Fryer G, Iles TD. The cichlid fishes of the great lakes of Africa: their biology and evolution. Edinburgh: Oliver and Boyd; 1972.
Google Scholar
Kocher TD. Adaptive evolution and explosive speciation: the cichlid fish model. Nat Rev Genet. 2004. https://doi.org/10.1038/nrg1316.
Article
PubMed
Google Scholar
Salzburger W. Understanding explosive diversification through cichlid fish genomics. Nat Rev Genet. 2018. https://doi.org/10.1038/s41576-018-0043-9.
Article
PubMed
Google Scholar
Muschick M, Indermaur A, Salzburger W. Convergent evolution within an adaptive radiation of cichlid fishes. Curr Biol. 2012;22:2362–8.
Article
CAS
PubMed
Google Scholar
Wanek AK, Sturmbauer C. Form, function and phylogeny: comparative morphometrics of Lake Tanganyika’s cichlid tribe Tropheini. Zool Scr. 2015;44:362–73.
Article
PubMed
PubMed Central
Google Scholar
Albertson RC, Kocher TD. Genetic and developmental basis of cichlid trophic diversity. Heredity (Edinb). 2006;97:211–21. https://doi.org/10.1038/sj.hdy.6800864.
Article
CAS
Google Scholar
Singh P, Börger C, More H, Sturmbauer C. The role of alternative splicing and differential gene expression in cichlid adaptive radiation. Genome Biol Evol. 2017;9:2764–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Albertson RC, Streelman JT, Kocher TD, Yelick PC. Integration and evolution of the cichlid mandible: the molecular basis of alternate feeding strategies. Proc Natl Acad Sci U S A. 2005;102:16287–92. https://doi.org/10.1073/pnas.0506649102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Muschick M, Barluenga M, Salzburger W, Meyer A. Adaptive phenotypic plasticity in the Midas cichlid fish pharyngeal jaw and its relevance in adaptive radiation. BMC Evol Biol. 2011;11:116. https://doi.org/10.1186/1471-2148-11-116.
Article
PubMed
PubMed Central
Google Scholar
Ahi EP, Singh P, Duenser A, Gessl W, Sturmbauer C. Divergence in larval jaw gene expression reflects differential trophic adaptation in haplochromine cichlids prior to foraging. BMC Evol Biol. 2019;19:150. https://doi.org/10.1186/s12862-019-1483-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Singh P, Ahi EP, Sturmbauer C. Gene coexpression networks reveal molecular interactions underlying cichlid jaw modularity. BMC Ecol Evol. 2021;21:1–17. https://doi.org/10.1186/s12862-021-01787-9.
Article
Google Scholar
Parsons KJ, Concannon M, Navon D, Wang J, Ea I, Groveas K, et al. Foraging environment determines the genetic architecture and evolutionary potential of trophic morphology in cichlid fishes. Mol Ecol. 2016. https://doi.org/10.1111/mec.13801.
Article
PubMed
Google Scholar
van Rijssel JC, Hoogwater ES, Kishe-Machumu MA, van Reenen E, Spits KV, van der Stelt RC, et al. Fast adaptive responses in the oral jaw of Lake Victoria cichlids. Evolution (N Y). 2015;69:179–89. https://doi.org/10.1111/evo.12561.
Article
Google Scholar
Huysseune A, Sire JY. Evolution of patterns and processes in teeth and tooth-related tissues in non-mammalian vertebrates. Eur J Oral Sci. 1998. https://doi.org/10.1111/j.1600-0722.1998.tb02211.x.
Article
PubMed
Google Scholar
Sire JY, Huysseune A. Formation of dermal skeletal and dental tissues in fish: A comparative and evolutionary approach. Biol Rev. 2003. https://doi.org/10.1017/S1464793102006073.
Article
PubMed
Google Scholar
Sire JY, Akimenko MA. Scale development in fish: a review, with description of sonic hedgehog (shh) expression in the zebrafish (Danio rerio). Int J Dev Biol. 2004;48:233–47.
Article
CAS
PubMed
Google Scholar
Wainwright DK, Lauder G V. Mucus Matters: The Slippery and Complex Surfaces of Fish. 2017. https://doi.org/10.1007/978-3-319-74144-4_10
Kondo S, Kuwahara Y, Kondo M, Naruse K, Mitani H, Wakamatsu Y, et al. The medaka rs-3 locus required for scale development encodes ectodysplasin-A receptor. Curr Biol. 2001;11:1202–6.
Article
CAS
PubMed
Google Scholar
Harris MP, Rohner N, Schwarz H, Perathoner S, Konstantinidis P, Nüsslein-Volhard C. Zebrafish eda and edar Mutants Reveal Conserved and Ancestral Roles of Ectodysplasin Signaling in Vertebrates. PLoS Genet. 2008;4: e1000206. https://doi.org/10.1371/journal.pgen.1000206.
Article
CAS
PubMed
PubMed Central
Google Scholar
Albertson RC, Kawasaki KC, Tetrault ER, Powder KE. Genetic analyses in Lake Malawi cichlids identify new roles for Fgf signaling in scale shape variation. Commun Biol. 2018;1:1–11.
Article
Google Scholar
Biggs LC, Mikkola ML. Early inductive events in ectodermal appendage morphogenesis. Seminars Cell Dev Biol. 2014. https://doi.org/10.1016/j.semcdb.2014.01.007.
Article
Google Scholar
Mikkola ML, Thesleff I. Ectodysplasin signaling in development. Cytokine Growth Factor Rev. 2003;14:211–24.
Article
CAS
PubMed
Google Scholar
Colosimo PF, Hosemann KE, Balabhadra S, Villarreal G, Dickson H, Grimwood J, et al. Widespread parallel evolution in sticklebacks by repeated fixation of ectodysplasin alleles. Science. 2005. https://doi.org/10.1126/science.1107239.
Article
PubMed
Google Scholar
Viertler A, Salzburger W, Ronco F. Comparative scale morphology in the adaptive radiation of cichlid fishes (Perciformes: Cichlidae) from Lake Tanganyika. Biol J Linn Soc. 2021. https://doi.org/10.1093/biolinnean/blab099.
Article
Google Scholar
Rohlf FJ, Slice D. Extensions of the procrustes method for the optimal superimposition of landmarks. Syst Zool. 1990;39:40. https://doi.org/10.2307/2992207.
Article
Google Scholar
Klingenberg CP. MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour. 2011;11:353–7. https://doi.org/10.1111/j.1755-0998.2010.02924.x.
Article
PubMed
Google Scholar
Hammer Ø, Harper DAT, Ryan PD. Past: Paleontological statistics software package for education and data analysis. Palaeontol Electron. 2001;4(1):1–9.
Google Scholar
Mitteroecker P, Gunz P. Advances in Geometric morphometrics. Evol Biol. 2009;36:235–47.
Article
Google Scholar
Team RC. A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2018. http://www.R-project.org.
Yang CG, Wang XL, Tian J, Liu W, Wu F, Jiang M, et al. Evaluation of reference genes for quantitative real-time RT-PCR analysis of gene expression in Nile tilapia (Oreochromis niloticus). Gene. 2013;527:183–92.
Article
CAS
PubMed
Google Scholar
Gunter HM, Fan S, Xiong F, Franchini P, Fruciano C, Meyer A. Shaping development through mechanical strain: the transcriptional basis of diet-induced phenotypic plasticity in a cichlid fish. Mol Ecol. 2013;22:4516–31.
Article
PubMed
Google Scholar
Ahi EP, Richter F, Sefc KM. A gene expression study of ornamental fin shape in Neolamprologus brichardi, an African cichlid species. Sci Rep. 2017. https://doi.org/10.1038/s41598-017-17778-0.
Article
PubMed
PubMed Central
Google Scholar
Ahi EP, Duenser A, Singh P, Gessl W, Sturmbauer C. Appetite regulating genes may contribute to herbivory versus carnivory trophic divergence in haplochromine cichlids. PeerJ. 2020;8: e8375. https://doi.org/10.7717/peerj.8375.
Article
PubMed
PubMed Central
Google Scholar
Ahi EP, Richter F, Lecaudey LA, Sefc KM. Gene expression profiling suggests differences in molecular mechanisms of fin elongation between cichlid species. Sci Rep. 2019. https://doi.org/10.1038/s41598-019-45599-w.
Article
PubMed
PubMed Central
Google Scholar
Lecaudey LA, Sturmbauer C, Singh P, Ahi EP. Molecular mechanisms underlying nuchal hump formation in dolphin cichlid. Cyrtocara moorii Sci Rep. 2019;9:20296. https://doi.org/10.1038/s41598-019-56771-7.
Article
CAS
PubMed
Google Scholar
Brawand D, Wagner CE, Li YI, Malinsky M, Keller I, Fan S, et al. The genomic substrate for adaptive radiation in African cichlid fish. Nature. 2014;513:375–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lecaudey LA, Singh P, Sturmbauer C, Duenser A, Gessl W, Ahi EP. Transcriptomics unravels molecular players shaping dorsal lip hypertrophy in the vacuum cleaner cichlid. Gnathochromis permaxillaris BMC Genomics. 2021;22:506.
Article
CAS
PubMed
Google Scholar
Ahi EP, Lecaudey LA, Ziegelbecker A, Steiner O, Glabonjat R, Goessler W, et al. Comparative transcriptomics reveals candidate carotenoid color genes in an East African cichlid fish. BMC Genomics. 2020. https://doi.org/10.1186/s12864-020-6473-8.
Article
PubMed
PubMed Central
Google Scholar
Ahi EP, Lecaudey LA, Ziegelbecker A, Steiner O, Goessler W, Sefc KM. Expression levels of the tetratricopeptide repeat protein gene ttc39b covary with carotenoid-based skin colour in cichlid fish. Biol Lett. 2020. https://doi.org/10.1098/rsbl.2020.0629.
Article
PubMed
PubMed Central
Google Scholar
Zerbino DR, Achuthan P, Akanni W, Amode MR, Barrell D, Bhai J, et al. Ensembl 2018. Nucleic Acids Res. 2018;46:D754–61.
Article
CAS
PubMed
Google Scholar
Fleige S, Pfaffl MW. RNA integrity and the effect on the real-time qRT-PCR performance. Mol Aspects Med. 2006;27:126–39.
Article
CAS
PubMed
Google Scholar
Mahony S, Benos PV. STAMP: a web tool for exploring DNA-binding motif similarities. Nucleic Acids Res. 2007. https://doi.org/10.1093/nar/gkm272.
Article
PubMed
PubMed Central
Google Scholar
Matys V, Fricke E, Geffers R, Gößling E, Haubrock M, Hehl R, et al. TRANSFAC®: Transcriptional regulation, from patterns to profiles. Nucleic Acids Res. 2003;31:374–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 2007;8:R19. https://doi.org/10.1186/gb-2007-8-2-r19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pashay Ahi E, Sefc KM. Towards a gene regulatory network shaping the fins of the Princess cichlid. Sci Rep. 2018;8:9602. https://doi.org/10.1038/s41598-018-27977-y.
Article
CAS
Google Scholar
Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. Biotechnol Lett. 2004;26:509–15.
Article
CAS
PubMed
Google Scholar
Andersen CL, Jensen JL, Ørntoft TF. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004;64:5245–50. https://doi.org/10.1158/0008-5472.CAN-04-0496.
Article
CAS
PubMed
Google Scholar
Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 2002. https://doi.org/10.1186/gb-2002-3-7-research0034.
Article
PubMed
PubMed Central
Google Scholar
Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001;29:e45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bergkvist A, Rusnakova V, Sindelka R, Garda JMA, Sjögreen B, Lindh D, et al. Gene expression profiling—clusters of possibilities. Methods. 2010;50:323–35. https://doi.org/10.1016/j.ymeth.2010.01.009.
Article
CAS
PubMed
Google Scholar
Kubista M, Andrade JM, Bengtsson M, Forootan A, Jonák J, Lind K, et al. The real-time polymerase chain reaction. Mol Aspects Med. 2006;27:95–125. https://doi.org/10.1016/j.mam.2005.12.007.
Article
CAS
PubMed
Google Scholar
Ronco F, Matschiner M, Böhne A, Boila A, Büscher HH, El Taher A, et al. Drivers and dynamics of a massive adaptive radiation in cichlid fishes. Nature. 2021;589:76–81.
Article
CAS
PubMed
Google Scholar
Salzburger W, Meyer A, Baric S, Verheyen E, Sturmbauer C. Phylogeny of the Lake Tanganyika cichlid species flock and its relationship to the Central and East African haplochromine cichlid fish faunas. Syst Biol. 2002. https://doi.org/10.1080/106351502753475907.
Article
PubMed
Google Scholar
Koblmüller S, Schliewen UK, Duftner N, Sefc KM, Katongo C, Sturmbauer C. Age and spread of the haplochromine cichlid fishes in Africa. Mol Phylogenet Evol. 2008;49:153–69. https://doi.org/10.1016/J.YMPEV.2008.05.045.
Article
PubMed
Google Scholar
Cohen AS, Soreghan MJ, Scholz CA. Estimating the age of formation of lakes: an example from Lake Tanganyika. East African Rift system Geology. 1993;21:511–4.
CAS
Google Scholar
Delvaux D. Age of Lake Malawi (Nyasa) and water level fluctuations. Mus roy Afrr centr, Tervuren (Belg), Dept Geol Min, Rapp ann 1993 1994. 1995;108.
Johnson TC, Kelts K, Odada E. The holocene history of lake victoria. Ambio. 2000. https://doi.org/10.1579/0044-7447-29.1.2.
Article
Google Scholar
Blažek R, Polačik M, Smith C, Honza M, Meyer A, Reichard M. Success of cuckoo catfish brood parasitism reflects coevolutionary history and individual experience of their cichlid hosts. Sci Adv. 2018. https://doi.org/10.1126/sciadv.aar4380.
Article
PubMed
PubMed Central
Google Scholar
Koblmüller S, Duftner N, Sefc KM, Aibara M, Stipacek M, Blanc M, et al. Reticulate phylogeny of gastropod-shell-breeding cichlids from Lake Tanganyika—the result of repeated introgressive hybridization. BMC Evol Biol. 2007. https://doi.org/10.1186/1471-2148-7-7.
Article
PubMed
PubMed Central
Google Scholar
Takamura K. Interspecific relationships of aufwuchs-eating fishes in Lake Tanganyika. Environ Biol Fishes. 1984;10:225–41.
Article
Google Scholar
Takahashi R, Watanabe K, Nishida M, Hori M. Evolution of feeding specialization in Tanganyikan scale-eating cichlids: a molecular phylogenetic approach. BMC Evol Biol. 2007. https://doi.org/10.1186/1471-2148-7-195.
Article
PubMed
PubMed Central
Google Scholar
Kovac R, Boileau N, Muschick M, Salzburger W. The diverse prey spectrum of the Tanganyikan scale-eater Perissodus microlepis (Boulenger, 1898). Hydrobiologia. 2019. https://doi.org/10.1007/s10750-018-3714-9.
Article
Google Scholar
Boileau N, Cortesi F, Egger B, Muschick M, Indermaur A, Theis A, et al. A complex mode of aggressive mimicry in a scale-eating cichlid fish. Biol Lett. 2015. https://doi.org/10.1098/rsbl.2015.0521.
Article
PubMed
PubMed Central
Google Scholar
Irisarri I, Singh P, Koblmüller S, Torres-Dowdall J, Henning F, Franchini P, et al. Phylogenomics uncovers early hybridization and adaptive loci shaping the radiation of Lake Tanganyika cichlid fishes. Nat Commun. 2018;9:1–12.
Article
CAS
Google Scholar
Mikkola ML. Molecular aspects of hypohidrotic ectodermal dysplasia. Am J Med Genet Part A. 2009;149A:2031–6. https://doi.org/10.1002/ajmg.a.32855.
Article
CAS
PubMed
Google Scholar
Cheng J, Sedlazek F, Altmüller J, Nolte AW. Ectodysplasin signalling genes and phenotypic evolution in sculpins ( Cottus ). Proc R Soc B Biol Sci. 2015;282:20150746. https://doi.org/10.1098/rspb.2015.0746.
Article
CAS
Google Scholar
Shono T, Thiery AP, Cooper RL, Kurokawa D, Britz R, Okabe M, et al. Evolution and developmental diversity of skin spines in pufferfishes. iScience. 2019;19:1248–59.
Article
PubMed
PubMed Central
Google Scholar
O’brown NM, Summers BR, Jones FC, Brady SD, Kingsley DM. A recurrent regulatory change underlying altered expression and Wnt response of the stickleback armor plates gene EDA. Elife. 2015. https://doi.org/10.7554/eLife.05290.
Article
PubMed
PubMed Central
Google Scholar
Ehyai S, Dionyssiou MG, Gordon JW, Williams D, Siu KWM, McDermott JC. A p38 MAPK regulated MEF2:β-catenin interaction enhances canonical Wnt signalling. Mol Cell Biol. 2015. https://doi.org/10.1128/MCB.00832-15.
Article
PubMed
Google Scholar
Shen S, Huang D, Feng G, Zhu L, Zhang Y, Cao P, et al. MEF2 transcription factor regulates osteogenic differentiation of dental pulp stem cells. Cell Reprogram. 2016;18:237–45. https://doi.org/10.1089/cell.2016.0016.
Article
CAS
PubMed
Google Scholar
Kawane T, Komori H, Liu W, Moriishi T, Miyazaki T, Mori M, et al. Dlx5 and Mef2 regulate a novel Runx2 enhancer for osteoblast-specific expression. J Bone Miner Res. 2014;29:1960–9. https://doi.org/10.1002/jbmr.2240.
Article
CAS
PubMed
Google Scholar
Potthoff MJ, Olson EN. MEF2: a central regulator of diverse developmental programs. Development. 2007;134:4131–40.
Article
CAS
PubMed
Google Scholar
Galceran J, Fariñas I, Depew MJ, Clevers H, Grosschedl R. Wnt3a(−/−) -like phenotype and limb deficiency in Lef1(−/−)Tcf1(−/−) mice. Genes Dev. 1999;13:709–17.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gaur T, Lengner CJ, Hovhannisyan H, Bhat RA, Bodine PVN, Komm BS, et al. Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. J Biol Chem. 2005;280:33132–40. https://doi.org/10.1074/jbc.M500608200.
Article
CAS
PubMed
Google Scholar
Kahler RA, Galindo M, Lian J, Stein GS, van Wijnen AJ, Westendorf JJ. Lymphocyte enhancer-binding factor 1 (Lef1) inhibits terminal differentiation of osteoblasts. J Cell Biochem. 2006;97:969–83. https://doi.org/10.1002/jcb.20702.
Article
CAS
PubMed
Google Scholar
Kahler RA, Westendorf JJ. Lymphoid enhancer factor-1 and β-catenin inhibit Runx2-dependent transcriptional activation of the osteocalcin promoter. J Biol Chem. 2003;278:11937–44.
Article
CAS
PubMed
Google Scholar
Hoeppner LH, Secreto F, Jensen ED, Li X, Kahler RA, Westendorf JJ. Runx2 and bone morphogenic protein 2 regulate the expression of an alternative Lef1 transcript during osteoblast maturation. J Cell Physiol. 2009;221:480–9. https://doi.org/10.1002/jcp.21879.
Article
CAS
PubMed
Google Scholar
Aman AJ, Fulbright AN, Parichy DM. Wnt/β-catenin regulates an ancient signaling network during zebrafish scale development. Elife. 2018. https://doi.org/10.7554/eLife.37001.
Article
PubMed
PubMed Central
Google Scholar
Durmowicz MC, Cui CY, Schlessinger D. The EDA gene is a target of, but does not regulate Wnt signaling. Gene. 2002;285:203–11.
Article
CAS
PubMed
Google Scholar
Lévy J, Capri Y, Rachid M, Dupont C, Vermeesch JR, Devriendt K, et al. LEF1 haploinsufficiency causes ectodermal dysplasia. Clin Genet. 2020;97:595–600. https://doi.org/10.1111/cge.13714.
Article
CAS
PubMed
Google Scholar
Thamamongood TA, Furuya R, Fukuba S, Nakamura M, Suzuki N, Hattori A. Expression of osteoblastic and osteoclastic genes during spontaneous regeneration and autotransplantation of goldfish scale: a new tool to study intramembranous bone regeneration. Bone. 2012;50:1240–9.
Article
CAS
PubMed
Google Scholar
Kitamura K, Takahira K, Inari M, Satoh Y, Hayakawa K, Tabuchi Y, et al. Zebrafish scales respond differently to in vitro dynamic and static acceleration: analysis of interaction between osteoblasts and osteoclasts. Comp Biochem Physiol A Mol Integr Physiol. 2013;166:74–80.
Article
CAS
PubMed
Google Scholar
Suzuki N, Hanmoto T, Yano S, Furusawa Y, Ikegame M, Tabuchi Y, et al. Low-intensity pulsed ultrasound induces apoptosis in osteoclasts: fish scales are a suitable model for the analysis of bone metabolism by ultrasound. Comp Biochem Physiol -Part A Mol Integr Physiol. 2016;195:26–31.
Article
CAS
Google Scholar
Renz AJ, Gunter HM, Fischer JMF, Qiu H, Meyer A, Kuraku S. Ancestral and derived attributes of the dlx gene repertoire, cluster structure and expression patterns in an African cichlid fish. EvoDevo. 2011;2:1. https://doi.org/10.1186/2041-9139-2-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hulsey CD, Fraser GJ, Meyer A. Biting into the genome to phenome map: developmental genetic modularity of cichlid fish dentitions. Integr Comp Biol. 2016. https://doi.org/10.1093/icb/icw059.
Article
PubMed
Google Scholar
Lecaudey LA, Sturmbauer C, Singh P, Ahi EP. Molecular mechanisms underlying nuchal hump formation in dolphin cichlid Cyrtocara moorii. Sci Rep. 2019;9:20296.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yamamoto T, Ikegame M, Kawago U, Tabuchi Y, Hirayama J, Sekiguchi T, et al. Detection of RANKL-producing cells and osteoclastic activation by the addition of exogenous RANKL in the regenerating scales of goldfish. Biol Sci Sp. 2020;34:34–40.
Article
Google Scholar
Tazaki Y, Sugitani K, Ogai K, Kobayashi I, Kawasaki H, Aoyama T, et al. RANKL, Ephrin-Eph and Wnt10b are key intercellular communication molecules regulating bone remodeling in autologous transplanted goldfish scales. Comp Biochem Physiol Part A Mol Integr Physiol. 2018;225:46–58.
Article
CAS
Google Scholar
Iwasaki M, Kuroda J, Kawakami K, Wada H. Epidermal regulation of bone morphogenesis through the development and regeneration of osteoblasts in the zebrafish scale. Dev Biol. 2018;437:105–19.
Article
CAS
PubMed
Google Scholar
Schmidt-Ullrich R, Tobin DJ, Lenhard D, Schneider P, Paus R, Scheidereit C. NF-κB transmits Eda A1/EdaR signalling to activate Shh and cyclin D1 expression, and controls post-initiation hair placode down growth. Development. 2006;133:1045–57.
Article
CAS
PubMed
Google Scholar
Fliniaux I, Mikkola ML, Lefebvre S, Thesleff I. Identification of dkk4 as a target of Eda-A1/Edar pathway reveals an unexpected role of ectodysplasin as inhibitor of Wnt signalling in ectodermal placodes. Dev Biol. 2008;320:60–71.
Article
CAS
PubMed
Google Scholar
Cui CY, Yin M, Sima J, Childress V, Michel M, Piao Y, et al. Involvement of Wnt, Eda and Shh at defined stages of sweat gland development. Dev. 2014;141:3752–60.
Article
CAS
Google Scholar
Pummila M, Fliniaux I, Jaatinen R, James MJ, Laurikkala J, Schneider P, et al. Ectodysplasin has a dual role in ectodermal organogenesis: inhibition of Bmp activity and induction of Shh expression. Development. 2007;134:117–25.
Article
CAS
PubMed
Google Scholar
Xiao Y, Thoresen DT, Miao L, Williams JS, Wang C, Atit RP, et al. A cascade of Wnt, Eda, and Shh signaling is essential for touch dome merkel cell development. PLOS Genet. 2016;12: e1006150. https://doi.org/10.1371/journal.pgen.1006150.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hammerschmidt B, Schlake T. Localization of Shh expression by Wnt and Eda affects axial polarity and shape of hairs. Dev Biol. 2007;305:246–61.
Article
CAS
PubMed
Google Scholar
Hong YJ, Choi YW, Myung KB, Choi HY. The immunohistochemical patterns of calcification-related molecules in the epidermis and dermis of the zebrafish (Danio rerio). Ann Dermatol. 2011;23:299–303.
Article
PubMed
PubMed Central
Google Scholar
Le Guellec D, Morvan-Dubois G, Sire JY. Skin development in bony fish with particular emphasis on collagen deposition in the dermis of the zebrafish (Danio rerio). Int J Dev Biol. 2004;48:217–31.
Article
PubMed
Google Scholar
Metz JR, Leeuwis RHJ, Zethof J, Flik G. Zebrafish ( Danio rerio ) in calcium-poor water mobilise calcium and phosphorus from scales. J Appl Ichthyol. 2014;30:671–7.
Article
CAS
Google Scholar
de Vrieze E, Metz JR, Von den Hoff JW, Flik G. ALP, TRAcP and cathepsin K in elasmoid scales: a role in mineral metabolism? J Appl Ichthyol. 2010;26:210–3.
Article
Google Scholar
Iida Y, Hibiya K, Inohaya K, Kudo A. Eda/Edar signaling guides fin ray formation with preceding osteoblast differentiation, as revealed by analyses of the medaka all-fin less mutant afl. Dev Dyn. 2014;243:765–77. https://doi.org/10.1002/dvdy.24120.
Article
CAS
PubMed
Google Scholar
Atukorala ADS, Inohaya K, Baba O, Tabata MJ, Ratnayake RAR, Abduweli D, et al. Scale and tooth phenotypes in medaka with a mutated ectodysplasin-A receptor: implications for the evolutionary origin of oral and pharyngeal teeth. Arch Histol Cytol. 2011;73:139–48. https://doi.org/10.1679/aohc.73.139.
Article
Google Scholar
Daane JM, Rohner N, Konstantinidis P, Djuranovic S, Harris MP. Parallelism and epistasis in skeletal evolution identified through use of phylogenomic mapping strategies. Mol Biol Evol. 2016;33:162–73. https://doi.org/10.1093/molbev/msv208.
Article
CAS
PubMed
Google Scholar
Cooper WJ, Wirgau RM, Sweet EM, Albertson RC. Deficiency of zebrafish fgf20a results in aberrant skull remodeling that mimics both human cranial disease and evolutionarily important fish skull morphologies. Evol Dev. 2013;15:426–41. https://doi.org/10.1111/ede.12052.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rohner N, Bercsényi M, Orbán L, Kolanczyk ME, Linke D, Brand M, et al. Duplication of fgfr1 Permits Fgf Signaling to Serve as a Target for Selection during Domestication. Curr Biol. 2009;19:1642–7.
Article
CAS
PubMed
Google Scholar
de Vrieze E, Sharif F, Metz JR, Flik G, Richardson MK. Matrix metalloproteinases in osteoclasts of ontogenetic and regenerating zebrafish scales. Bone. 2011;48:704–12.
Article
PubMed
Google Scholar
Iimura K, Tohse H, Ura K, Takagi Y. Expression patterns of runx2, sparc, and bgp during scale regeneration in the goldfish carassius auratus. J Exp Zool Part B Mol Dev Evol. 2012;318:190–8.
Article
CAS
Google Scholar
Zhong Z, Niu P, Wang M, Huang G, Xu S, Sun Y, et al. Targeted disruption of sp7 and myostatin with CRISPR-Cas9 results in severe bone defects and more muscular cells in common carp. Sci Rep. 2016;6:1–14.
Google Scholar