Atchley WR, Hall BK. A model for development and evolution of complex morphological structures. Biol Rev. 1991;66(2):101–57.
Article
CAS
PubMed
Google Scholar
Bonner JT. The evolution of complexity by means of natural selection. Princeton: Princeton University Press; 1988.
Simon HA. The architecture of complexity. In: Facets of systems science. Princeton: Springer; 1991. p. 457–76.
Chapter
Google Scholar
Wagner GP, Altenberg L. Complex adaptations and the evolution of Evolvability. Evolution. 1996;50:967–76.
Article
PubMed
Google Scholar
Pavličev M, Cheverud JM. Constraints evolve: context dependency of gene effects allows evolution of pleiotropy. Annu Rev Ecol Evol Syst. 2015;46:413-34.
Article
Google Scholar
Cheverud JM. Quantitative genetics and developmental constraints on evolution by selection. J Theor Biol. 1984;110(2):155–71.
Article
CAS
PubMed
Google Scholar
Cheverud JM. Developmental integration and the evolution of pleiotropy. Am Zool. 1996;36(1):44–50.
Article
Google Scholar
Goswami A. Morphological integration in the carnivoran skull. Evolution. 2006;60(1):169–83.
Article
PubMed
Google Scholar
Wagner GP. Homologues, natural kinds and the evolution of modularity. Am Zool. 1996;36(1):36–43.
Article
Google Scholar
Winther RG. Varieties of modules: kinds, levels, origins, and behaviors. J Exp Zool A Ecol Genet Physiol. 2001;291(2):116–29.
CAS
Google Scholar
Klingenberg CP. Morphological integration and developmental modularity. Annu Rev Ecol Evol Syst. 2008;39:115–32.
Article
Google Scholar
Goswami A, Smaers JB, Soligo C, Polly PD. The macroevolutionary consequences of phenotypic integration: from development to deep time. Philos Trans R Soc Lond Ser B Biol Sci. 2014;369(1649)20130254:1-15.
Article
CAS
Google Scholar
Goswami A, Polly PD. The influence of modularity on cranial morphological disparity in Carnivora and Primates (Mammalia). PLoS One. 2010;5(3).
Article
PubMed
PubMed Central
CAS
Google Scholar
Wagner GP, Pavlicev M, Cheverud JM. The road to modularity. Nat Rev Genet. 2007;8(12):921.
Article
CAS
PubMed
Google Scholar
Pavlicev M, Kenney-Hunt JP, Norgard EA, Roseman CC, Wolf JB, Cheverud JM. Genetic variation in pleiotropy: differential epistasis as a source of variation in the allometric relationship between long bone lengths and body weight. Evolution. 2008;62(1):199–213.
PubMed
Google Scholar
Hansen TF. Is modularity necessary for evolvability?: Remarks on the relationship between pleiotropy and evolvability. BioSyst. 2003;69(2–3):83–94.
Article
Google Scholar
Larouche O, Zelditch ML, Cloutier R. Modularity promotes morphological divergence in ray-finned fishes. Sci Rep. 2018;8(1):7278.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fleming A, Kishida MG, Kimmel CB, Keynes RJ. Building the backbone: the development and evolution of vertebral patterning. Development. 2015;142(10):1733–44.
Article
CAS
PubMed
Google Scholar
McShea DW. Evolutionary change in the morphological complexity of the mammalian vertebral column. Evolution. 1993;47(3):730-40.
Article
PubMed
Google Scholar
Flower WH. An introduction to the osteology of the Mammalia. London: MacMillan; 1885.
Book
Google Scholar
Owen R. On the archetype and homologies of the vertebrate skeleton: author; 1848.
Book
Google Scholar
Rawls A, Fisher RE. Development and functional anatomy of the spine. In: Kusumi K, Dunwoodie SL, editors. The genetics and development of scoliosis. New York: Springer; 2010. p. 21–46.
Chapter
Google Scholar
Randau M, Goswami A. Morphological modularity in the vertebral column of Felidae (Mammalia, Carnivora). BMC Evol Biol. 2017;17(1):133.
Article
PubMed
PubMed Central
Google Scholar
Buchholtz EA. Modular evolution of the cetacean vertebral column. Evol Dev. 2007;9(3):278–89.
Article
CAS
PubMed
Google Scholar
Jones KE. Evolutionary allometry of lumbar shape in Felidae and Bovidae. Biol J Linn Soc Lond. 2015;116(3):721–40.
Article
Google Scholar
Arnold P, Forterre F, Lang J, Fischer MS. Morphological disparity, conservatism, and integration in the canine lower cervical spine: insights into mammalian neck function and regionalization. Mammalian Biology-Zeitschrift für Säugetierkunde. 2016;81(2):153–62.
Article
Google Scholar
Chen XM, Milne N, O'Higgins P. Morphological variation of the thoracolumbar vertebrae in Macropodidae and its functional relevance. J Morphol. 2005;266(2):167–81.
Article
PubMed
Google Scholar
Slijper EJ. Comparative biologic-anatomical investigations on the vertebral column and spinal musculature of mammals. Verh K Ned Akad Wet Afd Natuurkd Tweede Reeks. 1946;42(5):1–128.
Google Scholar
Jones KE, Pierce SE. Axial allometry in a neutrally buoyant environment: effects of the terrestrial-aquatic transition on vertebral scaling. J Evol Biol. 2016.
Jones KE. Evolutionary allometry of the thoracolumbar centra in felids and bovids. J Morphol. 2015;276(7):818–31.
Article
PubMed
Google Scholar
Randau M, Goswami A, Hutchinson JR, Cuff AR, Pierce SE. Cryptic complexity in felid vertebral evolution: shape differentiation and allometry of the axial skeleton. Zool J Linnean Soc. 2016;178(1):183–202.
Article
Google Scholar
Halpert AP, Jenkins FAJ, Franks H. Structure and scaling of the lumbar vertebrae in African bovids (Mammalia, Artiodactyla). J Zool. 1987;211:239–58.
Article
Google Scholar
Long JH, Pabst DA, Shepherd WR, McLellan WA. Locomotor design of dolphin vertebral columns: bending mechanics and morphology of Delphinus delphis. J Exp Biol. 1997;200(1):65–81.
PubMed
Google Scholar
Bramble DM, Carrier DR. Running and breathing in mammals. Science. 1983;219(4582):251–6.
Article
CAS
PubMed
Google Scholar
Arnold P, Esteve-Altava B, Fischer MS. Musculoskeletal networks reveal topological disparity in mammalian neck evolution. BMC Evol Biol. 2017;17(1):251.
Article
PubMed
PubMed Central
Google Scholar
Randau M, Goswami A. Unravelling intravertebral integration, modularity and disparity in Felidae (Mammalia). Evol Dev. 2017;19(2):85–95.
Article
PubMed
Google Scholar
Narita Y, Kuratani S. Evolution of the vertebral formulae in mammals: a perspective on developmental constraints. J Exp Zool Part B Mol Dev Evol. 2005;304B(2):91–106.
Article
Google Scholar
Müller J, Scheyer T, Head J, Barrett P, Werneburg I, Ericson P, Pol D, Sánchez-Villagra M. The evolution of vertebral numbers in recent and fossil amniotes: the roles of homeotic effects and somitogenesis. Proc Natl Acad Sci U S A. 2010;107:2118–23.
Article
PubMed
PubMed Central
Google Scholar
Kemp TS. The origin and evolution of mammals. Princeton: Oxford University Press; 2005.
Asher R, Lin K, Kardjilov N, Hautier L. Variability and constraint in the mammalian vertebral column. J Evol Biol. 2011;24(5):1080–90.
Article
CAS
PubMed
Google Scholar
Buchholtz E, Yang J, Bailin H, Laves S, Drozd L. Localization of the diaphragm and axial patterning in mammals. J Vert Paleontol. 2011;31:79.
Google Scholar
Crompton A, Jenkins FA Jr. Mammals from reptiles: a review of mammalian origins. Annu Rev Earth Planet Sci. 1973;1(1):131–55.
Article
Google Scholar
Jenkins FA. Cynodont postcranial anatomy and prototherian level of mammalian organization. Evolution. 1970;24(1):230–52.
PubMed
Google Scholar
Jones KE, Angielczyk KD, Polly PD, Head JJ, Fernandez V, Lungmus J, Tulga S, Pierce SE. Fossils reveal the complex evolutionary history of the mammalian regionalized spine. Science. 2018;361:1249–52.
Article
CAS
PubMed
Google Scholar
Randau M, Cuff AR, Hutchinson JR, Pierce SE, Goswami A. Regional differentiation of felid vertebral column evolution: a study of 3D shape trajectories. Org Divers Evol. 2017;17(1):305–19.
Article
Google Scholar
Shapiro LJ, Simons CVM. Functional aspects of strepsirrhine lumbar vertebral bodies and spinous processes. J Hum Evol. 2002;42(6):753–83.
Article
PubMed
Google Scholar
Williams SA. Placement of the diaphragmatic vertebra in catarrhines: implications for the evolution of dorsostability in hominoids and bipedalism in hominins. Amer J Phys Anthrop. 2012;148(1):111–22.
Article
PubMed
Google Scholar
Johnson SE, Shapiro LJ. Positional behavior and vertebral morphology in atelines and cebines. Amer J Phys Anthrop. 1998;105(3):333–54.
Article
CAS
PubMed
Google Scholar
Alvarez A, Ercoli MD, Prevosti FJ. Locomotion in some small to medium-sized mammals: a geometric morphometric analysis of the penultimate lumbar vertebra, pelvis and hindlimbs. Zoology. 2013;116(6):356–71.
Article
PubMed
Google Scholar
Harty TH: The role of the vertebral column during jumping in quadrupedal mammals. PhD Thesis. Oregon State University; 2010.
Hedges SB, Dudley J, Kumar S. TimeTree: a public knowledge-base of divergence times among organisms. Bioinformatics. 2006;22(23):2971–2.
Article
CAS
PubMed
Google Scholar
Samuels JX, Meachen JA, Sakai SA. Postcranial morphology and the locomotor habits of living and extinct carnivorans. J Morphol. 2013;274(2):121–46.
Article
PubMed
Google Scholar
Zelditch M, Swiderski D, Sheets HD, Fink W. Geometric Morphometrics for biologists: a primer. Boston: Elsevier Academic Press; 2004.
Google Scholar
Klingenberg CP. Novelty and “homology-free” morphometrics: what’s in a name? Evol Biol. 2008;35(3):186–90.
Article
Google Scholar
Head JJ, Polly PD. Evolution of the snake body form reveals homoplasy in amniote Hox gene function. Nature. 2015;520(7545):86–9.
Article
CAS
PubMed
Google Scholar
Adams DC, Otarola-Castillo E. Geomorph: an R package for the collection and analysis of geometric morphometric shape data. Methods Ecol Evol. 2013;4:393–9.
Article
Google Scholar
R: R development Core team. A language and environment for statistical computing; 2009.
Adams DC. A generalized K statistic for estimating phylogenetic signal from shape and other high-dimensional multivariate data. Syst Biol. 2014;63(5):685–97.
Article
PubMed
Google Scholar
Blomberg SP, Garland T Jr, Ives AR. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution. 2003;57(4):717–45.
Article
PubMed
Google Scholar
Adams DC. A method for assessing phylogenetic least squares models for shape and other high-dimensional multivariate data. Evolution. 2014;68(9):2675–88.
Article
PubMed
Google Scholar
Goodall C. Procrustes methods in the statistical analysis of shape. J R Stat Soc Ser B Methodol. 1991:285–339.
Adams DC. Evaluating modularity in morphometric data: challenges with the RV coefficient and a new test measure. Methods Ecol Evol. 2016;7(5):565–72.
Article
Google Scholar
Goswami A, Polly PD. Methods for studying morphological integration and modularity. The Paleontological Society Papers. 2010 16:213–243.
Denton JS, Adams DC. A new phylogenetic test for comparing multiple high-dimensional evolutionary rates suggests interplay of evolutionary rates and modularity in lanternfishes (Myctophiformes; Myctophidae). Evolution. 2015;69(9):2425–40.
Article
PubMed
Google Scholar
Fabre AC, Cornette R, Goswami A, Peigné S. Do constraints associated with the locomotor habitat drive the evolution of forelimb shape? A case study in musteloid carnivorans. J Anat. 2015;226(6):596–610.
Article
PubMed
PubMed Central
Google Scholar
Ekdale EG. Morphological variation among the inner ears of extinct and extant baleen whales (Cetacea: Mysticeti). J Morphol. 2016;277(12):1599–615.
Article
PubMed
Google Scholar
Dumont M, Wall CE, Botton-Divet L, Goswami A, Peigné S, Fabre A-C. Do functional demands associated with locomotor habitat, diet, and activity pattern drive skull shape evolution in musteloid carnivorans? Biol J Linn Soc. 2016;117(4):858–78.
Article
Google Scholar
Adams DC, Collyer ML. Permutation tests for phylogenetic comparative analyses of high-dimensional shape data: what you shuffle matters. Evolution. 2015;69(3):823–9.
Article
PubMed
Google Scholar
Rohlf FJ. Geometric morphometrics and phylogeny. Morphology, shape and phylogeny; 2002. p. 175–93.
Book
Google Scholar
Adams DC. Methods for shape analysis of landmark data from articulated structures. Evol Ecol Res. 1999;1(8):959–70.
Google Scholar
Biewener AA. Biomechanical consequences of scaling. J Exp Biol. 2005;208(9):1665–76.
Article
PubMed
Google Scholar
Cuff AR, Sparkes EL, Randau M, Pierce SE, Kitchener AC, Goswami A, Hutchinson JR. The scaling of postcranial muscles in cats (Felidae) I: forelimb, cervical, and thoracic muscles. J Anat. 2016;229(1):128–41.
Article
PubMed
PubMed Central
Google Scholar
Cuff AR, Sparkes EL, Randau M, Pierce SE, Kitchener AC, Goswami A, Hutchinson JR. The scaling of postcranial muscles in cats (Felidae) II: hindlimb and lumbosacral muscles. J Anat. 2016;229(1):142–52.
Article
PubMed
PubMed Central
Google Scholar
White JL. Indicators of locomotor habits in xenarthrans: evidence for locomotor heterogeneity among fossil sloths. J Vert Paleontol. 1993;13(2):230–42.
Article
Google Scholar
Gould FDH. The morphology of the distal femoral articular surface and the evolution of cursoriality in ungulates: PhD thesis. Johns Hopkins University; 2013.
Van Valkenburgh B. Skeletal indicators of locomotor behavior in living and extinct carnivores. J Vert Paleontol. 1987;7(2):162–82.
Article
Google Scholar
MacLeod N, Rose KD. Inferring locomotor behavior in Paleogene mammals via eigenshape analysis. Am J Sci. 1993;293(A):300.
Article
Google Scholar
Young JW, Danczak R, Russo GA, Fellmann CD. Limb bone morphology, bone strength, and cursoriality in lagomorphs. J Anat. 2014;225(4):403–18.
Article
PubMed
PubMed Central
Google Scholar
Vallois HV. Les transformations de la musculature de l’épisome chez les vertébrés. Princeton: L'Universite d Paris; 1922.
Nyakatura JA, Stark H. Aberrant back muscle function correlates with intramuscular architecture of dorsovertebral muscles in two-toed sloths. Mammalian Biology-Zeitschrift für Säugetierkunde. 2015;80(2):114–21.
Article
Google Scholar
Gaudin TJ, Nyakatura JA. Epaxial musculature in armadillos, sloths, and opossums: functional significance and implications for the evolution of back muscles in the Xenarthra. J Mamm Evol. 2017:1–8.
Nyakatura JA, Fischer MS. Functional morphology and three-dimensional kinematics of the thoraco-lumbar region of the spine of the two-toed sloth. J Exp Biol. 2010;213(24):4278–90.
Article
PubMed
Google Scholar
Schilling N, Hackert R. Sagittal spine movements of small therian mammals during asymmetrical gaits. J Exp Biol. 2006;209(19):3925–39.
Article
PubMed
Google Scholar
Shapiro LJ. Functional morphology of the vertebral column in primates. In: Gebo DL, editor. Postcranial adaptation in nonhuman Primates. DeKalb: Northern Illinois University Press; 1993. p. 121–49.
Google Scholar
Boszczyk BM, Boszczyk AA, Putz R. Comparative and functional anatomy of the mammalian lumbar spine. Anat Rec. 2001;264:157–68.
Article
CAS
PubMed
Google Scholar
Macpherson JM, Ye Y. The cat vertebral column: stance configuration and range of motion. Exp Brain Res. 1998;119(3):324–32.
Article
CAS
PubMed
Google Scholar
Gál JM. Mammalian spinal biomechanics 1: static and dynamic mechanical-properties of intact intervertebral joints. J Exp Biol. 1993;174:247–80.
PubMed
Google Scholar
Schilling N, Carrier DR. Function of the epaxial muscles in walking, trotting and galloping dogs: implications for the evolution of epaxial muscle function in tetrapods. J Exp Biol. 2010;213(9):1490–502.
Article
PubMed
Google Scholar
Smit TH. The use of a quadruped as an in vivo model for the study of the spine: biomechanical considerations. Eur Spine J. 2002;11(2):137–44.
Article
PubMed
PubMed Central
Google Scholar
Young NM, Hallgrimsson B. Serial homology and the evolution of mammalian limb covariation structure. Evolution. 2005;59(12):2691–704.
Article
PubMed
Google Scholar
Wellik DM. Hox genes and vertebrate axial pattern. Curr Top Dev Biol. 2009;88:257–78.
Article
CAS
PubMed
Google Scholar
Wellik DM. Hox patterning of the vertebrate axial skeleton. Dev Dyn. 2007;236(9):2454–63.
Article
CAS
PubMed
Google Scholar
Wellik DM, Capecchi MR. Hox10 and Hox11 genes are required to globally pattern the mammalian skeleton. Science. 2003;301(5631):363–7.
Article
CAS
PubMed
Google Scholar
Jenkins FA Jr. The postcranial skeleton of African Cynodonts. Bull Peabody Mus Nat Hist. 1971;36.
Luo ZX, Chen PJ, Li G, Chen M. A new eutriconodont mammal and evolutionary development in early mammals. Nature. 2007;446(7133):288–93.
Article
CAS
PubMed
Google Scholar
Carrier DR. The evolution of locomotor stamina in tetrapods: circumventing a mechanical constraint. Paleobiology. 1987;13(3):326–41.
Article
Google Scholar