Roush RT, McKenzie JA: Ecological genetics of insecticide and acaricide resistance. Ann Rev Entomol. 1987, 32: 361-380. 10.1146/annurev.en.32.010187.002045.
Article
CAS
Google Scholar
Crow JF: Genetics of insect resistance to chemicals. Ann Rev Entomol. 1956, 1: 227-246.
Google Scholar
Brown AWA: Insecticide Resistance in Arthropods. 1958, Geneva: World Health Organization
Google Scholar
McKenzie JA: Selection at the dieldrin resistance locus in overwhelming populations of Lucilia cuprina (Wiedemann). Aust J Zool. 1990, 38: 493-501. 10.1071/ZO9900493.
Article
Google Scholar
Gazave E, Chevillon C, Lenormand T, Marquine M, Raymond M: Dissecting the cost of insecticide resistance genes during the overwintering period of the mosquito Culex pipiens. Heredity. 2001, 87: 441-448. 10.1046/j.1365-2540.2001.00926.x.
Article
CAS
PubMed
Google Scholar
Foster SP, Harrington R, Devonshire AL, Denholm I, Devine GJ, Kenward MG, Bale JS: Comparative survival of insecticide-susceptible and resistant peach-potato aphids, Myzus persicae (Sulzer) (Hemiptera: Aphidae), in low temperature field trials. Bull Entomol Res. 1996, 86: 17-27.
Article
CAS
Google Scholar
Berticat C, Boquien G, Raymond M, Chevillon C: Insecticide resistance genes induce a mating competition cost in Culex pipiens mosquitoes. Genet Res. 2002, 79 (1): 41-47. 10.1017/S001667230100547X.
Article
CAS
PubMed
Google Scholar
Agnew P, Berticat C, Bedhomme S, Sidobre C, Michalakis Y: Parasitism increases and decreases the costs of insecticide resistance in mosquitoes. Evolution. 2004, 58: 579-586.
Article
CAS
PubMed
Google Scholar
Foster SP, Woodcock CM, Williamson MS, Devonshire AL, Denholm I, Thompson R: Reduced alarm response by peach-potato aphids, Myzus persicae (Hemiptera: Aphididae), with knock-down resistance to insecticides (kdr) may impose a fitness cost through increased vulnerability to natural enemies. Bull Entomol Res. 1999, 89: 133-138. 10.1017/S0007485399000218.
Google Scholar
Duron O, Labbe P, Berticat C, Rousset F, Guillot S, Raymond M, Weill M: High Wolbachia density correlates with cost of infection for insecticide resistant Culex pipiens mosquitoes. Evolution. 2006, 60: 303-314.
Article
CAS
PubMed
Google Scholar
Bourguet D, Guillemaud T, Chevillon C, Raymond M: Fitness costs of insecticide resistance in natural breeding sites of the mosquito Culex pipiens. Evolution. 2004, 58: 128-135.
Article
PubMed
Google Scholar
Roush RT, Daly JC: The role of population genetics in resistance research and management. Pesticide Resistance in Arthropods. Edited by: Roush RT, Tabashnik BE. 1990, New York and London: Chapman and Hall, 97-152.
Chapter
Google Scholar
Lenormand T, Bourguet D, Guillemaud T, Raymond M: Tracking the evolution of insecticide resistance in the mosquito Culex pipiens. Nature. 1999, 400: 861-864. 10.1038/23685.
Article
CAS
PubMed
Google Scholar
Boivin T, Bouvier JD, Chadoeuf J, Beslay D, Sauphanor B: Constraits on adaptive mutations in the codling moth Cydia pomonella (L.): measuring fitness trade-offs and natural selection. Heredity. 2003, 90: 107-113. 10.1038/sj.hdy.6800188.
Article
CAS
PubMed
Google Scholar
Rinkevich FD, Zhang L, Hamm RL, Brady SG, Lazzaro BP, Scott JG: Frequencies of the pyrethroid resistance alleles of Vssc1 and CYP6D1 in house flies from the eastern United States. Insect Molec Biol. 2006, 15: 157-167. 10.1111/j.1365-2583.2006.00620.x.
Article
CAS
Google Scholar
Guillemaud T, Lenormand T, Bourguet D, Chevillon C, Pasteur N, Raymond M: Evolution of resistance in Culex pipiens: allele replacement and changing environment. Evolution. 1998, 52: 443-453. 10.2307/2411080.
Article
Google Scholar
Maisnier-Patin S, Andersson DI: Adaptation to the deleterious effects of antimicrobial drug resistance mutations by compensatory evolution. Res Microbiol. 2004, 155: 360-369. 10.1016/j.resmic.2004.01.019.
Article
CAS
PubMed
Google Scholar
Coustau C, Chevillion C, ffrench-Constant R: Resistance to xenobiotics and parasites: can we count the cost?. TREE. 2000, 15: 378-383.
PubMed
Google Scholar
Carriere Y, Deland JP, Roff DA, Vincent C: Life-history costs associated with the evolution of insecticide resistance. Proc R Soc Lond B. 1994, 258: 35-40. 10.1098/rspb.1994.0138.
Article
CAS
Google Scholar
Beeman RW, Nanis SM: Malathion resistance alleles and their fitness in the red flour beetle (Coleoptera: Tenebrionidae). J Econ Entomol. 1986, 79: 580-587.
Article
CAS
Google Scholar
Raymond B, Sayyed AH, Wright DJ: Genes and environment interact to determine the fitness costs of resistance to Bacillus thuringiensis. Proc Biol Sci. 2005, 272 (1571): 1519-1524. 10.1098/rspb.2005.3103.
Article
PubMed Central
CAS
PubMed
Google Scholar
Plapp FW, Campanhola C, Bagwell RD, McCutcheon BF: Management of pyrethroid-resistant tobacco budworms on cotton in the United States. Pesticide Resistance in Arthropods. Edited by: Roush RT, Tabashnik BE. 1990, New York and London: Chapman and Hall, 237-260.
Chapter
Google Scholar
Vinogradova EB: Culex pipiens pipiens Mosquitoes: Taxonomy, Distribution, Ecology, Physiology, Genetics, Applied Importance and Control. 2000, Sofia, Bulgaria: Pensoft Publishers
Google Scholar
CDC: Provisional surveillance summary of the West Nile Virus epidemic – United States, January-November 2002. MMWR Morb Mortal Wkly Rep. 2002, 51 (50): 1129-1133.
Google Scholar
Turell MJ, O'Guinn ML, Dohm DJ, Jones JW: Vector competence of North American mosquitoes (Diptera: Culicidae) for West Nile Virus. J Med Entomol. 2001, 38: 130-134.
Article
CAS
PubMed
Google Scholar
Eldridge BF, Scott TW, Day JF, Tabachnick WJ: Arbovirus diseases. Medical Entomology, a Textbook on Public Health and Veterinary Problems caused by Arthropods. Edited by: Eldridge BF, Edman JD. 2000, Dordrecht: Kluwer Academic Publishers, 415-460.
Google Scholar
WHO: 22nd Report by the Expert Committee on Insecticides. WHO Tech Rpt Ser. 1976, 585: 77-
Google Scholar
Yebakima A, Marquine M, Rosine J, Yp-Tcha M-M, Pasteur N: Evolution of resistance under insecticide selection pressure in Culex pipiens quinquefasciatus (Diptera: Culicidae) from Martinique. J Med Entomol. 2004, 41: 718-725.
Article
CAS
PubMed
Google Scholar
Kasai S, Weerashinghe IS, Shono T: P450 monooxygenases are an important mechanism of permethrin resistance in Culex quinquefasciatus Say larvae. Arch Insect Biochem Physiol. 1998, 37: 47-56. 10.1002/(SICI)1520-6327(1998)37:1<47::AID-ARCH6>3.0.CO;2-S.
Article
CAS
Google Scholar
Ben Cheikh H, Ben Ali-Haouas Z, Marquine M, Pasteur N: Resistance to organophosphorus and pyrethroid insecticides in Culex pipiens (Diptera: Culicidae) from Tunisia. J Med Entomol. 1998, 35: 251-260.
Article
CAS
PubMed
Google Scholar
Xu Q, Liu H, Zhang L, Liu N: Resistance in the mosquito, Culex quinquefasciatus, and possible mechanisms for resistance. Pest Manag Sci. 2005, 61: 1096-1102. 10.1002/ps.1090.
Article
CAS
PubMed
Google Scholar
Liu H, Cupp EW, Micher KM, Guo A, Liu N: Insecticide resistance and cross-resistance in Alabama and Florida strains of Culex quinquefaciatus (sic). J Med Entomol. 2004, 41: 408-413.
Article
CAS
PubMed
Google Scholar
Chandre F, Darriet F, Darder M, Cuany A, Doannio JMC, Pasteur N, Guillet P: Pyrethroid resistance in Culex quinquefasciatus from West Africa. Med Vet Entomol. 1998, 12: 359-366. 10.1046/j.1365-2915.1998.00120.x.
Article
CAS
PubMed
Google Scholar
Bisset JA, Soca A: Cross-resistance to malathion in Cuban Culex quinquefasciatus induced by larval selection with deltamethrin. Med Vet Entomol. 1998, 12: 109-112. 10.1046/j.1365-2915.1998.00064.x.
Article
CAS
PubMed
Google Scholar
Rodriguez M, Ortiz E, Bisset JA, Hemingway J, Saledo E: Changes in malathion and pyrethroid resistance after cypermethrin selection of Culex quinquefasciatus field populations of Cuba. Med Vet Entomol. 1993, 7: 117-121. 10.1111/j.1365-2915.1993.tb00663.x.
Article
CAS
PubMed
Google Scholar
Cui F, Raymond M, Qiao C: Insecticide resistance in vector mosquitoes in China. Pest Manag Sci. 2006, 62: 1013-1022. 10.1002/ps.1288.
Article
CAS
PubMed
Google Scholar
Kolaczinski JH, Curtis CF: Investigation of negative cross-resistance as a resistance-management tool for insecticide-treated nets. J Med Entomol. 2004, 41: 930-934.
Article
CAS
PubMed
Google Scholar
Paul A, Harrington LC, Zhang L, Scott JG: Insecticide resistance in Culex pipiens from New York. J Am Mosq Cont Assoc. 2004, 21: 305-309. 10.2987/8756-971X(2005)21[305:IRICPF]2.0.CO;2.
Article
Google Scholar
Martinez-Torres D, Chevillon C, Brun-Barale A, Berge JB, Pasteur N, Pauron D: Voltage-dependant Na+ channels in pyrethroid resistant Culex pipiens mosquitoes. Pestic Sci. 1999, 55: 1012-1020. 10.1002/(SICI)1096-9063(199910)55:10<1012::AID-PS39>3.0.CO;2-5.
Article
CAS
Google Scholar
Hardstone MC, Leichter CA, Harrington LC, Kasai S, Tomita T, Scott JG: Cytochrome P450 monooxygenase-mediated permethrin resistance confers limited and larval specific cross-resistance in the southern house mosquito, Culex pipiens quinquefasciatus. Pestic Biochem Physiol. 2007, 89: 175-184. 10.1016/j.pestbp.2007.06.006.
Article
CAS
Google Scholar
Haubruge E, Arnaud L: Fitness consequences of malathion-specific resistance in red flour beetle (Coleoptera: Tenebrionidae) and selection for resistance in the absence of malathion. J Econ Entomol. 2001, 94: 552-557.
Article
CAS
PubMed
Google Scholar
Hoffman AA, Parsons PA: Evolutionary Genetics and Environmental Stress. 1991, New York: Oxford University Press
Google Scholar
Zhu KY, Lee SH, Clark JM: A point mutation of acetylcholinesterase associated with azinphosmethyl resistance and reduced fitness in Colorado potato beetle. Pestic Biochem Physiol. 1996, 55: 100-108. 10.1006/pest.1996.0039.
Article
CAS
PubMed
Google Scholar
Berticat C, Duron O, Heyse D, Raymond M: Insecticide resistance genes confer a predation cost on mosquitoes, Culex pipiens. Genetical-Research. 2004, 83: 189-196. 10.1017/S0016672304006792.
Article
CAS
PubMed
Google Scholar
Hemingway J, Georghiou GP: Differential suppression of organophosphorus resistance in Culex quinquefasciatus by the synergists IBP, DEF, and TPP. Pestic Biochem Physiol. 1984, 21: 1-9. 10.1016/0048-3575(84)90068-3.
Article
CAS
Google Scholar
Minkoff CI, Wilson TG: The competitive ability and fitness components of the Methoprene-tolerant (Met) Drosophila mutant resistant to juvenile hormone analog insecticides. Genetics. 1992, 131: 91-97.
PubMed
Google Scholar
Scott M, Diwell K, McKenzie JA: Dieldrin resistance in Lucilia cuprina (the Australian sheep blowfly): chance, selection and response. Heredity. 2000, 84: 599-604. 10.1046/j.1365-2540.2000.00703.x.
Article
CAS
PubMed
Google Scholar
McKenzie JA, Whitten MJ, Adena MA: The effect of genetic background on the fitness of diazinon resistance genotypes of the Australian sheep blowfly, Lucilia cuprina. Heredity. 1982, 49: 1-9. 10.1038/hdy.1982.60.
Article
Google Scholar
Uyenoyama MK: Pleiotropy and the evolution of genetic systems conferring resistance to pesticides. Pesticide Resistance: Strategies and Tactics for Management. 1986, Washington, D.C.: National Academy Press, 207-221.
Google Scholar
Soderlund DM: Molecular mechanisms of insecticide resistance. Chemistry of Plant Protection: Molecular Mechanisms of Resistance to Agrochemicals. Edited by: Sjut V. 1997, Springer-Verlag, 13: 21-56.
Chapter
Google Scholar
Devonshire AL, Moores GD: A carboxylesterase with broad substrate specificity causes organophosphorus, carbamate and pyrethroid resistance in peach-potato aphids (Myzus persicae). Pestic Biochem Physiol. 1982, 18: 235-246. 10.1016/0048-3575(82)90110-9.
Article
CAS
Google Scholar
Roush RT, Plapp RW: Effects of insecticide resistance on biotic potential of the house fly (Diptera: Muscidae). J Econ Entomol. 1982, 75: 708-713.
Article
CAS
PubMed
Google Scholar
Roush RT, Hoy MA: Laboratory, glasshouse, field studies of artificially selected carbaryl resistance in Metaseiulus occidentalis. J Econ Entomol. 1981, 74: 142-147.
Article
Google Scholar
Roush RT, Plapp FW: Biochemical genetics of resistance to aryl carbamate insecticides in the predaceous mite, Metaseiulus occidentalis. J Econ Entomol. 1982, 75: 304-307.
Article
CAS
Google Scholar
Neal JJ: Metabolic cost of mixed-function oxidase induction in Heliothis zea. Entomol Exp Appl. 1987, 43: 175-179. 10.1007/BF00301749.
Article
CAS
Google Scholar
McCart C, Buckling A, ffrench-Constant RH: DDT resistance in flies carries no cost. Current Bio. 2005, 15: R587-R589. 10.1016/j.cub.2005.07.054.
Article
CAS
Google Scholar
Scott JG, Kasai S: Evolutionary plasticity of monooxygenase-mediated resistance. Pestic Biochem Physiol. 2004, 78: 171-178. 10.1016/j.pestbp.2004.01.002.
Article
CAS
Google Scholar
Georghiou GP, Metcalf RL, Gidden FE: Carbamate resistance in mosquitoes. Selection of Culex pipiens fatigans Weidemann for resistance to Baygon. Bull World Hlth Org. 1966, 35: 691-708.
CAS
Google Scholar
Amin AM, Hemingway J: Preliminary investigation of the mechanisms of DDT and pyrethroid resistance in Culex quinquefasciatus Say (Diptera: Culicidae) from Saudi Arabia. Bull Ent Res. 1989, 79: 361-366.
Article
CAS
Google Scholar