Scholar