Donkin RA: Beyond price. Pearls and pearl-fishing: origins to the Age of Discoveries. 1998, Philadelphia: American Philosophical Society, 224:
Google Scholar
Landman NH, Mikkelsen PM, Bieler R, Bronson B: Pearls: a natural history. 2001, New York: Harry N. Abrams, Inc
Google Scholar
Strack E: Pearls. 2006, Stuttgart: Ruhle-Diebener-Verlag GmbH & Co
Google Scholar
Southgate PC, Lucas JS: The pearl oyster. 2008, Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo: Elsevier
Google Scholar
Burch BL: Pearly shells - part 5: transport by man of commercial pearl shells and their hitch-hikers. Hawaiian Shell News. 1995, 43 (6): 3-6.
Google Scholar
Borrero FJ, Díaz JM: Introduction of the Indo-Pacific pteriid bivalve Electroma sp. to the tropical western Atlantic. Bull Mar Sci. 1998, 62 (1): 269-274.
Google Scholar
O'Connor WA, Gifford SP: Environmental impacts of pearl farming. The pearl oyster. Edited by: Southgate PC, Lucas JS. 2008, Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo: Elsevier, 497-525. full_text.
Google Scholar
Wada KT, Jerry DR: Population genetics and stock improvement. The pearl oyster. Edited by: Southgate PC, Lucas JS. 2008, Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo: Elsevier, 437-471. full_text.
Google Scholar
Westbroek P, Marin F: A marriage of bone and nacre. Nature. 1998, 392: 861-862. 10.1038/31798.
CAS
PubMed
Google Scholar
Milet C, Berland S, Lamghari M, Mouries L, Jolly C, Borzeix S, Doumenc D, Lopez É: Conservation of signal molecules involved in biomineralisation control in calcifying matrices of bone and shell. C R Palevol. 2004, 3: 493-501. 10.1016/j.crpv.2004.07.010.
Google Scholar
Gray JE: List of the genera of Recent Mollusca, their synonyma and types. Proc Zool Soc London. 1847, 15 (178): 129-219.
Google Scholar
Newell ND, et al: Superfamily Pteriacea Gray, 1847 (1820). Treatise on Invertebrate Paleontology Part N Mollusca 6: Bivalvia. Edited by: Cox LR, Newell ND, Boyd DW, Branson CC, Casey R, Chavan A, Coogan AH, Dechaseaux C, Fleming CA, Haas F. 1969, Lawrence, Kansas: Geological Society of America and University of Kansas, 1: N297-
Google Scholar
Boss KJ: Mollusca. Synopsis and classification of living organisms. Edited by: Parker SP. 1982, New York: McGraw-Hill, 1: 945-1166.
Google Scholar
Butler AJ: Order Pterioida. Mollusca: the southern synthesis Fauna of Australia. Edited by: Beesley PL, Ross GJB, Wells A. 1998, Melbourne: CSIRO Publishing, 5: 261-267. Part A
Google Scholar
Tëmkin I: Morphological perspective on classification and evolution of Recent Pterioidea (Mollusca: Bivalvia). Zool J Linn Soc. 2006, 148 (3): 253-312. 10.1111/j.1096-3642.2006.00257.x.
Google Scholar
Jackson RT: Phylogeny of the Pelecypoda: the Aviculidae and their allies. Mem Boston Soc Nat Hist. 1890, 4: 277-400.
Google Scholar
Matsumoto M: Phylogenetic analysis of the subclass Pteriomorphia (Bivalvia) from mtDNA COI sequences. Mol Phylogenet Evol. 2003, 27: 429-440. 10.1016/S1055-7903(03)00013-7.
CAS
PubMed
Google Scholar
Steiner G, Hammer S: Molecular phylogeny of the Bivalvia inferred from 18S rDNA sequences with particular reference to the Pteriomorphia. The evolutionary biology of the Bivalvia. Edited by: Harper EM, Taylor JD, Crame JA. 2000, London: Geological Society, 11-29. vol. Special Publications, 177
Google Scholar
Giribet G, Distel DL: Bivalve phylogeny and molecular data. Molecular systematics and phylogeography of mollusks. Edited by: Lydeard C, Lindberg DR. 2003, Washington and London: Smithsonian Books, 45-90.
Google Scholar
Pojeta J: The origin and early taxonomic diversification of pelecypods. Philos Trans R Soc, B. 1978, 284: 225-246. 10.1098/rstb.1978.0065.
Google Scholar
Waller TR: Morphology, morphoclines and a new classification of the Pteriomorphia (Mollusca: Bivalvia). Philos Trans R Soc, B. 1978, 284: 345-365. 10.1098/rstb.1978.0072.
Google Scholar
Waller TR: Origin of the molluscan class Bivalvia and a phylogeny of major groups. Bivalves: an eon of evolution - paleobiological studies honoring Norman D Newell. Edited by: Johnston PA, Haggart JW. 1998, Calgary: University of Calgary Press, 1-45.
Google Scholar
Cope JCW: The early evolution of the Bivalvia. Origin and evolutionary radiation of the Mollusca. Centenary Symposium of the Malacological Society of London. Edited by: Taylor JD. 1996, Oxford, New York: Oxford University Press, 361-370.
Google Scholar
Giribet G, Wheeler WC: On bivalve phylogeny: a high-level analysis of the Bivalvia (Mollusca) based on combined morphology and DNA sequence data. Invertebr Biol. 2002, 121 (4): 271-324. 10.1111/j.1744-7410.2002.tb00132.x.
Google Scholar
Adamkewicz SL, Harasewych MG, Blake J, Saudek D, Bult CJ: A molecular phylogeny of the bivalve mollusks. Mol Biol Evol. 1997, 14 (6): 619-629.
CAS
PubMed
Google Scholar
Campbell DC: Molecular evidence on the evolution of the Bivalvia. The evolutionary biology of the Bivalvia. Edited by: Harper EM, Taylor JD, Crame JA. 2000, London: The Geological Society, 177: 31-46.
Google Scholar
Matsumoto M: Molecular phylogenetic analysis of pteriomorph bivalves. Unpublished Ph.D. dissertation. 2001, Yokohama, Japan: Kanagawa University
Google Scholar
Márquez-Aliaga A, Jiménez-Jiménez AP, Checa AG, Hagdorn H: Early oysters and their supposed Permian ancestors. Palaeogeogr, Palaeoclimatol, Palaeoecol. 2005, 229: 127-136. 10.1016/j.palaeo.2005.06.034.
Google Scholar
Hautmann M: Shell morphology and phylogenetic origin of oysters. Palaeogeogr, Palaeoclimatol, Palaeoecol. 2006, 240: 668-671. 10.1016/j.palaeo.2006.03.006.
Google Scholar
Malchus N: Problems concerning early oyster evolution: a reply to Márquez-Aliaga and Hautmann. Palaeogeogr, Palaeoclimatol, Palaeoecol. 2008, 258: 130-134. 10.1016/j.palaeo.2007.07.006.
Google Scholar
Kirkendale L, Lee T, Baker P, Ó Foighil D: Oysters of the Conch Republic (Florida Keys): a molecular phylogenetic study of Parahyotissa mcgintyi, Teskeyostrea weberi and Ostrea equestris. Malacologia. 2004, 46 (2): 309-326.
Google Scholar
Wada KT, Tëmkin I: Taxonomy and phylogeny. The pearl oyster. Edited by: Southgate PC, Lucas JS. 2008, Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo: Elsevier, 37-75. full_text.
Google Scholar
Hillis DM, Dixon MT: Ribosomal DNA: molecular evolution and phylogenetic inference. Q Rev Biol. 1991, 66 (4): 411-453. 10.1086/417338.
CAS
PubMed
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol. 1990, 215: 403-410.
CAS
PubMed
Google Scholar
Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997, 25: 3389-3402. 10.1093/nar/25.17.3389.
PubMed Central
CAS
PubMed
Google Scholar
Wheeler W: Homology and the optimization of DNA sequence data. Cladistics. 2001, 17: S3-S11. 10.1111/j.1096-0031.2001.tb00100.x.
CAS
PubMed
Google Scholar
Wheeler WC: Homology and DNA sequence data. The character concept in evolutionary biology. Edited by: Wagner GP. 2001, San Diego: Academic Press, 303-317. full_text.
Google Scholar
Varón A, Vinh LS, Bomash I, Wheeler WC: POY 4.1. 2008, New York: American Museum of Natural History
Google Scholar
Morrison DA: Multiple sequence alignment for phylogenetic purposes. Aust Syst Bot. 2006, 19: 479-539. 10.1071/SB06020.
CAS
Google Scholar
Wheeler WC, Aagesen L, Arango CP, Faivovich J, Grant T, D'Haese C, Janies D, Smith WL, Varón A, Giribet G: Dynamic homology and phylogenetic systematics: a unified approach using POY. 2006, New York: American Museum of Natural History
Google Scholar
Wheeler WC: Implied alignment: a synapomorphy-based multiple-sequence alignment method and its use in cladogram search. Cladistics. 2003, 19: 261-268. 10.1111/j.1096-0031.2003.tb00369.x.
PubMed
Google Scholar
Giribet G: Generating implied alignments under direct optimization using POY. Cladistics. 2005, 21: 396-402. 10.1111/j.1096-0031.2005.00071.x.
Google Scholar
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, et al: Clustal W and Clustal X version 2.0. Bioinformatics. 2007, 23: 2947-2948. 10.1093/bioinformatics/btm404.
CAS
PubMed
Google Scholar
Winnepenninckx B, Backeljau T, De Wachter R: Small ribosomal subunit RNA and the phylogeny of Mollusca. Nautilus. 1994, 108 (Suppl 2): 98-110.
Google Scholar
Lydeard C, Holznagel WE, Schnare MN, Gutell RR: Phylogenetic analysis of molluscan mitochondrial LSU rDNA sequences and secondary structures. Mol Phylogenet Evol. 2000, 15 (1): 83-102. 10.1006/mpev.1999.0719.
CAS
PubMed
Google Scholar
Michot B, Hassouna N, Bachellerie JP: Secondary structure of mouse 28S rRNA and general model for the folding of the large rRNA in eukaryotes. Nucleic Acids Res. 1984, 12 (10): 4259-4279. 10.1093/nar/12.10.4259.
PubMed Central
CAS
PubMed
Google Scholar
Michot B, Bachellerie JP: Comparisons of large subunit rRNAs reveal some eukaryote-specific elements of secondary structure. Biochimie. 1987, 69: 11-23. 10.1016/0300-9084(87)90267-7.
CAS
PubMed
Google Scholar
Gutell RR, Fox GE: A compilation of large subunit RNA sequences presented in a structural format. Nucleic Acids Res. 1988, 16 (Suppl): r175-r269.
PubMed Central
CAS
PubMed
Google Scholar
Wuyts J, De Rijk P, Van de Peer Y, Winkelmans T, De Wachter R: The European large subunit ribosomal RNA database. Nucleic Acids Res. 2001, 29 (1): 175-177. 10.1093/nar/29.1.175.
PubMed Central
CAS
PubMed
Google Scholar
Wuyts J, Van de Peer Y, Winkelmans T, De Wachter R: The European database on small subunit ribosomal RNA. Nucleic Acids Res. 2002, 30: 183-185. 10.1093/nar/30.1.183.
PubMed Central
CAS
PubMed
Google Scholar
Wells D, Brown D: Histone and histone gene compilation and alignment update. Nucleic Acids Res. 1991, 19 (Suppl): 2173-2188.
PubMed Central
CAS
PubMed
Google Scholar
Xia X, Xie Z, Salemi M, Chen L, Wang Y: An index of substitution saturation and its application. Mol Phylogenet Evol. 2003, 26: 1-7. 10.1016/S1055-7903(02)00326-3.
CAS
PubMed
Google Scholar
Xia X, Xie Z: DAMBE: software package for data analysis in Mol Biol Evol. J Hered. 2001, 92 (4): 371-373. 10.1093/jhered/92.4.371.
CAS
PubMed
Google Scholar
Maddison DR, Maddison WP: MacClade. Version 4.07. 2005, Sunderland, MA: Sinauer Associates
Google Scholar
Swofford DL: PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4.0d105. 2002, Sunderland, MA: Sinauer
Google Scholar
Yang Z: Maximum-likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites. Mol Biol Evol. 1993, 10 (6): 1396-1401.
CAS
PubMed
Google Scholar
Yang Z: Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: approximate methods. J Mol Evol. 1994, 39: 306-314. 10.1007/BF00160154.
CAS
PubMed
Google Scholar
Rzhetsky A, Nei M: A simple method for estimating and testing minimum-evolution trees. Mol Biol Evol. 1992, 9: 945-967.
CAS
Google Scholar
Rzhetsky A, Nei M: Statistical properties of the ordinary least-squares, generalized least-squares, and minimum evolution methods of phylogenetic inference. J Mol Evol. 1992, 35: 367-375. 10.1007/BF00161174.
CAS
PubMed
Google Scholar
Lanave C, Preparata G, Saccone C, Serio G: A new method for calculating evolutionary substitution rates. J Mol Evol. 1984, 20: 86-93. 10.1007/BF02101990.
CAS
PubMed
Google Scholar
Tavaré S: Some probabilistic and statistical problems in the analysis of DNA sequences. Lect Math Life Sci. 1986, 17: 57-86.
Google Scholar
Rodriguez F, Oliver JF, Marin A, Medina JR: The general stochastic model of nucleotide substitutions. J Theor Biol. 1990, 142: 485-501. 10.1016/S0022-5193(05)80104-3.
CAS
PubMed
Google Scholar
Akaike H: A new look at the statistical model identification. IEEE Trans Autom Control. 1974, 19: 716-723. 10.1109/TAC.1974.1100705.
Google Scholar
Mickevich MF, Farris JS: The implications of congruence in Menidia. Syst Zool. 1981, 30: 351-370. 10.2307/2413255.
Google Scholar
Farris JS, Källersjö M, Kluge AG, Bult C: Constructing a significance test for congruence. Syst Biol. 1995, 44 (4): 570-572.
Google Scholar
Farris JS, Källersjö M, Kluge AG, Bult C: Testing significance of incongruence. Cladistics. 1995, 10: 315-319. 10.1111/j.1096-0031.1994.tb00181.x.
Google Scholar
Barker FK, Lutzoni FM: The utility of the incongruence length difference test. Syst Biol. 2002, 51: 625-637. 10.1080/10635150290102302.
PubMed
Google Scholar
Darlu P, Lecointre G: When does the incongruence length difference test fail?. Mol Biol Evol. 2002, 19 (4): 432-437.
CAS
PubMed
Google Scholar
Swofford DL, Olsen GJ: Phylogeny reconstruction. Molecular systematics. Edited by: Hillis DM, Moritz C. 1990, Sunderland, MA: Sinauer, 411-501.
Google Scholar
Wheeler WC: Optimization alignment: the end of multiple sequence alignment in phylogenetics?. Cladistics. 1996, 1-9. 10.1111/j.1096-0031.1996.tb00189.x. 12
Sankoff D: Minimal mutation trees of sequences. SIAM J Appl Math. 1975, 28: 35-42. 10.1137/0128004.
Google Scholar
Sankoff D, Cedergren RJ: Simultaneous comparison of three or more sequences related by a tree. Time warps, string edits, and macromolecules: the theory and practice of sequence comparison. Edited by: Sankoff D, Kruskal J. 1983, Stanford, CA: CSLI Publications, 253-263.
Google Scholar
Hein J: A new method that simultaneously aligns and reconstructs ancestral sequences for any number of homologous sequences, when the phylogeny is given. Mol Biol Evol. 1989, 6: 649-668.
CAS
PubMed
Google Scholar
Hein J: A tree reconstruction method that is economical in the number of pairwise comparisons used. Mol Biol Evol. 1989, 6: 669-684.
CAS
PubMed
Google Scholar
Jiang T, Lawler EL, Wang A: Aligning sequences via an evolutionary tree: complexity and approximation. Proceedings of the Twenty-Sixth Annual Symposium on Theory of Computing, STOC 94-5% 94, Montreal, Quebec, Canada: 1994. 1994, 760-769. full_text.
Google Scholar
Sankoff D, Rousseau P: Locating the vertices of a Steiner tree in arbitrary space. Math Program. 1975, 9: 240-246. 10.1007/BF01681346.
Google Scholar
Schwikowski B, Vingron M: The deferred path heuristic for the generalized tree alignment problem. J Comput Biol. 1997, 4: 415-431. 10.1089/cmb.1997.4.415.
CAS
PubMed
Google Scholar
Kluge AG, Farris J: Quantitative phyletics and the evolution of anurans. Syst Zool. 1969, 18: 1-32. 10.2307/2412407.
Google Scholar
Farris JS: Methods for computing Wagner trees. Syst Zool. 1970, 19: 83-92. 10.2307/2412028.
Google Scholar
Nixon KC: The parsimony ratchet, a new method for rapid parsimony analysis. Cladistics. 1999, 15: 407-414. 10.1111/j.1096-0031.1999.tb00277.x.
Google Scholar
Goloboff PA: Analyzing large data sets in reasonable times: solutions for composite optima. Cladistics. 1999, 15: 415-428. 10.1111/j.1096-0031.1999.tb00278.x.
Google Scholar
Wheeler WC: Iterative pass optimization of sequence data. Cladistics. 2003, 19: 254-260. 10.1111/j.1096-0031.2003.tb00368.x.
PubMed
Google Scholar
Nixon KC, Carpenter JM: On outgroups. Cladistics. 1993, 9: 413-426. 10.1111/j.1096-0031.1993.tb00234.x.
Google Scholar
Stamatakis A: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006, 22 (21): 2688-2690. 10.1093/bioinformatics/btl446.
CAS
PubMed
Google Scholar
Sullivan J, Abdo Z, Joyce P, Swofford DL: Evaluating the performance of a successive-approximations approach to parameter optimization in maximum-likelihood phylogeny estimation. Mol Biol Evol. 2005, 22 (6): 1386-1392. 10.1093/molbev/msi129.
CAS
PubMed
Google Scholar
Posada D, Crandall KA: MODELTEST: testing the model of DNA substitution. Bioinformatics. 1998, 14 (9): 817-818. 10.1093/bioinformatics/14.9.817.
CAS
PubMed
Google Scholar
Posada D, Buckley TR: Model selection and model averaging in phylogenetics: advantages of the AIC and Bayesian approaches over likelihood ratio tests. Syst Biol. 2004, 53: 793-808. 10.1080/10635150490522304.
PubMed
Google Scholar
Gu X: Maximum likelihood estimation of the heterogeneity of substitution rate among nucleotide sites. Mol Biol Evol. 1995, 12: 546-557.
CAS
PubMed
Google Scholar
Yang Z: Computational molecular evolution. 2006, Oxford and New York
Google Scholar
Sullivan J, Holsinger KE, Simon C: The effect of topology on estimates of among-site rate variation. J Mol Evol. 1996, 42: 308-312. 10.1007/BF02198857.
CAS
PubMed
Google Scholar
Farris JS: The retention index and the rescaled consistency index. Cladistics. 1989, 5: 417-419. 10.1111/j.1096-0031.1989.tb00573.x.
Google Scholar
Bremer K: The limits of amino-acid sequence data in angiosperm phylogenetic reconstruction. Evolution. 1988, 42: 795-803. 10.2307/2408870.
CAS
Google Scholar
Farris JS, Albert VA, Källersjö M, Lipscomb D, Kluge AG: Parsimony jackknifing outperforms neighbor-joining. Cladistics. 1996, 12: 99-124. 10.1111/j.1096-0031.1996.tb00196.x.
Google Scholar
Baker RH, DeSalle R: Multiple sources of character information and the phylogeny of Hawaiian drosophilids. Syst Biol. 1997, 46 (4): 654-673.
CAS
PubMed
Google Scholar
Sorenson MD, Franzosa EA: TreeRot, version 3. 2007, Boston, MA: Boston University
Google Scholar
Rambaut A: FigTree: tree figure frawing tool version 1.1.2. 2006, Edinburgh: Institute of Evolutionary Biology, University of Edinburgh
Google Scholar
Kishino H, Hasegawa M: Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. J Mol Evol. 1989, 29: 170-179. 10.1007/BF02100115.
CAS
PubMed
Google Scholar
Kishino H, Miyata T, Hasegawa M: Maximum likelihood inference of protein phylogeny and the origin of chloroplasts. J Mol Evol. 1990, 30: 151-160. 10.1007/BF02109483.
Google Scholar
Templeton AR: Phylogenetic inference from restriction endonuclease cleavage site maps with particular reference to the evolution of humans and apes. Evolution. 1983, 37 (2): 221-244. 10.2307/2408332.
CAS
Google Scholar
Templeton AR: Convergent evolution and nonparametric inferences from restriction data and DNA sequences. Statistical analysis of DNA sequence data. Edited by: Weir BS. 1983, New York: Marcel Dekker, Inc, 151-179.
Google Scholar
Goldman N, Anderson JP, Rodrigo AG: Likelihood-based tests of topologies in phylogenetics. Syst Biol. 2000, 49 (4): 652-670. 10.1080/106351500750049752.
CAS
PubMed
Google Scholar
Nei M, Kumar S: Molecular evolution and phylogenetics. 2000, Oxford: Oxford University Press
Google Scholar
Wheeler WC: Sequence alignment, parameter sensitivity, and the phylogenetic analysis of molecular data. Syst Biol. 1995, 44 (3): 321-331.
Google Scholar
Gotoh O: An improved algorithm for matching biological sequences. J Mol Biol. 1982, 162: 705-708. 10.1016/0022-2836(82)90398-9.
CAS
PubMed
Google Scholar
De Laet J: Parsimony and the problem of inapplicables in sequence data. Parsimony, phylogeny, and genomics. Edited by: Albert VA. 2005, Oxford University Press, 81-116.
Google Scholar
De Laet J, Smets E: On the three taxon approach to parsimony analysis. Cladistics. 1998, 14: 363-381. 10.1006/clad.1998.0075.
Google Scholar
Wheeler WC: Measuring topological congruence by extending character techniques. Cladistics. 1999, 15: 131-135. 10.1111/j.1096-0031.1999.tb00255.x.
Google Scholar
Faith DP, Trueman JWH: Towards an inclusive philosophy for phylogenetic inference. Syst Biol. 2001, 50 (3): 331-350. 10.1080/106351501300317969.
CAS
PubMed
Google Scholar
Takezaki N, Gojobori T: Correct and incorrect vertebrate phylogenies obtained by the entire mitochondrial DNA sequences. Mol Biol Evol. 1999, 16 (5): 590-601.
CAS
PubMed
Google Scholar
Sullivan DL: Combining data with different distributions of among-site variation. Syst Biol. 1996, 45: 375-380.
Google Scholar
Cunningham CW: Can three incongruence tests predict when data should be combined?. Mol Biol Evol. 1997, 14 (7): 733-740.
CAS
PubMed
Google Scholar
Lockhart PJ, Steel MA, Hendy MD, Penny D: Recovering evolutionary trees under a more realistic model of sequence evolution. Mol Biol Evol. 1994, 11 (4): 605-612.
CAS
PubMed
Google Scholar
Galtier N, Gouy M: Inferring phylogenies from DNA sequences of unequal base compositions. Proc Natl Acad Sci USA. 1995, 92 (24): 11317-11321. 10.1073/pnas.92.24.11317.
PubMed Central
CAS
PubMed
Google Scholar
Yang Z: On the best evolutionary rate for phylogenetic analysis. Syst Biol. 1998, 47 (1): 125-133. 10.1080/106351598261067.
CAS
PubMed
Google Scholar
Björklund M: Are third positions really that bad? A test using vertebrate cytochrome b. Cladistics. 1999, 15 (2): 191-197.
Google Scholar
Källersjö M, Albert VA, Farris JS: Homoplasy increases phylogenetic structure. Cladistics. 1999, 15: 91-93.
Google Scholar
Wenzel JW, Siddall ME: Noise. Cladistics. 1999, 15: 51-54. 10.1111/j.1096-0031.1999.tb00394.x.
Google Scholar
Philippe H, Lecointre G, Lê HLV, Guyader HL: A critical study of homoplasy in molecular data with the use of a morphologically based cladogram, and its consequences for character weighting. Mol Biol Evol. 1996, 13 (9): 1174-1186.
Google Scholar
Navidi WC, Churchill GA, Haeseler Av: Methods for inferring phylogenies from nucleotide acid sequence data by using maximum likelihood and linear invariants. Mol Biol Evol. 1991, 8: 128-143.
CAS
PubMed
Google Scholar
Yang Z: Phylogenetic analysis using parsimony and likelihood methods. J Mol Evol. 1996, 42: 294-307. 10.1007/BF02198856.
CAS
PubMed
Google Scholar
Kuhner MK, Felsenstein J: A simulation comparison of phylogeny algorithms under equaland unequal evolutionary rates. Mol Biol Evol. 1994, 11: 459-468.
CAS
PubMed
Google Scholar
Felsenstein J: Cases in which parsimony or compatibility methods will be positively misleading. Syst Zool. 1978, 27 (4): 401-410. 10.2307/2412923.
Google Scholar
Hendy MD, Penny D: A framework for the quantitative study of evolutionary trees. Syst Zool. 1989, 38 (4): 297-309. 10.2307/2992396.
Google Scholar
Hillis DM: Inferring complex phylogenies. Nature. 1996, 383: 130-131. 10.1038/383130a0.
CAS
PubMed
Google Scholar
Anderson FE, Swofford DL: Should we be worried about long-branch attraction in real data sets? Investigations using metazoan 18S rDNA. Mol Phylogenet Evol. 2004, 33: 440-451. 10.1016/j.ympev.2004.06.015.
CAS
PubMed
Google Scholar
Zouros E, Ball AO, Saavedra C, Freeman KR: Mitochondrial DNA inheritance. Nature. 1994, 368: 818-10.1038/368818a0.
CAS
PubMed
Google Scholar
Theologidis I, Fodelianakis S, Gaspar MB, Zouros E: Doubly uniparental inheritance (DUI) of mitochondrial DNA in Donax trunculus (Bivalvia: Donacidae) and the problem of its sporadic detection in Bivalvia. Evolution. 2008, 62 (4): 959-970. 10.1111/j.1558-5646.2008.00329.x.
CAS
PubMed
Google Scholar
Saucedo PE, Southgate PC: Reproduction, development and growth. The pearl oyster. Edited by: Southgate PC, Lucas JS. 2008, Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo: Elsevier, 131-186. full_text.
Google Scholar
Nixon KC, Carpenter JM: On simultaneous analysis. Cladistics. 1996, 12: 221-241. 10.1111/j.1096-0031.1996.tb00010.x.
Google Scholar
Gatesy J, O'Grady P, Baker RH: Corroboration among data sets in simultaneous analysis: hidden support for phylogenetic relationships among higher level artiodactyl taxa. Cladistics. 1999, 15: 271-313. 10.1111/j.1096-0031.1999.tb00268.x.
Google Scholar
Cummings MP, Otto SP, Wakeley J: Sampling properties of DNA sequence data in phylogenetic analysis. Mol Biol Evol. 1995, 12: 814-822.
CAS
PubMed
Google Scholar
Bull JJ, Huelsenbeck JP, Cunningham CW, Swofford DL, Waddell PJ: Partitioning and combining data in phylogenetic analysis. Syst Biol. 1993, 42: 384-397.
Google Scholar
Yonge CM: Form and habit in species of Malleus (including the "hammer oysters") with comparative observations on Isognomon isognomon. Biol Bull. 1968, 135: 378-405. 10.2307/1539789.
Google Scholar
Stanley SM: Functional morphology and evolution of byssally attached bivalve mollusks. J Paleontol. 1972, 46 (2): 165-212.
Google Scholar
Seilacher A: Constraint and innovation in bivalve mollusc evolution. Evolution and development Report of the Dahlem Workshop on Evolution and Development, Berlin 1981, Ma9 10-15. Edited by: Bonner JT. 1982, Berlin: Springer, 302-305.
Google Scholar
Atkins D: On the ciliary mechanisms and interrelationships of lamellibranchs. Part 3. Types of lamellibranch gills and their food currents. Q J Microsc Sci. 1937, 79 (315): 375-421.
Google Scholar
Palmer TJ: Revision of the bivalve family Pulvinitidae Stephenson, 1941. Palaeontology. 1984, 27 (Part 4): 815-824.
Google Scholar
Newell ND, Boyd DW: A palaeontologist's view of bivalve phylogeny. Philos Trans R Soc, B. 1978, 284: 203-215. 10.1098/rstb.1978.0063.
Google Scholar
Seilacher A: Constructional morphology of bivalves: evolutionary pathways in primary versus secondary soft-bottom dwellers. Palaeontology. 1984, 27 (2): 207-237.
Google Scholar
Seilacher A: Secondary soft-bottom dwellers: convergent responses to an evolutionary "mistake". Evolving form and function: fossils and development; proceedings of a symposium honoring Adolf Seilacher for his contribution to paleontology, in celebration of his 80th birthday; 2005 Apr 1-2; New Haven. Edited by: Briggs DEG. 2005, New Haven: Peabody Museum of Natural History, Yale University, 257-271.
Google Scholar
Stanley SM: Adaptive themes in the evolution of the Bivalvia (Mollusca). Annu Rev Earth Planet Sci. 1975, 3: 361-385. 10.1146/annurev.ea.03.050175.002045.
Google Scholar
Skelton PW, Benton MJ: Mollusca: Rostroconchia, Scaphopoda and Bivalvia. The fossil record 2. Edited by: Benton MJ. 1993, London: Chapman & Hall, 237-263.
Google Scholar
Yonge CM: Mantle fusion in the Lamellibranchia. Pubbl Stn Zool Napoli. 1957, 29: 151-171.
Google Scholar
Cox LR, et al: General features of Bivalvia. Part N Mollusca 6: Bivalvia. Edited by: Cox LR, Newell ND, Boyd DW, Branson CC, Casey R, Chavan A, Coogan AH, Dechaseaux C, Fleming CA, Haas F. 1969, Lawrence, Kansas: Geological Society of America and University of Kansas, 1: N2-N129.
Google Scholar
Taylor JD, Kennedy WJ, Hall A: The shell structure and mineralogy of the Bivalvia. Introduction. Nuculacea-Trigonacea. Bull Br Mus (Nat Hist), Zool. 1969, 1-125. Suppl 3
Morton B: Mantle and body cavities. Mollusca: the southern synthesis Fauna of Australia. Edited by: Beesley PL, Ross GJB, Wells A. 1998, Melbourne: CSIRO Publishing, 5 (Part A): 203-204.
Reid RGB, Porteous S: Aspects of the functional morphology and digestive physiology of Vulsella vulsella (Linné) and Crenatula modiolaris (Lamarck), bivalves associated with sponges. The malacofauna of Hong Kong and Southern China Proceedings of the First International Workshop 23 March - 8 April 1977, Hong Kong. Edited by: Morton B. 1980, Hong Kong: Hong Kong University Press, 291-310.
Google Scholar
Morton B: Partnerships in the sea: Hong Kong's marine symbioses. 1988, Hong Kong: Hong Kong University Press
Google Scholar
Haszprunar G: Comparative analysis of the abdominal sense organs of Pteriomorpha (Bivalvia). J Molluscan Stud, Suppl. 1983, 12 (A): 47-50.
Google Scholar
Haszprunar G: The fine structure of the abdominal sense organs of Pteriomorpha (Mollusca, Bivalvia). J Molluscan Stud. 1985, 51 (3): 315-319.
Google Scholar
Yu DH, Chu KH: Species identity and phylogenetic relationship of the pearl oysters in Pinctada Röding, 1798 based on ITS sequence analysis. Biochem Syst Ecol. 2006, 34: 240-250. 10.1016/j.bse.2005.09.004.
CAS
Google Scholar
Yu DH, Chu KH: Genetic variation in wild and cultured populations of the pearl oyster Pinctada fucata from southern China. Aquaculture. 2006, 258 (1-4): 220-227. 10.1016/j.aquaculture.2006.03.024.
CAS
Google Scholar
Beaurnent AR, Khamdan SAA: Electrophoretic and morphometric characters in population differetiation of the pearl oyster, Pinctada radiata (Leach), from around Bahrain. J Molluscan Stud. 1994, 57: 433-441.
Google Scholar
Colgan DJ, Ponder WF: Genetic discrimination of morphologically similar, sympatric species of pearl oysters (Mollusca: Bivalvia: Pinctada) in eastern Australia. Mar Freshwater Res. 2002, 53: 697-709. 10.1071/MF99178.
Google Scholar
Atsumi T, Komaru A, Okamoto C: Genetic relationship among the Japanese pearl oyster Pinctada fucata martensii and foreign pearl oysters. Fish Genet Breed Sci. 2004, 33: 135-142.
Google Scholar
Wada K: Chromosome karyotypes of three bivalves: the oysters, Isognomon alatus and Pinctada imbricata, and the bay scallop, Argopecten irradians irradians. Biol Bull. 1978, 155: 235-245. 10.2307/1540878.
Google Scholar
Komaru A, Wada KT: Karyotype of the Japanese pearl oyster, Pinctada fucata martensi, observed in the trochophore larvae. Yoshoku Kenkyusho Kenkyu Hokoku (Bull Natl Res Inst Aquacult). 1985, 7: 105-107.
Google Scholar
Wada KT, Komaru A: Karyotypes in five species of the Pteriidae (Bivalvia: Pteriomorphia). Venus. 1985, 44 (3): 183-192.
Google Scholar
Masaoka T, Kobayashi T: Phylogenetic relationships in pearl oysters (Genus: Pinctada) based on nuclear rRNA sequences. DNA Polymorphism. 2002, 10: 100-104.
CAS
Google Scholar
Masaoka T, Kobayashi T: Estimation of phylogenetic relationships in pearl oysters (Genus: Pinctada) based on 28SrRNA and ITS sequence. DNA Polymorphism. 2003, 11: 76-81.
CAS
Google Scholar
Masaoka T, Kobayashi T: Estimation of phylogenetic relationships in pearl oysters (Mollusks: Bivalvia: Pinctada) used for pearl production based on rRNA genes sequence. DNA Polymorphism. 2005, 13: 151-162.
CAS
Google Scholar
Giribet G, Carranza S, Baguna J, Riutort M, Ribera C: First molecular evidence for the existence of a Tardigrada + Arthropoda clade. Mol Biol Evol. 1996, 13 (1): 76-84.
CAS
PubMed
Google Scholar
Park JK, Foighil DO: Sphaeriid and corbiculid clams represent separate heterodont bivalve radiations into freshwater environments. Mol Phylogenet Evol. 2000, 14 (1): 75-88. 10.1006/mpev.1999.0691.
CAS
PubMed
Google Scholar
Kessing B, Croom H, Martin A, McIntosh C, Owen Mcmillan W, Palumbi S: The simple fool's guide to PCR. 1989, Honolulu, Hawaii: University of Hawaii
Google Scholar
Colgan DJ, McLauchlan A, Wilson GDF, Livingston SP, Edgecombe GD, Macaranas J, Cassis G, Gray MR: Histone H3 and U2 snRNA DNA sequences and arthropod molecular evolution. Aust J Zool. 1998, 46: 419-437. 10.1071/ZO98048.
Google Scholar