Lecointre G, Le Guyader H. The tree of life: a phylogenetic classification. Cambridge, MA: Harvard University Press; 2006.
Google Scholar
Scheffers BR, Joppa LN, Pimm SL, Laurance WF. What we don’t know about Earth’s missing biodiversity. Trends Ecol Evol. 2012;27:501–10.
Article
PubMed
Google Scholar
McPeek MA, Brown JM. Clade age and not diversification rate explains species richness among animal taxa. Am Nat. 2007;169:E97–106.
Article
PubMed
Google Scholar
Marin J, Hedges SB. Time best explains global variation in species richness of amphibians, birds and mammals. J Biogeogr. 2016;43:1069–79.
Article
Google Scholar
Scholl JP, Wiens JJ. Diversification rates and species richness across the tree of life. Proc R Soc B. 2016;283:20161334.
Article
PubMed
PubMed Central
Google Scholar
Wiens JJ. What explains patterns of biodiversity across the tree of life? BioEssays. 2017;39:1600128.
Article
Google Scholar
Ng J, Smith SD. How traits shape trees: new approaches for detecting character state-dependent lineage diversification. J Evol Biol. 2014;27:2035–45.
Article
CAS
PubMed
Google Scholar
Hunter JP. Key innovations and the ecology of macroevolution. Trends Ecol Evol. 1998;13:31–6.
Article
CAS
PubMed
Google Scholar
Vamosi SM. On the role of natural enemies in divergence and diversification of prey: a review and synthesis. Can J Zool. 2005;83:894–910.
Article
Google Scholar
Ruxton GD, Allen WL, Sherratt TN, Speed MP. Avoiding attack: the evolutionary ecology of crypsis, aposematism, and mimicry. 2nd ed. Oxford, UK: Oxford University Press; 2018.
Book
Google Scholar
Ehrlich PR, Raven PH. Butterflies and plants: a study in coevolution. Evolution. 1964;18:586–608.
Article
Google Scholar
Thompson JN. Concepts of coevolution. Trends Ecol Evol. 1989;4:179–83.
Article
CAS
PubMed
Google Scholar
Arbuckle K. Evolutionary context of venom in animals. In: Gopalakrishnakone P, Malhotra A, editors. Evolution of venomous animals and their toxins. Dordrecht, The Netherlands: Springer Nature; 2017. p. 3–31.
Chapter
Google Scholar
Harris RJ, Arbuckle K. Tempo and mode of the evolution of venom and poison in tetrapods. Toxins. 2016;8:193.
Article
PubMed Central
CAS
Google Scholar
Liu S-YV, Frédérich B, Lavoué S, Chang J, Erdmann MV, Mahardika GN, Barber PH. Buccal venom gland associates with increased of [sic] diversification rate in the fang blenny fish Meiacanthus (Blenniidae Teleostei). Mol Phylogenet Evol. 2018;125:138–46.
Article
PubMed
Google Scholar
Blanchard BD, Moreau CS. Defensive traits exhibit an evolutionary trade-off and drive diversification in ants. Evolution. 2017;71:315–28.
Article
PubMed
Google Scholar
Arbuckle K, Speed MP. Antipredator defenses predict diversification rates. Proc Natl Acad Sci USA. 2015;112:13597–602.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wiens JJ, Lapoint RT, Whiteman NK. Herbivory increases diversification across insect clades. Nat Commun. 2015;6:8370.
Article
CAS
PubMed
Google Scholar
Nicholson DB, Ross AJ, Mayhew PJ. Fossil evidence for key innovations in the evolution of insect diversity. Proc R Soc B. 2014;281:20141823.
Article
PubMed
PubMed Central
Google Scholar
Rainford JL, Hofreiter M, Nicholson DB, Mayhew PJ. Phylogenetic distribution of extant richness suggests metamorphosis is a key innovation driving diversification in insects. PLoS ONE. 2014;9:e109085.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tedesco PA, Paradis E, Lévêque C, Hugueny B. Explaining global-scale diversification patterns in actinopterygian fishes. J Biogeogr. 2017;44:773–83.
Article
Google Scholar
Bloom DD, Weir JT, Piller KR, Lovejoy NR. Do freshwater fishes diversify faster than marine fishes? A test using state-dependent diversification analyses and molecular phylogenetics of New World silversides (Atherinopsidae). Evolution. 2013;67:2040–57.
Article
PubMed
Google Scholar
Hollingsworth PR, Simons AM, Fordyce JA, Hulsey CD. Explosive diversification following a benthic to pelagic shift in freshwater fishes. BMC Evol Biol. 2013;13:272.
Article
PubMed
PubMed Central
Google Scholar
Smith WL, Stern JH, Girard MG, Davis MP. Evolution of venomous cartilaginous and ray-finned fishes. Integr Comp Biol. 2016;56:950–61.
Article
PubMed
Google Scholar
Laxme RRS, Suranse V, Sunagar K. Arthropod venoms: biochemistry, ecology and evolution. Toxicon. 2019;158:84–103.
Article
CAS
Google Scholar
Harris RJ, Jenner RA. Evolutionary ecology of fish venom: adaptations and consequences of evolving a venom system. Toxins. 2019;11:11.
Article
CAS
Google Scholar
Wright JJ. 2017. Evolutionary history of venom glands in the Siluriformes. In: Gopalakrishnakone P, Malhotra A, eds. Evolution of venomous animals and their toxins. Dordrecht: Springer Nature; 2017. p. 279–301.
Bettini S. Arthropod venoms. Berlin, Germany: Springer-Verlag; 1978.
Book
Google Scholar
Villas-Boas IM, Bonfá G, Tambourgi DV. Venomous caterpillars: from inoculation apparatus to venom composition and envenomation. Toxicon. 2018;153:39–52.
Article
CAS
PubMed
Google Scholar
Kumar S, Stecher G, Suleski M, Hedges SB. TimeTree: a resource for timelines, timetrees, and divergence times. Mol Biol Evol. 2017;34:1812–9.
Article
CAS
PubMed
Google Scholar
Paradis E, Claude J, Strimmer K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics. 2004;20:289–90.
Article
CAS
PubMed
Google Scholar
Parr CS, Wilson N, Leary P, Schulz KS, Lans K, Walley L, Hammock JA, Goddard A, Rice J, Studer M, Holmes JTG, Corrigan RJ. The Encyclopedia of Life v2: providing global access to knowledge about life on Earth. Biodivers Data J. 2014;2:e1079. Online version Accessed 22 Feb 2017 at http://eol.org.
Condamine FL, Clapham ME, Kergoat GJ. Global patterns of insect diversification: towards a reconciliation of fossil and molecular evidence? Sci Rep. 2016;6:19208.
Article
CAS
PubMed
PubMed Central
Google Scholar
Betancur-R R, Wiley EO, Arratia G, Acero A, Bailly N, Miya M, Lecointre G. Phylogenetic classification of bony fishes. BMC Evol Biol. 2017;17:162.
Article
PubMed
PubMed Central
Google Scholar
Fricke R, Eschmeyer WN, Fong JD. Eschmeyer’s catalog of fishes. 2017. Accessed 22 Feb 2017 http://researcharchive.calacademy.org/research/ichthyology/catalog/SpeciesByFamily.asp.
Myers P, Espinosa R, Parr CS, Jones T, Hammond GS, Dewey TA. The animal diversity web (online). 2017. Accessed 22 Feb 2017 at https://animaldiversity.org.
Edwards FW, Oldroyd H, Smart J. British blood-sucking flies. London, UK: Trustees of the British Museum; 1939.
Lehane M, Billingsley P. Biology of the insect midgut. London, UK: Chapman and Hall; 1996.
Book
Google Scholar
Diaz JH. The evolving global epidemiology, syndromic classification, management, and prevention of caterpillar envenoming. Am J Trop Med Hyg. 2005;72:347–57.
Article
PubMed
Google Scholar
Wright JJ. Diversity, phylogenetic distribution, and origins of venomous catfishes. BMC Evol Biol. 2009;9:282.
Article
PubMed
PubMed Central
CAS
Google Scholar
von Reumont B, Campbell L, Jenner R. Quo vadis venomics? A roadmap to neglected venomous invertebrates. Toxins. 2014;6:3488–551.
Article
CAS
Google Scholar
Schmidt JO. The sting of the wild. Baltimore, Maryland: John Hopkins University Press; 2016.
Google Scholar
Walker AA, Weirauch C, Fry BG, King GF. Venoms of heteropteran insects: a treasure trove of diverse pharmacological toolkits. Toxins. 2016;8:43.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jenner R, Undheim E. Venom: the secrets of nature's deadliest weapon. London, UK: Natural History Museum; 2017.
Casewell NR, Wüster W, Vonk FJ, Harrison RA, Fry BG. Complex cocktails: the evolutionary novelty of venoms. Trends Ecol Evol. 2013;28:219–29.
Article
PubMed
Google Scholar
Magallon S, Sanderson MJ. Absolute diversification rates in angiosperm clades. Evolution. 2001;55:1762–80.
Article
CAS
PubMed
Google Scholar
Pennell MW, Eastman JM, Slater GJ, Brown JW, Uyeda JC, FitzJohn RG, Alfaro ME, Harmon LJ. Geiger v2.0: an expanded suite of methods for fitting macroevolutionary models to phylogenetic trees. Bioinformatics. 2014;30:2216–8.
Article
CAS
PubMed
Google Scholar
Meyer AL, Román-Palacios C, Wiens JJ. BAMM gives misleading rate estimates in simulated and empirical datasets. Evolution. 2018;72:2257–66.
Article
PubMed
Google Scholar
Ho LST, Ané C. A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Syst Biol. 2014;63:397–408.
Article
PubMed
Google Scholar
Henao Diaz LF, Harmon LJ, Sugawara MTC, Miller ET, Pennell MW. Macroevolutionary diversification rates show time dependency. Proc Natl Acad Sci USA. 2019;116:7403–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Paradis E. Shift in diversification in sister-clade comparisons: a more powerful test. Evolution. 2011;66:288–95.
Article
PubMed
Google Scholar
Maddison WP, Midford PE, Otto SP. Estimating a binary character’s effect on speciation and extinction. Syst Biol. 2007;56:701–10.
Article
PubMed
Google Scholar
FitzJohn RG. diversitree: comparative phylogenetic analyses of diversification in R. Methods Ecol Evol. 2012;3:1084–92.
Article
Google Scholar
Nielsen R. Mapping mutations on phylogenies. Syst Biol. 2002;51:729–39.
Article
PubMed
Google Scholar
Huelsenbeck JP, Nielsen R, Bollback JP. Stochastic mapping of morphological characters. Syst Biol. 2003;52:131–58.
Article
PubMed
Google Scholar
Bollback JP. SIMMAP: stochastic character mapping of discrete traits on phylogenies. BMC Bioinformatics. 2006;7:88.
Article
PubMed
PubMed Central
CAS
Google Scholar
Revell LJ. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol. 2012;3:217–23.
Article
Google Scholar
Mukherjee S, Heithaus MR. Dangerous prey and daring predators: a review. Biol Rev. 2013;88:550–63.
Article
PubMed
Google Scholar
Kowalski K, Rychlik L. The role of venom in the hunting and hoarding of prey differing in body size by the Eurasian water shrew, Neomys fodiens. J Mammal. 2018;99:35.
Article
Google Scholar
Sexton JP, Montiel J, Shay JE, Stephens MR, Slatyer RA. Evolution of ecological niche breadth. Annu Rev Ecol Evol Syst. 2017;48:183–206.
Article
Google Scholar
Rojas D, Pereira MJR, Fonseca C, Dávalos LM. Eating down the food chain: generalism is not an evolutionary dead end for herbivores. Ecol Lett. 2018;21:402–10.
Article
PubMed
Google Scholar
Pagel M. Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters. Proc R Soc B. 1994;255:37–45.
Article
Google Scholar
Uhen MD. The origin(s) of whales. Annu Rev Earth Planet Sci. 2010;38:189–219.
Article
CAS
Google Scholar
Zurano JP, Magalhães FM, Asato AE, Silva G, Bidau CJ, Mesquita DO, Costa GC. Cetartiodactyla: updating a time-calibrated molecular phylogeny. Mol Phylogenet Evol. 2019;133:256–62.
Article
PubMed
Google Scholar
Bardet N, Falconnet J, Fischer V, Houssaye A, Jouve S, Suberbiola XP, Pérez-García A, Rage J-C, Vincent P. Mesozoic marine reptile palaeobiogeography in response to drifting plates. Gondwana Res. 2014;26:869–87.
Article
Google Scholar
Stubbs TL, Benton MJ. Ecomorphological diversifications of Mesozoic marine reptiles: the roles of ecological opportunity and extinction. Paleobiology. 2016;42:547–73.
Article
Google Scholar
Harrell TL, Pérez-Huerta A, Suarez CA. Endothermic mosasaurs? Possible thermoregulation of Late Cretaceous mosasaurs (Reptilia, Squamata) indicated by stable oxygen isotopes in fossil bioapatite in comparison with coeval marine fish and pelagic seabirds. Palaeontology. 2016;59:351–63.
Article
Google Scholar
Mulder EWA. Co-ossified vertebrae of mosasaurs and cetaceans: implications for the mode of locomotion of extinct marine reptiles. Paleobiology. 2001;27:724–34.
Article
Google Scholar
Mittelbach GG, Schemske DW, Cornell HV, Allen AP, Brown JM, Bush MB, Harrison SP, Hurlbert AH, Knowlton N, Lessios HA, McCain CM, McCune AR, McDade LA, McPeek MA, Near TJ, Price TD, Ricklefs RE, Roy K, Sax DF, Schluter D, Sobel JM, Turelli M. Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol Lett. 2007;10:315–31.
Article
PubMed
Google Scholar
Miller EC, Hayashi KT, Song D, Wiens JJ. Explaining the ocean’s richest biodiversity hotspot and global patterns of fish diversity. Proc R Soc B. 2018;285:20181314.
Article
PubMed
PubMed Central
Google Scholar
Schemske DW, Mittelbach GG, Cornell HV, Sobel JM, Roy K. Is there a latitudinal gradient in the importance of biotic interactions? Annu Rev Ecol Evol Syst. 2009;40:245–69.
Article
Google Scholar
Roslin T, Hardwicj B, Novotny V, Petry WK, Andrew NR, Asmus A, Barrio IC, Basset Y, Boesing AL, Bonebrake TC, Cameron EK, Dáttilo W, Donoso DA, Drozd P, Gray CL, Hik DS, Hill SJ, Hopkins T, Huang S, Koane B, Laird-Hopkins B, Laukkanen L, Lewis OT, Milne S, Mwesige I, Nakamura A, Nell CS, Nichols E, Prokurat A, Sam K, Schmidt NM, Slade A, Slade V, Suchanková A, Teder T, van Nouhuys S, Vandvik V, Weissflog A, Zhukovich V, Slade EM. Higher predation risk for insect prey at low latitudes and elevations. Science. 2017;356:742–4.
Article
CAS
PubMed
Google Scholar
Murali G, Merilaita S, Kodandaramaiah U. Grab my tail: evolution of dazzle stripes and colourful tails in lizards. J Evol Biol. 2018;31:1675–88.
Article
PubMed
Google Scholar
Feldman A, Sabath N, Pyron RA, Mayrose I, Meiri S. Body sizes and diversification rates of lizards, snakes, amphisbaenians and the tuatara. Global Ecol Biogeogr. 2016;25:187–97.
Article
Google Scholar
Albert JS, Johnson DM. Diversity and evolution of body size in fishes. Evol Biol. 2012;39:324–40.
Article
Google Scholar
Sunagar K, Moran Y. The rise and fall of an evolutionary innovation: contrasting strategies of venom evolution in ancient and young animals. PLoS Genet. 2015;11:e1005596.
Article
PubMed
PubMed Central
CAS
Google Scholar
Todorov OS, Blomberg SP, Goswami A, Sears K, Drhlík P, Peters J, Weisbecker V. Testing hypotheses of marsupial brain size variation using phylogenetic multiple imputations and a Bayesian comparative framework. Proc R Soc B. 2021;288:20210394.
Article
PubMed
PubMed Central
Google Scholar
Rabosky DL. No substitute for real data: a cautionary note on the use of phylogenies from birth–death polytomy resolvers for downstream comparative analyses. Evolution. 2015;69:3207–16.
Article
PubMed
Google Scholar
Stone EA. Why the phylogenetic regression appears robust to tree misspecification. Syst Biol. 2011;60:245–60.
Article
PubMed
PubMed Central
Google Scholar
Wright SI, Kalisz S, Slotte T. Evolutionary consequences of self-fertilization in plants. Proc R Soc Lond B. 2013;2013(280):20130133.
Google Scholar
Cyriac VP, Kodandaramaiah U. Digging their own macroevolutionary grave: fossoriality as an evolutionary dead end in snakes. J Evol Biol. 2018;31:587–98.
Article
CAS
PubMed
Google Scholar
Schluter D. The ecology of adaptive radiation. Oxford, UK: Oxford University Press; 2000.
Google Scholar
Lynch VJ. Live-birth in vipers (Viperidae) is a key innovation and adaptation to global cooling during the Cenozoic. Evolution. 2009;63:2457–65.
Article
PubMed
Google Scholar
Rabosky DL, Golberg EE. Model inadequacy and mistaken inferences of trait-dependent speciation. Syst Biol. 2015;64:340–55.
Article
CAS
PubMed
Google Scholar
Beaulieu JM, O’Meara BC. Detecting hidden diversification shifts in models of trait-dependent speciation and extinction. Syst Biol. 2016;65:583–601.
Article
PubMed
Google Scholar