Chen W-H, Zhao X-M, van Noort V, Bork P. Human monogenic disease genes have frequently functionally redundant paralogs. PLoS Comput Biol. 2013;9(5):e1003073. https://doi.org/10.1371/journal.pcbi.1003073.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo H-S, Zhang Y-M, Sun X-Q, Li M-M, Hang Y-Y, Xue J-Y. Evolution of the KCS gene family in plants: the history of gene duplication, sub/neofunctionalisation and redundancy. Mol Genet Genomics. 2015;291:739–52.
Article
PubMed
CAS
Google Scholar
Woods S, Coghlan A, Rivers D, Warnecke T, Jeffries SJ, Kwon T, et al. Duplication and retention biases of essential and non-essential genes revealed by systematic knockdown analyses. PLoS Genet. 2013;9(5):e1003330. https://doi.org/10.1371/journal.pgen.1003330.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nowak MA, Boerlijst MC, Cooke J, Smith JM. Evolution of genetic redundancy. Nature. 1997;388:167–71.
Article
CAS
PubMed
Google Scholar
Stevens L, Félix M-A, Beltran T, Braendle C, Caurcel C, Fausett S. Comparative genomics of ten new Caenorhabditis species. Evol Lett. 2019;3:217–36.
Article
PubMed
PubMed Central
Google Scholar
Austin J, Kimble J. glp-1 is required in the germ line for regulation of the decision between mitosis and meiosis in C. elegans. Cell. 1987;51:589–99.
Article
CAS
PubMed
Google Scholar
Dean EJ, Davis JC, Davis RW, Petrov DA. Pervasive and persistent redundancy among duplicated genes in yeast. PLoS Genet. 2008;4:e1000113.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tischler J, Lehner B, Chen N, Fraser AG. Combinatorial RNA interference in Caenorhabditis elegans reveals that redundancy between gene duplicates can be maintained for more than 80 million years of evolution. Genome Biol. 2006;7:R69.
Article
PubMed
PubMed Central
Google Scholar
Ohno S. Evolution by gene duplication. Berlin: Springer; 1970. (ISBN 0-04-575015-7).
Book
Google Scholar
Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J. Preservation of duplicate genes by complementary, degenerative mutations. Genetics. 1999;151(4):1531–45.
CAS
PubMed
PubMed Central
Google Scholar
MacCarthy T, Bergman A. The limits of subfunctionalization. BMC Evol Biol. 2007;7:213.
Article
PubMed
PubMed Central
CAS
Google Scholar
Marletaz F, Firbas PN, Maeso I, Tena JJ, Bogdanovic O, Perry M, Wyatt CDR, de la Calle-Mustienes E, Bertrand S, Burguera D, Acemel RD, van Heeringen SJ, Naranjo S, Herrera-Ubeda C, Skvortsova K, Jimenez-Gancedo S, Aldea D, Marquez Y, Buono L, Kozmikova I, Permanyer J, Louis A, Albuixech-Crespo B, Le Petillon Y, Leon A, Subirana L, Balwierz PJ, Duckett PE, Farahani E, Aury J-M, Mangenot S, Wincker P, Albalat R, Benito-Gutiérrez È, Cañestro C, Castro F, D’Aniello S, Ferrier DEK, Huang S, Laudet V, Marais GAB, Pontarotti P, Schubert M, Seitz H, Somorjai I, Takahashi T, Mirabeau O, Xu A, Yu J-K, Carninci P, Martinez-Morales JR, Crollius HR, Kozmik Z, Weirauch MT, Garcia-Fernàndez J, Lister R, Lenhard B, Holland PWH, Escriva H, Gómez-Skarmeta JL, Irimia M. Amphioxus functional genomics and the origins of vertebrate gene regulation. Nature. 2018;564:64–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Royall AH, Frankenberg S, Pask AJ, Holland PWH. Of eyes and embryos: subfunctionalization of the CRX homeobox gene in mammalian evolution. Proc R Soc B. 2019;286:20190830.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bürglin TR. Warthog and Groundhog, novel families related to Hedgehog. Curr Biol. 1996;6:1047–50.
Article
PubMed
Google Scholar
Ingham PW, Nakano Y, Seger C. Mechanisms and functions of Hedgehog signalling across the metazoa. Nat Rev Genet. 2011;12:393–406.
Article
CAS
PubMed
Google Scholar
Stenkamp DL, Frey RA, Prabhudesai SN, Raymond PA. Function for hedgehog genes in zebrafish retinal development. Dev Biol. 2000;220(2):238–52.
Article
CAS
PubMed
Google Scholar
Lee JJ, Ekker SC, von Kessler DP, Porter JA, Sun BI, Beachy PA. Autoproteolysis in hedgehog protein bio-genesis. Science. 1994;266:1528–37.
Article
CAS
PubMed
Google Scholar
Porter JA, von Kessler DP, Ekker SC, Young KE, Lee JJ, Moses K, Beachy PA. The product of hedgehog autoproteolytic cleavage active in local and long-range signalling. Nature. 1995;374:363–6.
Article
CAS
PubMed
Google Scholar
Aspöck G, Kagoshima H, Niklaus G, Bürglin TR. Caenorhabditis elegans has scores of hedgehog-related genes: sequence and expression analysis. Genome Res. 1999;9:909–23.
Article
PubMed
Google Scholar
Gilabert A, Curran DM, Harvey SC, Wasmuth JD. Expanding the view on the evolution of the nematode dauer signalling pathways: refinement through gene gain and pathway co-option. BMC Genom. 2016;27(17):476.
Article
CAS
Google Scholar
Blaxter ML, De Ley P, Garey JR, Liu LX, Scheldeman P, Vierstraete A, Vanfleteren JR, Mackey LY, Dorris M, Frisse LM, Vida JT, Thomas WA. Molecular evolutionary framework for the phylum Nematoda. Nature. 1998;392(6671):71–5.
Article
CAS
PubMed
Google Scholar
Bzymek M, Lovett ST. Instability of repetitive DNA sequences: the role of replication in multiple mechanisms. Proc Natl Acad Sci USA. 2001;98:8319–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Surzycki SA, Belknap WR. Repetitive-DNA elements are similarly distributed on Caenorhabditis elegans autosomes. Proc Natl Acad Sci USA. 2000;97:245–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lara-Ramıŕez R, Poncelet G, Patthey C, Shimeld SM. The structure, splicing, synteny and expression of lamprey COE genes and the evolution of the COE gene family in chordates. Dev Genes Evol. 2017;227:319–38.
Article
PubMed
CAS
Google Scholar
Gerstein MB, Lu ZJ, Van Nostrand EL, Cheng C, Arshinoff BI, Liu T, Waterston RH, et al. Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project. Science (New York, NY). 2010;330(6012):1775–87.
Article
CAS
Google Scholar
Hao L, Aspock G, Bürglin TR. The hedgehog-related gene wrt-5 is essential for hypodermal development in Caenorhabditis elegans. Dev Biol. 2006;290:323–36.
Article
CAS
PubMed
Google Scholar
Hubbard EJ, Greenstein D. The Caenorhabditis elegans gonad: a test tube for cell and developmental biology. Dev Dyn. 2000;218:2–22.
Article
CAS
PubMed
Google Scholar
Ziel JW, Sherwood DR. Roles for netrin signaling outside of axon guidance: a view from the worm. Dev Dyn. 2010;239:1296–305.
CAS
PubMed
PubMed Central
Google Scholar
Zhang XM, Ramalho-Santos M, McMahon AP. Smoothened mutants reveal redundant roles for Shh and Ihh signaling including regulation of L/R asymmetry by the mouse node. Cell. 2001;105:781–92.
Article
CAS
PubMed
Google Scholar
Lynch AM, Hardin J. The assembly and maintenance of epithelial junctions in C. elegans. Front Biosci. 2009;14:1414–32.
Article
CAS
PubMed Central
Google Scholar
Kornfeld K. Vulval development in Caenorhabditis elegans. Trends Genet. 1997;13:55–61.
Article
CAS
PubMed
Google Scholar
Ferguson EL, Horvitz HR. The multivulva phenotype of certain Caenorhabditis elegans mutants results from defects in two functionally redundant pathways. Genetics. 1989;123(1):109–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zugasti O, Rajan J, Kuwabara PE. The function and expansion of the Patched- and Hedgehog-related homologs in C. elegans. Genome Res. 2005;15:1402–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lazetic V, Fay DS. Molting in C. elegans. Worm. 2017;6:e1330246.
Article
PubMed
PubMed Central
CAS
Google Scholar
Xiong H, Pears C, Woollard A. An enhanced C. elegans based platform for toxicity assessment. Sci Rep. 2017;7:9839.
Article
PubMed
PubMed Central
Google Scholar
Sherry T, Nicholas HR, Pocock R. New deletion alleles for Caenorhabditis elegans Hedgehog pathway-related genes wrt-6 and wrt-10. microPubl Biol. 2019. https://doi.org/10.17912/micropub.biology.000169.
Article
PubMed
PubMed Central
Google Scholar
Baker EA, Woollard A. How weird is the worm? Evolution of the developmental gene toolkit in Caenorhabditis elegans. J Dev Biol. 2019;7:19.
Article
CAS
PubMed Central
Google Scholar
Hendriks GJ, Gaidatzis D, Aeschimann F, Grosshans H. Extensive oscillatory gene expression during C. elegans larval development. Mol Cell. 2014;53:380–92.
Article
CAS
PubMed
Google Scholar
Hao L, Mukherjee K, Liegeois S, Baillie D, Labouesse M, Bürglin TR. The hedgehog-related gene qua-1 is required for molting inCaenorhabditis elegans. Dev Dyn. 2006;235:1469–81.
Article
CAS
PubMed
Google Scholar
Hao L, Johnsen R, Lauter G, Baillie D, Bürglin TR. Comprehensive analysis of gene expression patterns of hedgehog-related genes. BMC Genom. 2006;7:280.
Article
CAS
Google Scholar
Sulston JE, Hodgkin J. Methods. In: Wood WB, editor. The nematode Caenorhabditis elegans. New York: Cold Spring Harbor Laboratory Press; 1988. p. 587–606.
Google Scholar
Hermann GJ, Leung B, Priess JR. Left-right asymmetry in C. elegans intestine organogenesis involves a LIN-12/Notch signaling pathway. Development. 2000;127:3429–40.
CAS
PubMed
Google Scholar
Alcorn MR, Callander DC, Lopez-Santos A, Torres Cleuren YN, Birsoy B, et al. Heterotaxy in Caenorhabditis: widespread natural variation in left-right arrangement of the major organs. Philos Trans R Soc Lond B Biol Sci. 2016;371:20150404.
Article
PubMed
PubMed Central
CAS
Google Scholar
Timmons L, Court DL, Fire A. Ingestion of bacterially expressed dsRNAs can produce specific and potent genetic interference in Caenorhabditis elegans. Gene. 2001;263:103–12.
Article
CAS
PubMed
Google Scholar
Kamath RS, Ahringer J. Genome-wide RNAi screening in Caenorhabditis elegans. Methods. 2003;30:313–21.
Article
CAS
PubMed
Google Scholar
Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389–402.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gouy M, Guindon S, Gascuel O. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol. 2010;27(2):221–4.
Article
CAS
PubMed
Google Scholar
Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:1572–4.
Article
CAS
PubMed
Google Scholar
Trifinopoulos J, Nguyen L-T, von Haeseler A, Minh BQ. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016;44:W232–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kalyaanamoorthy S, Minh BQ, Wong TKF, von Haeseler A, Jermiin LS. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat Methods. 2017;14:587–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smit AFA. RepeatMasker. http://www.repeatmasker.org. 1996–2005.
Yang Z. PAML 4: a program package for phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007;24:1586–91.
Article
CAS
PubMed
Google Scholar
Jex A, Liu S, Li B, et al. Ascaris suum draft genome. Nature. 2011;479:529–33.
Article
CAS
PubMed
Google Scholar
Ghedin E, Wang S, Spiro D, Caler E, Zhao Q, Crabtree J, Allen JE, Delcher AL, Guiliano DB, Miranda-Saavedra D, Angiuoli SV, Creasy T, Amedeo P, Haas B, El-Sayed NM, Wortman JR, Feldblyum T, Tallon L, Schatz M, Shumway M, Koo H, Salzberg SL, Schobel S, Pertea M, Pop M, White O, Barton GJ, Carlow CKS, Crawford MJ, Daub J, Dimmic MW, Estes CF, Foster JM, Ganatra M, Gregory WF, Johnson NM, Jin J, Komuniecki R, Korf I, Kumar S, Laney S, Li B-W, Li W, Lindblom TH, Lustigman S, Ma D, Maina CV, Martin DMA, McCarter JP, McReynolds L, et al. Draft genome of the filarial nematode parasite Brugia malayi. Science. 2007;317:1756–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stein LD, Bao Z, Blasiar D, Blumenthal T, Brent MR, Chen N, Chinwalla A, Clarke L, Clee C, Coghlan A, Coulson A, D’Eustachio P, Fitch DH, Fulton LA, Fulton RE, Griffiths-Jones S, Harris TW, Hillier LW, Kamath R, Kuwabara PE, Mardis ER, Marra MA, Miner TL, Minx P, Mullikin JC, Plumb RW, Rogers J, Schein JE, Sohrmann M, Spieth J, Stajich JE, Wei C, Willey D, Wilson RK, Durbin R, Waterston RH. The genome sequence of Caenorhabditis briggsae: a platform for comparative genomics. PLoS Biol. 2003;1(2):E45. https://doi.org/10.1371/journal.pbio.0000045.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fierst JL, Willis JH, Thomas CG, Wang W, Reynolds RM, et al. Reproductive mode and the evolution of genome size and structure in Caenorhabditis nematodes. PLoS Genet. 2015;11(9):e1005497.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dieterich C, Clifton SW, Schuster LN, Chinwalla A, Delehaunty K, Dinkelacker I, Fulton L, Fulton R, Godfrey J, Minx P, Mitreva M, Roeseler W, Tian H, Witte H, Yang SP, Wilson RK, Sommer RJ. The Pristionchus pacificus genome provides a unique perspective on nematode lifestyle and parasitism. Nat Genet. 2008;40(10):1193–8. https://doi.org/10.1038/ng.227.
Article
CAS
PubMed
Google Scholar
Foth B, Tsai I, Reid A, et al. Whipworm genome and dual-species transcriptome analyses provide molecular insights into an intimate host-parasite interaction. Nat Genet. 2014;46:693–700. https://doi.org/10.1038/ng.3010.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhu X, Korhonen P, Cai H, et al. Genetic blueprint of the zoonotic pathogen Toxocara canis. Nat Commun. 2015;6:6145.
Article
CAS
PubMed
Google Scholar
Korhonen P, Pozio E, La Rosa G, et al. Phylogenomic and biogeographic reconstruction of the Trichinella complex. Nat Commun. 2016;7:10513.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, McWilliam H, Maslen J, Mitchell A, Nuka G, Pesseat S, Quinn AF, Sangrador-Vegas A, Scheremetjew M, Yong SY, Lopez R, Hunter S. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30(9):1236–40. https://doi.org/10.1093/bioinformatics/btu031 (epub 2014 Jan 21).
Article
CAS
PubMed
PubMed Central
Google Scholar
Cook DE, Zdraljevic S, Roberts JP, Andersen EC. CeNDR, the Caenorhabditis elegans natural diversity resource. Nucleic Acids Res. 2017;45(D1):D650–7. https://doi.org/10.1093/nar/gkw893 (epub 2016 Oct 3).
Article
CAS
PubMed
Google Scholar