Groom SVC, Tuiwawa MV, Stevens MI, Schwarz MP. Recent introduction of an allodapine bee into Fiji: a new model system for understanding biological invasions by pollinators. Insect Sci. 2015;22:532–40.
PubMed
Google Scholar
Colautti RI, Richardson DM. Subjectivity and flexibility in invasion terminology: too much of a good thing? Biol Invasions. 2009;11:1225–9.
Google Scholar
Holt RD. Up against the edge: invasive species as testbeds for basic questions about evolution in heterogeneous environments. Mol Ecol. 2009;18:4347–8.
PubMed
Google Scholar
Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA, et al. The population biology of invasive species. Annu Rev Ecol Syst. 2001;32:305–32.
Google Scholar
Bellard C, Cassey P, Blackburn TM. Alien species as a driver of recent extinctions. Biol Lett. 2016;12:1–4.
Google Scholar
Potts SG, Biesmeijer JC, Kremen C, Neumann P, Schweiger O, Kunin WE. Global pollinator declines: trends, impacts and drivers. Trends Ecol Evol. 2010;25:345–53.
PubMed
Google Scholar
Russo L. Positive and negative impacts of non-native bee species around the world. Insects. 2016;7:69.
PubMed Central
Google Scholar
Marzoli F, Forzan M, Bortolotti L, Pacini MI, Rodríguez‐Flores MS, Felicioli A, et al. Next generation sequencing study on RNA viruses of Vespa velutina and Apis mellifera sharing the same foraging area. Transboundary and Emerging Diseases. 2020;:tbed.13878.
Poulsen NR, Rasmussen C. Island bees: do wood nesting bees have better island dispersal abilities? Apidologie. 2020;:1–12.
Baumann JM, Walker K, Threlfall C, Williams NSG. African Carder Bee, Afranthidium (Immanthidium) repetitum (Hy- menoptera: Megachilidae) - a New Exotic Species for Victoria. The Victorian Naturalist. 2016;133:21–4.
Google Scholar
Meimberg H, Hammond JI, Jorgensen CM, Park TW, Gerlach JD, Rice KJ, et al. Molecular evidence for an extreme genetic bottleneck during introduction of an invading grass to California. Biol Invasions. 2006;8:1355–66.
Google Scholar
Seebens H, Blackburn TM, Dyer EE, Genovesi P, Hulme PE, Jeschke JM, et al. No saturation in the accumulation of alien species worldwide. Nature Commun. 2017;8:14435.
CAS
Google Scholar
Michener C. The Bees of the World. 2nd ed. Baltimore: The Johns Hopkins University Press; 2007.
Google Scholar
Mangum WA, Brooks RW. First Records of Megachile (Callomegachile) sculpturalis Smith (Hymenoptera: Megachilidae) in the Continental United States. J Kansas Entomol Soc. 1997;70:140–2.
Google Scholar
Lee H-S, Ryu D-P. Insect Fauna of Korea. Arthropoda: Insecta: Hymenoptera: Megachilidae Leafcutter Bees. 4th edition. Korea: National Institute of Biological Resources, Ministry of Environment; 2013.
Quaranta M, Sommaruga A, Balzarini P, Felicioli A. A new species for the bee fauna of Italy: Megachile sculpturalis continues its colonization of Europe. Bull Insectol. 2014;67:287–93.
Google Scholar
Westrich P. Faszination Wildbienen. Forschungsprojekte: Megachile sculpuralis. wildbienen.info; 2018.
Google Scholar
Magnum WA, Sumner S. A survey of the North American range of Megachile (Callomegachile) sculpturalis, an adventive species in North America. J Kansas Entomol Soc. 2003;76:658–62.
Google Scholar
Parys K, Tripodi A, Sampson B. The Giant Resin Bee, Megachile sculpturalis Smith: New distributional records for the Mid- and Gulf-south USA. Biodiversity Data J. 2015;3:e6733.
Google Scholar
Hinojosa-Diaz I, Yanez-Ordonez O, Chen G, Perterson T, Engel M. The North American invasion of the Giant Resin Bee (Hymenoptera: Megachilidae). J Hymenoptera Res. 2005;14:69–77.
Google Scholar
Hinojosa-Díaz I. The giant resin bee making its way west: First record in Kansas (Hymenoptera: Megachilidae). ZooKeys. 2008;1:67–71.
Google Scholar
Aguado O, Hernández-Castellano C, Bassols E, Miralles M, Navarro D, Stefanescu C, et al. Megachile (Callomegachile) sculpturalis Smith, 1853 (Apoidea: Megachilidae): a new exotic species in the Iberian Peninsula, and some notes about its biology. Butlletí de laInstitució Catalana d’Història Natural. 2018;82:157–62.
Google Scholar
Lanner J, Huchler K, Pachinger B, Sedivy C, Meimberg H. Dispersal patterns of an introduced wild bee, Megachile sculpturalis Smith, 1853 (Hymenoptera: Megachilidae) in European alpine countries. PLoS ONE. 2020;15:e0236042.
CAS
PubMed
PubMed Central
Google Scholar
Laport RG, Minckley RL. Occupation of active Xylocopa virginica nests by the recently invasive Megachile sculpturalis in upstate New York. J Kansas Entomol Soc. 2012;85:384–6.
Google Scholar
Geslin B, Gachet S, Deschamps-Cottin M, Flacher F, Ignace B, Knoploch C, et al. Bee hotels host a high abundance of exotic bees in an urban context. Acta Oecologica. 2020;105:103556.
Google Scholar
Vereecken PNJ. Premières données sur la présence de l’abeille asiatique Megachile (Callomegachile) sculpturalis Smith (Hymenoptera, Megachilidae) en Europe. Osmia. 2009;3:4–6.
Google Scholar
Villemant C, Haxaire J, Streito J-C. Premier bilan de l’invasion de Vespa velutina Lepeletier en France (Hymenoptera, Vespidae). Bulletin de la Société entomologique de France. 2006;111:535–8.
Google Scholar
Villemant C, Barbet-Massin M, Perrard A, Muller F, Gargominy O, Jiguet F, et al. Predicting the invasion risk by the alien bee-hawking Yellow-legged hornet Vespa velutina nigrithorax across Europe and other continents with niche models. Biol Cons. 2011;144:2142–50.
Google Scholar
Bortolotti L, Luthi F, Flaminio S, Bogo G, Sgolastra F. First record of the Asiatic bee Megachile disjunctiformis in Europe. Bull Insectol. 2018;71:143–9.
Google Scholar
Le Féon V, Aubert M, Genoud D, Andrieu-Ponel V, Westrich P, Geslin B. Range expansion of the Asian native giant resin bee Megachile sculpturalis(Hymenoptera, Apoidea, Megachilidae) in France. Ecol Evol. 2018;00:1–9.
Google Scholar
Bila-Dubaić J, Lanner J, Plećaš M, Raičević J, Ćetković A. Asian bee Megachile sculpturalis (Hymenoptera: Megachilidae) jumps further eastwards through Europe: confirmed establishment in Serbia after a short lag phase. in prep.
Plećaš M, Cetkovic A. Dalje širenje alohtone azijske pčele u Evropi: prvi nalaz Megachile sculpturalis na Balkanu. Serbia; 2017. p. 17–21.
Kovács T. Megachile sculpturalis Smith, 1853 in Hungary (Hymenoptera, Megachilidae). Folio Historico-Naturalia Musei Matraensis. 2015;39:73–6.
Google Scholar
Gogala A, Zadravec B. First record of Megachile sculpturalis Smith in Slovenia (Hymenoptera: Megachilidae). Acta entomologica Slovenica. 2018;26:79–82.
Google Scholar
Ivanov SP, Fateryga AV. First record of the invasive giant resin bee Megachile (Callomegachile) sculpturalis Smith, 1853 (Hymenoptera: Megachilidae) in the Crimea. Far Eastern Entomologist. 2019;395:7–13.
Google Scholar
Westrich P, Knapp A, Berney I. Megachile sculpturalis Smith 1853 (Hymenoptera, Apidae), a new species for the bee fauna of Germany, now north of the Alps. Eucera. 2015;9:3–10.
Google Scholar
Westrich P. Neues zur Ausbreitung der Mörtelbiene Megachile sculpturalis Smith 1853 (Hymenoptera: Anthophila) in Deutschland – Stand Oktober 2019. Eucera. 2020;14:12–5.
Google Scholar
Westrich P. Forschungsprojekte - Megachile sculpturalis. wildbienen.info. 2017. https://www.wildbienen.info/forschung/projekte_17.php. Accessed 13 Oct 2020.
Garnas J, Auger-Rozenberg M-A, Roques A, Bertelsmeier C, Wingfield MJ, Saccaggi DL, et al. Complex patterns of global spread in invasive insects: eco-evolutionary and management consequences. Biol Invasions. 2016;18:935–52.
Google Scholar
Kolbe JJ, Glor RE, Rodríguez Schettino L, Lara AC, Larson A, Losos JB. Genetic variation increases during biological invasion by a Cuban lizard. Nature. 2004;431:177–81.
CAS
PubMed
Google Scholar
Meimberg H, Milan NF, Karatassiou M, Espeland EK, McKAY JK, Rice KJ. Patterns of introduction and adaptation during the invasion of Aegilops triuncialis (Poaceae) into Californian serpentine soils: invasion of Aegilops into serpentine soils. Mol Ecol. 2010;19:5308–19.
PubMed
Google Scholar
Nagoshi RN, Fleischer S, Meagher RL. Texas is the overwintering source of Fall Armyworm in Central Pennsylvania: implications formigration into the northeastern United States. Environ Entomol. 2009;38:1546–54.
PubMed
Google Scholar
Wang IJ, Shaffer HB. Population genetic and field-ecological analyses return similar estimates of dispersal over space and time in an endangered amphibian. Evol Appl. 2017;10:630–9.
PubMed
PubMed Central
Google Scholar
Cayuela H, Rougemont Q, Prunier JG, Moore J-S, Clobert J, Besnard A, et al. Demographic and genetic approaches to study dispersal in wild animal populations: a methodological review. Mol Ecol. 2018;27:3976–4010.
PubMed
Google Scholar
Selkoe KA, Toonen RJ. Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett. 2006;9:615–29.
PubMed
Google Scholar
Kim KS, Sappington TW. Microsatellite Data Analysis for Population Genetics. Microsatellites. 2013;271–95.
Putman AI, Carbone I. Challenges in analysis and interpretation of microsatellite data for population genetic studies. Ecol Evol. 2014;n/a-n/a.
Guichoux E, Lagache L, Wagner S, Chaumeil P, Léger P, Lepais O, et al. Current trends in microsatellite genotyping. Molecular Ecology Resources. 2011;11:591–611.
CAS
PubMed
Google Scholar
Lesieur V, Lombaert E, Guillemaud T, Courtial B, Strong W, Roques A, et al. The rapid spread of Leptoglossus occidentalis in Europe: a bridgehead invasion. J Pest Sci. 2019;92:189–200.
Google Scholar
Curto M, Winter S, Seiter A, Schmid L, Scheicher K, Barthel LMF, et al. Application of a SSR-GBS marker system on investigation of European Hedgehog species and their hybrid zone dynamics. Ecol Evol. 2019;9:2814–32.
PubMed
PubMed Central
Google Scholar
Tibihika PD, Curto M, Dornstauder-Schrammel E, Winter S, Alemayehu E, Waidbacher H, et al. Application of microsatellite genotyping by sequencing (SSR-GBS) to measure genetic diversity of the East African Oreochromis niloticus. Conserv Genet. 2019;20:357–72.
CAS
Google Scholar
Šarhanová P, Pfanzelt S, Brandt R, Himmelbach A, Blattner FR. SSR-seq: Genotyping of microsatellites using next-generation sequencing reveals higher level of polymorphism as compared to traditional fragment size scoring. Ecol Evol. 2018;8:10817–33.
PubMed
PubMed Central
Google Scholar
Vartia S, Villanueva-Cañas JL, Finarelli J, Farrell ED, Collins PC, Hughes GM, et al. A novel method of microsatellite genotyping-by-sequencing using individual combinatorial barcoding. Royal Society Open Science. 2016;3:150565.
PubMed
PubMed Central
Google Scholar
Darby BJ, Erickson SF, Hervey SD, Ellis-Felege SN. Digital fragment analysis of short tandem repeats by high-throughput amplicon sequencing. Ecol Evol. 2016;6:4502–12.
PubMed
PubMed Central
Google Scholar
De Barba M, Miquel C, Lobréaux S, Quenette PY, Swenson JE, Taberlet P. High-throughput microsatellite genotyping in ecology: improved accuracy, efficiency, standardization and success with low-quantity and degraded DNA. Mol Ecol Resourc. 2017;17:492–507.
Google Scholar
Farrell ED, Carlsson JEL, Carlsson J. Next Gen Pop Gen: implementing a high-throughput approach to population genetics in boarfish ( Capros aper). Royal Soc Open Sci. 2016;3:160651.
Google Scholar
Tibihika PD, Curto M, Alemayehu E, Waidbacher H, Masembe C, Akoll P, et al. Molecular genetic diversity and differentiation of Nile tilapia (Oreochromis niloticus, L. 1758) in East African natural and stocked populations. BMC Evol Biol. 2020;20:16.
Goulson D. Effects of introduced bees on native ecosystems. Annu Rev Ecol Evol Syst. 2003;34:1–26.
Google Scholar
Groves RH. Are some weeds sleeping? Some concepts and reasons. Euphytica. 2006;148:111–20.
Google Scholar
Seebens H, Essl F, Dawson W, Fuentes N, Moser D, Pergl J, et al. Global trade will accelerate plant invasions in emerging economies under climate change. Glob Change Biol. 2015;21:4128–40.
Google Scholar
Bertelsmeier C, Keller L. Bridgehead effects and role of adaptive evolution in invasive populations. Trends Ecol Evol. 2018;33:527–34.
PubMed
Google Scholar
Carrasco LR, Mumford JD, MacLeod A, Harwood T, Grabenweger G, Leach AW, et al. Unveiling human-assisted dispersal mechanisms in invasive alien insects: Integration of spatial stochastic simulation and phenology models. Ecol Model. 2010;221:2068–75.
Google Scholar
Wills BD, Moreau CS, Wray BD, Hoffmann BD, Suarez AV. Body size variation and caste ratios in geographically distinct populations of the invasive big-headed ant, Pheidole megacephala (Hymenoptera: Formicidae): Size Variation and Caste Ratios in Ants. Biol J Linn Soc Lond. 2014;113:423–38.
Google Scholar
Valdovinos FS, Berlow EL, de Espanés P, Ramos-Jiliberto R, Vázquez DP, Martinez ND. Species traits and network structure predict the success and impacts of pollinator invasions. Nature Commun. 2018. https://doi.org/10.1038/s41467-018-04593-y.
Article
Google Scholar
Meurisse N, Rassati D, Hurley BP, Brockerhoff EG, Haack RA. Common pathways by which non-native forest insects move internationally and domestically. J Pest Sci. 2019;92:13–27.
Google Scholar
Gippet JM, Liebhold AM, Fenn-Moltu G, Bertelsmeier C. Human-mediated dispersal in insects. Curr Opin Insect Sci. 2019;35:96–102.
PubMed
Google Scholar
Shigesada N, Kawasaki K. Chapter 17 Invasion and the range expansion of species: effects of long-distance dispersal. In: Dispersal Ecology. Blackwell Science; 2002. p. 350–73.
Liebhold AM, Brockerhoff EG, Garrett LJ, Parke JL, Britton KO. Live plant imports: the major pathway for forest insect and pathogen invasions of the US. Front Ecol Environ. 2012;10:135–43.
Google Scholar
Prendergast KS. First records of the introduced African carder bee, Pseudoanthidium (Immanthidium) repetitum (Hymenoptera:Megachilidae), in Western Australia. Pacific Conser Biol. 2020. https://doi.org/10.1071/PC20041.
Article
Google Scholar
Renault D, Laparie M, McCauley SJ, Bonte D. Environmental adaptations, ecological filtering, and dispersal central to insect invasions. Annu Rev Entomol. 2018;63:345–68.
CAS
PubMed
Google Scholar
Bullock JM, Bonte D, Pufal G, da Silva CC, Chapman DS, García C, et al. Human-mediated dispersal and the rewiring of spatial networks. Trends Ecol Evol. 2018;33:958–70.
PubMed
Google Scholar
Ribas-Marquès E, Díaz-Calafat J, The invasive Asian giant resin bee Megachile sculpturalis Smith, . (Hymenoptera: Apoidea: Megachilidae), a new exotic species for the bee fauna of Mallorca. Spain: Balearic Islands; 1853. (in rev).
Google Scholar
Hurley BP, Garnas J, Wingfield MJ, Branco M, Richardson DM, Slippers B. Increasing numbers and intercontinental spread of invasive insects on eucalypts. Biol Invasions. 2016;18:921–33.
Google Scholar
Liebhold AM, Yamanaka T, Roques A, Augustin S, Chown SL, Brockerhoff EG, et al. Global compositional variation among native and non-native regional insect assemblages emphasizes the importance of pathways. Biol Invasions. 2016;18:893–905.
Google Scholar
Baker AJ, Moeed A. Rapid genetic differentiation and founder effect in colonizing populations of common Mynas (acridotheres Tristis). Evolution. 1987;41:525–38.
PubMed
Google Scholar
Lockwood JL, Cassey P, Blackburn T. The role of propagule pressure in explaining species invasions. Trends Ecol Evol. 2005;20:223–8.
PubMed
Google Scholar
Auger-Rozenberg M-A, Boivin T, Magnoux E, Courtin C, Roques A, Kerdelhué C. Inferences on population history of a seed chalcid wasp: invasion success despite a severe founder effect from an unexpected source population. Mol Ecol. 2012;21:6086–103.
PubMed
Google Scholar
Cho S, Huang ZY, Green DR, Smith DR, Zhang J. Evolution of the complementary sex-determination gene of honey bees: Balancing selection and trans-species polymorphisms. Genome Res. 2006;16:1366–75.
CAS
PubMed
PubMed Central
Google Scholar
Zayed A, Packer L. Complementary sex determination substantially increases extinction proneness of haplodiploid populations. Proc Natl Acad Sci. 2005;102:10742–6.
CAS
PubMed
PubMed Central
Google Scholar
van Wilgenburg E, Driessen G, Beukeboom L. Single locus complementary sex determination in Hymenoptera: an “unintelligent” design? Front Zool. 2006. https://doi.org/10.1186/1742-9994-3-1.
Article
PubMed
PubMed Central
Google Scholar
Gloag R, Ding G, Christie JR, Buchmann G, Beekman M, Oldroyd BP. An invasive social insect overcomes genetic load at the sex locus. Nat Ecol Evol. 2017;1:0011.
Google Scholar
Gerloff CU, Schmid-hempel P. Inbreeding depression and family variation in a social insect, Bombus terrestris (Hymenoptera. Apidae), Oikos. 2005;:67–80.
Schmid-Hempel P, Schmid-Hempel R, Brunner PC, Seeman OD, Allen GR. Invasion success of the bumblebee, Bombus terrestris, despite a drastic genetic bottleneck. Heredity. 2007;99:414–22.
CAS
PubMed
Google Scholar
Lye GC, Lepais O, Goulson D. Reconstructing demographic events from population genetic data: the introduction of bumblebees to New Zealand. Mol Ecol. 2011;20:2888–900.
CAS
PubMed
Google Scholar
Arca M, Mougel F, Guillemaud T, Dupas S, Rome Q, Perrard A, et al. Reconstructing the invasion and the demographic history of the yellow-legged hornet, Vespa velutina, in Europe. Biol Invasions. 2015;17:2357–71.
Google Scholar
Ding G, Xu H, Oldroyd BP, Gloag RS. Extreme polyandry aids the establishment of invasive populations of a social insect. Heredity (Edinb). 2017;119:381–7.
CAS
Google Scholar
Danforth BN, Minckley RL, Neff J. The Solitary Bees: Biology, Evolution, Conservation. 1st ed. Princeton, Woodstock: Princeton University Press; 2019.
Google Scholar
Darling JA, Bagley MJ, Roman J, Tepolt CK, Geller JB. Genetic patterns across multiple introductions of the globally invasive crab genus Carcinus. Mol Ecol. 2008;17:4992–5007.
CAS
PubMed
Google Scholar
Ficetola GF, Bonin A, Miaud C. Population genetics reveals origin and number of founders in a biological invasion: estimating founders in biological invasions. Mol Ecol. 2008;17:773–82.
CAS
PubMed
Google Scholar
Gariepy TD, Haye T, Fraser H, Zhang J. Occurrence, genetic diversity, and potential pathways of entry of Halyomorpha halys in newly invaded areas of Canada and Switzerland. J Pest Sci. 2015;88:451–60.
Google Scholar
Ahlroth P, Alatalo RV, Holopainen A, Kumpulainen T, Suhonen J. Founder population size and number of source populations enhance colonization success in waterstriders. Oecologia. 2003;137:617–20.
PubMed
Google Scholar
Roman J, Darling J. Paradox lost: genetic diversity and the success of aquatic invasions. Trends Ecol Evol. 2007;22:454–64.
PubMed
Google Scholar
Blackburn TM, Duncan RP. Determinants of establishment success in introduced birds. Nature. 2001;414:195–7.
CAS
PubMed
Google Scholar
Novak S, Mack R. Allozyme diversity in the apomictic vineBryonia alba (cucurbitaceae): potential consequences of multiple introductions. Am J Bot. 1995;82:1153–62.
Google Scholar
Lombaert E, Guillemaud T, Cornuet J-M, Malausa T, Facon B, Estoup A. Bridgehead Effect in the Worldwide Invasion of the Biocontrol Harlequin Ladybird. PLoS ONE. 2010;5:e9743.
PubMed
PubMed Central
Google Scholar
Amiet F. Die Blattschneiderbiene Megachile sculpturalis Smith, 1853 (Hymenoptera, Apidae) nun auch in der Schweiz. Entomo Helvetica. 2012;5:157–9.
Google Scholar
Eingeschleppte D-X, Megachile AM, sculpturalis Smith, . (Hymenoptera, Apidae) erstmals nördlich der Alpen gesichtet. Entomo Helvetica. 1853;2016:153–6.
Google Scholar
Guariento E, Lanner J, Staggl MA, Kranebitter P, Megachile sculpturalis (Smith, . (Hymenoptera: Megachilidae), the giant resin bee new for South Tyrol with a newly described plant species interaction. Gredleriana. 1853;2019:19.
Google Scholar
Wiesbauer H. Wilde Bienen. Biologie- Lebensraumdynamik am Beispiel Österreich-Artenporträts. 1st edition. Stuttgart: Ulmer Verlag; 2017.
Zandigiacomo P, Grion M. First finding of Megachile sculpturalis Smith (Hymenoptera, Megachilidae) in Friuli Venezia Giulia (North-Eastern Italy). Gortania Botanica, Zoologica. 2017;39:37–40.
Google Scholar
Poggi R, Tavano ML, Bonifacino M. Reperti liguri di Megachile (Callomegachile) sculpturalis Smith, 1853 (Hymenoptera, Megachilidae). Annali del museo civico di storia naturale “G Doria” Genova. 2020;9:1–6.
Ruzzier E, Menchetti M, Bortolotti L, Selis M, Monterastelli E, Forbicioni L. Updated distribution of the invasive Megachile sculpturalis (Hymenoptera: Megachilidae) in Italy and its first record on a Mediterranean island. Biodiversity Data J. 2020;8:e57783.
Google Scholar
Ortiz-Sánchez FJ, Navarro JF, Taeger U. Megachile (Callomegachile) sculpturalis Smith, 1853, nueva especie para la fauna ibercia (Hymenoptera, Megachilidae). Boletin de la Sociedad Entomologica Aragonesa. 2018;63:259–61.
Google Scholar
Kozarewa I, Ning Z, Quail MA, Sanders MJ, Berriman M, Turner DJ. Amplification-free Illumina sequencing-library preparation facilitates improved mapping and assembly of (G+C)-biased genomes. Nat Methods. 2009;6:291–5.
CAS
PubMed
PubMed Central
Google Scholar
Meimberg H, Schachtler C, Curto M, Husemann M, Habel JC. A new amplicon based approach of whole mitogenome sequencing for phylogenetic and phylogeographic analysis: An example of East African white-eyes (Aves, Zosteropidae). Mol Phylogenet Evol. 2016;102:74–85.
CAS
PubMed
Google Scholar
van Dijk EL, Jaszczyszyn Y, Thermes C. Library preparation methods for next-generation sequencing: Tone down the bias. Exp Cell Res. 2014;322:12–20.
PubMed
Google Scholar
Zhang J, Kobert K, Flouri T, Stamatakis A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics. 2014;30:614–20.
CAS
PubMed
Google Scholar
Peakall R, Smouse PE. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research – an update. Bioinformatics. 2012;28:2537–9.
Hedrick PW. A Standardized Genetic Differentiation Measure Evolution. 2005;59:1633–8.
CAS
PubMed
Google Scholar
Kalinowski ST. hp-rare 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes. 2005;5:187–9.
CAS
Google Scholar
Luikart G, Cornuet J-M. Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conserv Biol. 1998;12:10.
Google Scholar
Hubisz MJ, Falush D, Stephens M, Pritchard JK. Inferring weak population structure with the assistance of sample group information. Mol Ecol Resourc. 2009;9:1322–32.
Google Scholar
Earl DA, vonHoldt BM. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resourc. 2012;4:359–61.
Google Scholar
Cornuet J-M, Luikart G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics. 1996;144:2001–14.
CAS
PubMed
PubMed Central
Google Scholar
Neophytou C, Pötzelsberger E, Curto M, Meimberg H, Hasenauer H. Population bottlenecks have shaped the genetic variation of Ailanthus altissima (Mill.) Swingle in an area of early introduction. Forestry. 2019;1:1–10.
Google Scholar
Piry S, Luikart G, Cornuet J-M. Computer note BOTTLENECK: a computer program for detecting recent reductions in the effective size using allele frequency data. J Heredity. 1999;90:502–3.
Google Scholar