Kumar R, Jangir DK, Verma G, Shekhar S, Hanpude P, Kumar S, et al. S-nitrosylation of UCHL1 induces its structural instability and promotes α-synuclein aggregation. Sci Rep. 2017;7:44558.
Article
CAS
PubMed
PubMed Central
Google Scholar
Siddiqui IJ, Pervaiz N, Abbasi AA. The Parkinson disease gene SNCA: evolutionary and structural insights with pathological implication. Sci Rep. 2016;6:24475.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee Y-T C, Hsu S-T D. Familial mutations and post-translational modifications of UCH-L1 in Parkinson's disease and neurodegenerative disorders. Curr Protein Pept Sci. 2017;18(7):733–45.
Article
CAS
Google Scholar
De Virgilio A, Greco A, Fabbrini G, Inghilleri M, Rizzo MI, Gallo A, et al. Parkinson's disease: autoimmunity and neuroinflammation. Autoimmun Rev. 2016;15(10):1005–11.
Article
PubMed
CAS
Google Scholar
Lunati A, Lesage S, Brice A. The genetic landscape of Parkinson’s disease. Rev Neurol. 2018;174(9):628.
Article
CAS
PubMed
Google Scholar
Zhang M, Cai F, Zhang S, Zhang S, Song W. Overexpression of ubiquitin carboxyl-terminal hydrolase L1 (UCHL1) delays Alzheimer's progression in vivo. Sci Rep. 2014;4:7298.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bilguvar K, Tyagi NK, Ozkara C, Tuysuz B, Bakircioglu M, Choi M, et al. Recessive loss of function of the neuronal ubiquitin hydrolase UCHL1 leads to early-onset progressive neurodegeneration. Proc Natl Acad Sci U S A. 2013;110(9):3489–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nazé P, Vuillaume I, Destée A, Pasquier F, Sablonnière B. Mutation analysis and association studies of the ubiquitin carboxy-terminal hydrolase L1 gene in Huntington's disease. Neurosci Lett. 2002;328(1):1–4.
Article
PubMed
Google Scholar
Belin AC, Westerlund M, Bergman O, Nissbrandt H, Lind C, Sydow O, et al. S18Y in ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) associated with decreased risk of Parkinson's disease in Sweden. Parkinsonism Relat Disord. 2007;13(5):295–8.
Article
Google Scholar
Leroy E, Boyer R, Auburger G, Leube B, Ulm G, Mezey E, et al. The ubiquitin pathway in Parkinson's disease. Nature. 1998;395(6701):451.
Article
CAS
PubMed
Google Scholar
Rydning SL, Backe PH, Sousa MM, Iqbal Z, Øye A-M, Sheng Y, et al. Novel UCHL1 mutations reveal new insights into ubiquitin processing. Hum Mol Genet. 2016;26(6):1031–40.
Google Scholar
Das C, Hoang QQ, Kreinbring CA, Luchansky SJ, Meray RK, Ray SS, et al. Structural basis for conformational plasticity of the Parkinson's disease-associated ubiquitin hydrolase UCH-L1. Proc Natl Acad Sci U S A. 2006;103(12):4675–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ragland M, Hutter C, Zabetian C, Edwards K. Association between the ubiquitin carboxyl-terminal esterase L1 gene (UCHL1) S18Y variant and Parkinson's disease: a HuGE review and meta-analysis. Am J Epidemiol. 2009;170(11):1344–57.
Article
PubMed
PubMed Central
Google Scholar
Sasaki H, Yukiue H, Moiriyama S, Kobayashi Y, Nakashima Y, Kaji M, et al. Clinical significance of matrix metalloproteinase-7 and Ets-1 gene expression in patients with lung cancer. J Surg Res. 2001;101(2):242–7.
Article
CAS
PubMed
Google Scholar
Yamazaki T, Hibi K, Takase T, Tezel E, Nakayama H, Kasai Y, et al. PGP9. 5 as a marker for invasive colorectal cancer. Clin Cancer Res. 2002;8(1):192–5.
CAS
PubMed
Google Scholar
Kabuta T, Furuta A, Aoki S, Furuta K, Wada K. Aberrant interaction between Parkinson disease-associated mutant UCH-L1 and the lysosomal receptor for chaperone-mediated autophagy. J Biol Chem. 2008;283(35):23731–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Kiyama H, Osaka H, Kimura I, Nishikawa K, Namikawa K, et al. Ubiquitin carboxy-terminal hydrolase L1 binds to and stabilizes monoubiquitin in neuron. Hum Mol Genet. 2003;12(16):1945–58.
Article
PubMed
CAS
Google Scholar
Nishikawa K, Li H, Kawamura R, Osaka H, Wang Y-L, Hara Y, et al. Alterations of structure and hydrolase activity of parkinsonism-associated human ubiquitin carboxyl-terminal hydrolase L1 variants. Biochem Biophys Res Commun. 2003;304(1):176–83.
Article
CAS
PubMed
Google Scholar
Setsuie R, Wang Y-L, Mochizuki H, Osaka H, Hayakawa H, Ichihara N, et al. Dopaminergic neuronal loss in transgenic mice expressing the Parkinson's disease-associated UCH-L1 I93M mutant. Neurochem Int. 2007;50(1):119–29.
Article
CAS
PubMed
Google Scholar
Setsuie R, Wada K. The functions of UCH-L1 and its relation to neurodegenerative diseases. Neurochem Int. 2007;51(2–4):105–11.
Article
CAS
PubMed
Google Scholar
Cartier AE, Ubhi K, Spencer B, Vazquez-Roque RA, Kosberg KA, Fourgeaud L, et al. Differential effects of UCHL1 modulation on alpha-synuclein in PD-like models of alpha-synucleinopathy. PLoS One. 2012;7(4):e34713.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mellick G, Silburn P. The ubiquitin carboxy-terminal hydrolase-L1 gene S18Y polymorphism does not confer protection against idiopathic Parkinson's disease. Neurosci Lett. 2000;293(2):127–30.
Article
CAS
PubMed
Google Scholar
Miyake Y, Tanaka K, Fukushima W, Kiyohara C, Sasaki S, Tsuboi Y, et al. UCHL1 S18Y variant is a risk factor for Parkinson’s disease in Japan. BMC Neurol. 2012;12(1):62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yousaf A, Sohail Raza M, Ali AA. The evolution of bony vertebrate enhancers at odds with their coding sequence landscape. Genome Biol Evol. 2015;7(8):2333–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28(10):2731–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abbasi AA. Molecular evolution of HR, a gene that regulates the postnatal cycle of the hair follicle. Sci Rep. 2011;1:32.
Article
PubMed
PubMed Central
CAS
Google Scholar
Abbasi AA, Goode DK, Amir S, Grzeschik K-H. Evolution and functional diversification of the GLI family of transcription factors in vertebrates. Evol Bioinforma. 2009;5:S2322.
Article
Google Scholar
Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, et al. The Pfam protein families database. Nucleic Acids Res. 2011;40(D1):D290–301.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pagni M, Ioannidis V, Cerutti L, Zahn-Zabal M, Jongeneel CV, Falquet L. MyHits: a new interactive resource for protein annotation and domain identification. Nucleic Acids Res. 2004;32(suppl_2):W332–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bett JS, Ritorto MS, Ewan R, Jaffray EG, Virdee S, Chin JW, et al. Ubiquitin C-terminal hydrolases cleave isopeptide-and peptide-linked ubiquitin from structured proteins but do not edit ubiquitin homopolymers. Biochem J. 2015;466(3):489–98.
Article
CAS
PubMed
Google Scholar
Konya C, Hatanaka Y, Fujiwara Y, Uchida K, Nagai Y, Wada K, et al. Parkinson’s disease-associated mutations in α-synuclein and UCH-L1 inhibit the unconventional secretion of UCH-L1. Neurochem Int. 2011;59(2):251–8.
Article
CAS
PubMed
Google Scholar
Liu Z, Meray RK, Grammatopoulos TN, Fredenburg RA, Cookson MR, Liu Y, et al. Membrane-associated farnesylated UCH-L1 promotes α-synuclein neurotoxicity and is a therapeutic target for Parkinson's disease. Proc Natl Acad Sci. 2009;106(12):4635–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ortlund EA, Bridgham JT, Redinbo MR, Thornton JW. Crystal structure of an ancient protein: evolution by conformational epistasis. Science. 2007;317(5844):1544–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lim K-L, Tan JM. Role of the ubiquitin proteasome system in Parkinson's disease. BMC Biochem. 2007;8(1):1–10.
Article
CAS
Google Scholar
Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, et al. The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res. 2016;1:gkw937.
Google Scholar
Trempe J-F, Sauvé V, Grenier K, Seirafi M, Tang MY, Ménade M, et al. Structure of parkin reveals mechanisms for ubiquitin ligase activation. Science. 2013;340(6139):1451–5.
Article
CAS
PubMed
Google Scholar
Ciechanover A, Kwon YT. Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies. Exp Mol Med. 2015;47(3):e147.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sulistio YA, Heese K. The ubiquitin-proteasome system and molecular chaperone deregulation in Alzheimer’s disease. Mol Neurobiol. 2016;53(2):905–31.
Article
CAS
PubMed
Google Scholar
Huang Q, Figueiredo-Pereira ME. Ubiquitin/proteasome pathway impairment in neurodegeneration: therapeutic implications. Apoptosis. 2010;15(11):1292–311.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schwartz AL, Ciechanover A. Targeting proteins for destruction by the ubiquitin system: implications for human pathobiology. Annu Rev Pharmacol Toxicol. 2009;49:73–96.
Article
CAS
PubMed
Google Scholar
Tramutola A, Di Domenico F, Barone E, Perluigi M, Butterfield DA. It is all about (U) biquitin: role of altered ubiquitin-proteasome system and UCHL1 in Alzheimer disease. Oxidative Med Cell Longev. 2016;2016:1.
Article
CAS
Google Scholar
Gadhave K, Bolshette N, Ahire A, Pardeshi R, Thakur K, Trandafir C, et al. The ubiquitin proteasomal system: a potential target for the management of Alzheimer's disease. J Cell Mol Med. 2016;20(7):1392–407.
Article
CAS
PubMed
PubMed Central
Google Scholar
McNaught KSP, Jenner P. Proteasomal function is impaired in substantia nigra in Parkinson's disease. Neurosci Lett. 2001;297(3):191–4.
Article
CAS
PubMed
Google Scholar
Ma S, Attarwala IY, Xie X-Q. SQSTM1/p62: a potential target for neurodegenerative disease. ACS Chem Neurosci. 2019;10(5):2094–114.
Article
CAS
PubMed
Google Scholar
Kyratzi E, Pavlaki M, Stefanis L. The S18Y polymorphic variant of UCH-L1 confers an antioxidant function to neuronal cells. Hum Mol Genet. 2008;17(14):2160–71.
Article
CAS
PubMed
Google Scholar
Bishop P, Rocca D, Henley JM. Ubiquitin C-terminal hydrolase L1 (UCH-L1): structure, distribution and roles in brain function and dysfunction. Biochem J. 2016;473(16):2453–62.
Article
CAS
PubMed
Google Scholar
Kim H-J, Kim HJ, Jeong J-E, Baek JY, Jeong J, Kim S, et al. N-terminal truncated UCH-L1 prevents Parkinson's disease associated damage. PLoS One. 2014;9(6):e99654.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sułkowska JI, Rawdon EJ, Millett KC, Onuchic JN, Stasiak A. Conservation of complex knotting and slipknotting patterns in proteins. Proc Natl Acad Sci U S A. 2012;109(26):E1715–23.
Article
PubMed
PubMed Central
Google Scholar
Bishop P, Rubin P, Thomson AR, Rocca D, Henley JM. The ubiquitin C-terminal hydrolase L1 (UCH-L1) C terminus plays a key role in protein stability, but its farnesylation is not required for membrane association in primary neurons. J Biol Chem. 2014;289(52):36140–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zerbino DR, Achuthan P, Akanni W, Amode MR, Barrell D, Bhai J, et al. Ensembl 2018. Nucleic Acids Res. 2017;46(D1):D754–61.
Article
PubMed Central
CAS
Google Scholar
Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K, Chetvernin V, et al. Database resources of the national center for biotechnology information. Nucleic Acids Res. 2007;36(suppl_1):D13–21.
Article
PubMed
PubMed Central
CAS
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10.
Article
CAS
PubMed
Google Scholar
Pervaiz N, Shakeel N, Qasim A, Zehra R, Anwar S, Rana N, et al. Evolutionary history of the human multigene families reveals widespread gene duplications throughout the history of animals. BMC Evol Biol. 2019;19(1):128.
Article
PubMed
PubMed Central
Google Scholar
Seemab S, Pervaiz N, Zehra R, Anwar S, Bao Y, Abbasi AA. Molecular evolutionary and structural analysis of familial exudative vitreoretinopathy associated FZD4 gene. BMC Evol Biol. 2019;19(1):72.
Article
PubMed
PubMed Central
Google Scholar
Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4(4):406–25.
CAS
PubMed
Google Scholar
Russo C. Efficiencies of different statistical tests in supporting a known vertebrate phylogeny. Mol Biol Evol. 1997;14(10):1078–80.
Article
CAS
PubMed
Google Scholar
Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A. 2004;101(30):11030–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Whelan S, Goldman N. A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol. 2001;18(5):691–9.
Article
CAS
PubMed
Google Scholar
Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap. Evolution. 1985;39(4):783–91.
Article
PubMed
Google Scholar
Goldman N, Yang Z. A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol Biol Evol. 1994;11(5):725–36.
CAS
PubMed
Google Scholar
Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal omega. Mol Syst Biol. 2011;7(1):539.
Article
PubMed
PubMed Central
Google Scholar
Grantham R. Amino acid difference formula to help explain protein evolution. Science. 1974;185(4154):862–4.
Article
CAS
PubMed
Google Scholar
Betts MJ, Russell RB. Amino acid properties and consequences of substitutions. Bioinformatics Genet. 2003;1:289–316.
Article
Google Scholar
Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, et al. The protein data Bank. Nucleic Acids Res. 2000;28(1):235–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Webb B, Sali A. Comparative protein structure modeling using MODELLER. Curr Protoc Bioinformatics. 2014;47(1):1–5.6.
Article
Google Scholar
Krieger E, Joo K, Lee J, Lee J, Raman S, Thompson J, et al. Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: four approaches that performed well in CASP8. Proteins. 2009;77(S9):114–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lovell SC, Davis IW, Arendall WB III, De Bakker PI, Word JM, Prisant MG, et al. Structure validation by Cα geometry: ϕ, ψ and Cβ deviation. Proteins. 2003;50(3):437–50.
Article
CAS
PubMed
Google Scholar
Colovos C, Yeates TO. Verification of protein structures: patterns of nonbonded atomic interactions. Protein Sci. 1993;2(9):1511–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cheng J, Randall A, Baldi P. Prediction of protein stability changes for single-site mutations using support vector machines. Proteins. 2006;62(4):1125–32.
Article
CAS
PubMed
Google Scholar
Yang J, Zhang Y. I-TASSER server: new development for protein structure and function predictions. Nucleic Acids Res. 2015;43(W1):W174–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem. 2004;25(13):1605–12.
Article
CAS
PubMed
Google Scholar
Comeau SR, Gatchell DW, Vajda S, Camacho CJ. ClusPro: a fully automated algorithm for protein–protein docking. Nucleic Acids Res. 2004;32(suppl_2):W96–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wallace AC, Laskowski RA, Thornton JM. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng Des Sel. 1995;8(2):127–34.
Article
CAS
Google Scholar
DeLano W. The PyMOL molecular graphics system, version 1.3 r1. Schrödinger, LLC, New York; 2010. p. 1–10.
Google Scholar