Govaerts R: How many species of seed plants are there? - a response. Taxon. 2003, 52 (3): 583-584. 10.2307/3647457.
Google Scholar
Govaerts R: How many species of seed plants are there?. Taxon. 2001, 50 (4): 1085-1090. 10.2307/1224723.
Google Scholar
Judd WS, Campbell CS, Kellogg EA, Stevens PF, Donoghue MJ: Plant systematics : a phylogenetic approach. 2008, Sunderland, MA: Sinauer Associates, 3
Google Scholar
Charophycean green algae. [http://www.life.umd.edu/labs/delwiche/Charophyte.html]
AlgaeBase. [http://www.algaebase.org]
Guiry MD: How many species of algae are there?. J Phycol. 2012, 48 (5): 1057-1063. 10.1111/j.1529-8817.2012.01222.x.
Google Scholar
Courties C, Vaquer A, Troussellier M, Lautier J, Chretiennot-Dinet MJ, Neveux J, Machado C, Claustre H: Smallest eukaryotic organism. Nature. 1994, 370 (6487): 255-
Google Scholar
Butterfield NJ: Modes of pre-Ediacaran multicellularity. Precambrian Res. 2009, 173 (1–4): 201-211.
Google Scholar
Butterfield NJ, Knoll AH, Swett K: Paleobiology of the Neoproterozoic Svanbergfjellet Formation, Spitsbergen. Fossils Strata. 1994, 34: 1-84.
Google Scholar
Halverson GP, Maloof AC, Schrag DP, Dudas FO, Hurtgen M: Stratigraphy and geochemistry of a ca 800 Ma negative carbon isotope interval in northeastern Svalbard. Chem Geol. 2007, 237 (1–2): 5-27.
Google Scholar
Yoon HS, Hackett JD, Ciniglia C, Pinto G, Bhattacharya D: A molecular timeline for the origin of photosynthetic eukaryotes. Mol Biol Evol. 2004, 21 (5): 809-818. 10.1093/molbev/msh075.
PubMed
Google Scholar
Hedges SB, Blair JE, Venturi ML, Shoe JL: A molecular timescale of eukaryote evolution and the rise of complex multicellular life. BMC Evol Biol. 2004, 4: 2-10.1186/1471-2148-4-2.
PubMed
PubMed Central
Google Scholar
Herron MD, Hackett JD, Aylward FO, Michod RE: Triassic origin and early radiation of multicellular volvocine algae. Proc Natl Acad Sci USA. 2009, 106 (9): 3254-3258. 10.1073/pnas.0811205106.
PubMed
PubMed Central
Google Scholar
Parfrey LW, Lahr DJG, Knoll AH, Katz LA: Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc Natl Acad Sci USA. 2011, 108 (33): 13624-13629. 10.1073/pnas.1110633108.
PubMed
PubMed Central
Google Scholar
Kenrick P, Crane PR: The origin and early evolution of plants on land. Nature. 1997, 389: 33-39. 10.1038/37918.
Google Scholar
Doyle JA: Seed ferns and the origin of angiosperms. J Torrey Bot Soc. 2006, 133 (1): 169-209. 10.3159/1095-5674(2006)133[169:SFATOO]2.0.CO;2.
Google Scholar
Hilton J, Bateman RM: Pteridosperms are the backbone of seed-plant phylogeny. J Torrey Bot Soc. 2006, 133 (1): 119-168. 10.3159/1095-5674(2006)133[119:PATBOS]2.0.CO;2.
Google Scholar
Rothfels CJ, Larsson A, Kuo LY, Korall P, Chiou WL, Pryer KM: Overcoming deep roots, fast rates, and short internodes to resolve the ancient rapid radiation of eupolypod II ferns. Syst Biol. 2012, 61 (3): 490-509. 10.1093/sysbio/sys001.
PubMed
Google Scholar
Soltis PS, Soltis DE, Savolainen V, Crane PR, Barraclough TG: Rate heterogeneity among lineages of tracheophytes: integration of molecular and fossil data and evidence for molecular living fossils. Proc Natl Acad Sci USA. 2002, 99 (7): 4430-4435. 10.1073/pnas.032087199.
PubMed
PubMed Central
Google Scholar
Zhong B, Deusch O, Goremykin VV, Penny D, Biggs PJ, Atherton RA, Nikiforova SV, Lockhart PJ: Systematic error in seed plant phylogenomics. Genome Biol Evol. 2011, 3: 1340-1348. 10.1093/gbe/evr105.
PubMed
PubMed Central
Google Scholar
Smith DR: Unparalleled GC content in the plastid DNA of Selaginella. Plant Mol Biol. 2009, 71 (6): 627-639. 10.1007/s11103-009-9545-3.
PubMed
Google Scholar
Smith SA, Donoghue MJ: Rates of molecular evolution are linked to life history in flowering plants. Science. 2008, 322 (5898): 86-89. 10.1126/science.1163197.
PubMed
Google Scholar
Karol KG, McCourt RM, Cimino MT, Delwiche CF: The closest living relatives of land plants. Science. 2001, 294: 2351-2353. 10.1126/science.1065156.
PubMed
Google Scholar
Lemieux C, Otis C, Turmel M: Ancestral chloroplast genome in Mesostigma viride reveals an early branch of green plant evolution. Nature. 2000, 403 (6770): 649-652. 10.1038/35001059.
PubMed
Google Scholar
Wodniok S, Brinkmann H, Glockner G, Heidel AJ, Philippe H, Melkonian M, Becker B: Origin of land plants: do conjugating green algae hold the key?. BMC Evol Biol. 2011, 11: 104-10.1186/1471-2148-11-104.
PubMed
PubMed Central
Google Scholar
Lang BF, Nedelcu AM: Plastid genomes of algae. Genomics of Chloroplasts and Mitochondria, Volume 35. Edited by: Bock R, Knoop V. 2012, Netherlands: Springer, 59-87.
Google Scholar
Turmel M, Otis C, Lemieux C: The chloroplast genome sequence of Chara vulgaris sheds new light into the closest green algal relatives of land plants. Mol Biol Evol. 2006, 23 (6): 1324-1338. 10.1093/molbev/msk018.
PubMed
Google Scholar
Turmel M, Pombert J, Charlebois P, Otis C, Lemieux C: The green algal ancestry of land plants as revealed by the chloroplast genome. Int J Pl Sci. 2007, 168 (5): 679-689. 10.1086/513470.
Google Scholar
Qiu YL, Li L, Wang B, Chen Z, Knoop V, Groth-Malonek M, Dombrovska O, Lee J, Kent L, Rest J, et al: The deepest divergences in land plants inferred from phylogenomic evidence. Proc Natl Acad Sci USA. 2006, 103 (42): 15511-15516. 10.1073/pnas.0603335103.
PubMed
PubMed Central
Google Scholar
Nickrent DL, Parkinson CL, Palmer JD, Duff RJ: Multigene phylogeny of land plants with special reference to bryophytes and the earliest land plants. Mol Biol Evol. 2000, 17: 1885-1895. 10.1093/oxfordjournals.molbev.a026290.
PubMed
Google Scholar
Renzaglia KS, Schuette S, Duff RJ, Ligrone R, Shaw AJ, Mishler BD, Duckett JG: Bryophyte phylogeny: advancing the molecular and morphological frontiers. Bryologist. 2007, 110 (2): 179-213. 10.1639/0007-2745(2007)110[179:BPATMA]2.0.CO;2.
Google Scholar
Mishler BD, Churchill SP: A cladistic approach to the phylogeny of the “bryophytes”. Brittonia. 1984, 36: 406-424. 10.2307/2806602.
Google Scholar
Shaw J, Renzaglia K: Phylogeny and diversification of bryophytes. Amer J Bot. 2004, 91 (10): 1557-1581. 10.3732/ajb.91.10.1557.
Google Scholar
Karol KG, Arumuganathan K, Boore JL, Duffy AM, Everett KDE, Hall JD, Hansen SK, Kuehl JV, Mandoli DF, Mishler BD, et al: Complete plastome sequences of Equisetum arvense and Isoetes flaccida: implications for phylogeny and plastid genome evolution of early land plant lineages. BMC Evol Biol. 2010, 10: 321-10.1186/1471-2148-10-321.
PubMed
PubMed Central
Google Scholar
Wolf PG, Karol KG: Plastomes of bryophytes, lycophytes and ferns. Genomics of Chloroplasts and Mitochondria, Volume 35. Edited by: Bock R, Knoop V. 2012, Netherlands: Springer, 89-102.
Google Scholar
Crane PR: Phylogenetic analysis of seed plants and the origin of angiosperms. Ann Missouri Bot Gard. 1985, 72: 716-793. 10.2307/2399221.
Google Scholar
Chaw SM, Zharkikh A, Sung HM, Lau TC, Li WH: Molecular phylogeny of extant gymnosperms and seed plant evolution: analysis of nuclear 18S rRNA sequences. Mol Biol Evol. 1997, 14 (1): 56-68. 10.1093/oxfordjournals.molbev.a025702.
PubMed
Google Scholar
Bowe LM, Coat G, dePamphilis CW: Phylogeny of seed plants based on all three genomic compartments: extant gymnosperms are monophyletic and Gnetales’ closest relatives are conifers. Proc Natl Acad Sci USA. 2000, 97 (8): 4092-4097. 10.1073/pnas.97.8.4092.
PubMed
PubMed Central
Google Scholar
Chaw SM, Parkinson CL, Cheng YC, Vincent TM, Palmer JD: Seed plant phylogeny inferred from all three plant genomes: monophyly of extant gymnosperms and origin of Gnetales from conifers. Proc Natl Acad Sci USA. 2000, 97 (8): 4086-4091. 10.1073/pnas.97.8.4086.
PubMed
PubMed Central
Google Scholar
Finet C, Timme RE, Delwiche CF, Marleta F: Multigene phylogeny of the green lineage reveals the origin and diversification of land plants. Curr Biol. 2010, 20 (24): 2217-2222. 10.1016/j.cub.2010.11.035.
PubMed
Google Scholar
Zhong B, Yonezawa T, Zhong Y, Hasegawa M: The position of Gnetales among seed plants: overcoming pitfalls of chloroplast phylogenomics. Mol Biol Evol. 2010, 27 (12): 2855-2863. 10.1093/molbev/msq170.
PubMed
Google Scholar
Mathews S: Phylogenetic relationships among seed plants: persistent questions and the limits of molecular data. Amer J Bot. 2009, 96 (1): 228-236. 10.3732/ajb.0800178.
Google Scholar
Burleigh JG, Mathews S: Phylogenetic signal in nucleotide data from seed plants: implications for resolving the seed plant tree of life. Amer J Bot. 2004, 91 (10): 1599-1613. 10.3732/ajb.91.10.1599.
Google Scholar
Bhattacharya D, Medlin L: Algal phylogeny and the origin of land plants. Plant Physiol. 1998, 116 (1): 9-15. 10.1104/pp.116.1.9.
PubMed Central
Google Scholar
Soltis PS, Soltis DE, Wolf PG, Nickrent DL, Chaw S-M, Chapman RL: The phylogeny of land plants inferred from 18S rDNA sequences: pushing the limits of rDNA signal?. Mol Biol Evol. 1999, 16: 1774-1784. 10.1093/oxfordjournals.molbev.a026089.
PubMed
Google Scholar
Lee EK, Cibrian-Jaramillo A, Kolokotronis S-O, Katari MS, Stamatakis A, Ott M, Chiu JC, Little DP, Stevenson DW, McCombie WR, et al: A functional phylogenomic view of the seed plants. PLoS Genet. 2011, 7 (12): e1002411-10.1371/journal.pgen.1002411.
PubMed
PubMed Central
Google Scholar
Qiu YL, Cho Y, Cox JC, Palmer JD: The gain of three mitochondrial introns identifies liverworts as the earliest land plants. Nature. 1998, 394: 671-674. 10.1038/29286.
PubMed
Google Scholar
Duff RJ, Nickrent DL: Phylogenetic relationships of land plants using mitochondrial small-subunit rDNA sequences. Amer J Bot. 1999, 86: 372-386. 10.2307/2656759.
Google Scholar
Qiu YL, Palmer JD: Phylogeny of early land plants: insights from genes and genomes. Trends Plant Sci. 1999, 4 (1): 26-30. 10.1016/S1360-1385(98)01361-2.
PubMed
Google Scholar
Qiu YL: Phylogeny and evolution of charophytic algae and land plants. J Syst Evol. 2008, 46 (3): 287-306.
Google Scholar
Magallon S, Sanderson MJ: Relationships among seed plants inferred from highly conserved genes: Sorting conflicting phylogenetic signals among ancient lineages. Amer J Bot. 2002, 89 (12): 1991-2006. 10.3732/ajb.89.12.1991.
Google Scholar
Smith S, Beaulieu J, Donoghue M: Mega-phylogeny approach for comparative biology: an alternative to supertree and supermatrix approaches. BMC Evol Biol. 2009, 9 (1): 37-10.1186/1471-2148-9-37.
PubMed
PubMed Central
Google Scholar
Wicke S, Schneeweiss G, dePamphilis C, Müller K, Quandt D: The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. Plant Mol Biol. 2011, 76 (3): 273-297.
PubMed
PubMed Central
Google Scholar
Palmer JD, Nugent JM, Herbon LA: Unusual structure of geranium chloroplast dna - a triple-sized inverted repeat, extensive gene duplications, multiple inversions, and 2 repeat families. Proc Natl Acad Sci USA. 1987, 84 (3): 769-773. 10.1073/pnas.84.3.769.
PubMed
PubMed Central
Google Scholar
Stegemann S, Keuthe M, Greiner S, Bock R: Horizontal transfer of chloroplast genomes between plant species. Proc Natl Acad Sci USA. 2012, 109 (7): 2434-2438. 10.1073/pnas.1114076109.
PubMed
PubMed Central
Google Scholar
Soltis DE, Soltis PM: Choosing an approach and an appropriate gene for phylogenetic analysis. Molecular Systematics of Plants II. Edited by: Soltis DE, Soltis PM, Doyle J. 1998, Boston: Kluwer, 1-42.
Google Scholar
Olmstead RG, Palmer JD: Chloroplast DNA systematics - a review of methods and data-analysis. Amer J Bot. 1994, 81 (9): 1205-1224. 10.2307/2445483.
Google Scholar
Chase MW, Soltis DE, Olmstead RG, Morgan D, Les DH, Mishler BD, Duvall MR, Price RA, Hills HG, Qiu Y-L, et al: Phylogenetics of seed plants: An analysis of nucleotide sequences from the plastid gene rbcL. Ann Missouri Bot Gard. 1993, 80: 528-580. 10.2307/2399846.
Google Scholar
Savolainen V, Chase MW: A decade of progress in plant molecular phylogenetics. Trends Gen. 2003, 19 (12): 717-724. 10.1016/j.tig.2003.10.003.
Google Scholar
Shinozaki K, et al: The complete nucleotide sequence of tobacco chloroplast genome: its gene organization and expression. EMBO J. 1986, 5: 2043-2049.
PubMed
PubMed Central
Google Scholar
Ohyama K, Fukuzawa H, Kohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, et al: Chloroplast gene organization deduced from complete sequence of liverwort Marchantia polymorpha chloroplast DNA. Nature. 1986, 322 (6079): 572-574. 10.1038/322572a0.
Google Scholar
Moore MJ, Dhingra A, Soltis PS, Shaw R, Farmerie WG, Folta KM, Soltis DE: Rapid and accurate pyrosequencing of angiosperm plastid genomes. BMC Plant Biol. 2006, 6: 17-10.1186/1471-2229-6-17.
PubMed
PubMed Central
Google Scholar
Moore MJ, Soltis PS, Bell CD, Burleigh JG, Soltis DE: Phylogenetic analysis of 83 plastid genes further resolves the early diversification of eudicots. Proc Natl Acad Sci USA. 2010, 107 (10): 4623-4628. 10.1073/pnas.0907801107.
PubMed
PubMed Central
Google Scholar
Cronn R, Knaus BJ, Liston A, Maughan PJ, Parks M, Syring JV, Udall J: Targeted enrichment strategies for next-generation plant biology. Amer J Bot. 2012, 99 (2): 291-311. 10.3732/ajb.1100356.
Google Scholar
Cronn R, Liston A, Parks M, Gernandt DS, Shen R, Mockler T: Multiplex sequencing of plant chloroplast genomes using Solexa sequencing-by-synthesis technology. Nucleic Acids Res. 2008, 36 (19): 1-11.
Google Scholar
Parks M, Cronn R, Liston A: Increasing phylogenetic resolution at low taxonomic levels using massively parallel sequencing of chloroplast genomes. BMC Biol. 2009, 7: 84-10.1186/1741-7007-7-84.
PubMed
PubMed Central
Google Scholar
Straub SCK, Parks M, Weitemier K, Fishbein M, Cronn RC, Liston A: Navigating the tip of the genomic iceberg: next-generation sequencing for plant systematics. Amer J Bot. 2012, 99 (2): 349-364. 10.3732/ajb.1100335.
Google Scholar
Jansen RK, Ruhlman TA: Plastid genomes of seed plants. Genomics of Chloroplasts and Mitochondria, Volume 35. Edited by: Bock R, Knoop V. 2012, Netherlands: Springer
Google Scholar
Xi Z, Ruhfel BR, Schaefer H, Amorim AM, Sugumaran M, Wurdack KJ, Endress PK, Matthews ML, Stevens PF, Mathews S, et al: Phylogenomics and a posteriori data partitioning resolve the Cretaceous angiosperm radiation Malpighiales. Proc Natl Acad Sci USA. 2012, 109 (43): 17519-17524. 10.1073/pnas.1205818109.
PubMed
PubMed Central
Google Scholar
de Koning AP, Keeling PJ: The complete plastid genome sequence of the parasitic green alga Helicosporidium sp. is highly reduced and structured. BMC Biol. 2006, 4: 10-10.1186/1741-7007-4-10.
Google Scholar
Delannoy E, Fujii S, Colas des Francs-Small C, Brundrett M, Small I: Rampant gene loss in the underground orchid Rhizanthella gardneri highlights evolutionary constraints on plastid genomes. Mol Biol Evol. 2011, 28 (7): 2077-2086. 10.1093/molbev/msr028.
PubMed
PubMed Central
Google Scholar
Sanderson MJ, McMahon MM, Steel M: Phylogenomics with incomplete taxon coverage: the limits to inference. BMC Evol Biol. 2010, 10: 13-10.1186/1471-2148-10-13.
Google Scholar
Ruhfel BR, Gitzendanner MA, Soltis PS, Soltis DE, Burleigh JG: Data from: from algae to angiosperms:–inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes. Dryad Data Repository. 2014, doi:10.5061/dryad.k1t1f
Google Scholar
Lewis LA, McCourt RM: Green algae and the origin of land plants. Amer J Bot. 2004, 91 (10): 1535-1556. 10.3732/ajb.91.10.1535.
Google Scholar
Mattox KR, Stewart KD: Classification of the green algae: a concept based on comparative cytology. The Systematics of Green Algae. Edited by: Irvin DEG, John DM. 1984, London, UK: Academic Press, 29-72.
Google Scholar
Leliaert F, Smith DR, Moreau H, Herron MD, Verbruggen H, Delwiche CF, De Clerck O: Phylogeny and molecular evolution of the green algae. CRC Crit Rev Plant Sci. 2012, 31 (1): 1-46. 10.1080/07352689.2011.615705.
Google Scholar
Leliaert F, Verbruggen H, Zechman FW: Into the deep: New discoveries at the base of the green plant phylogeny. Bioessays. 2011, 33 (9): 683-692. 10.1002/bies.201100035.
PubMed
Google Scholar
Lartillot N, Brinkmann H, Philippe H: Suppression of long-branch attraction artefacts in the animal phylogeny using a site-heterogeneous model. BMC Evol Biol. 2007, 7: 14-10.1186/1471-2148-7-14.
Google Scholar
Lartillot N, Philippe H: A Bayesian mixture model for across-site heterogeneities in the amino-acid replacement process. Mol Biol Evol. 2004, 21: 1095-10.1093/molbev/msh112.
PubMed
Google Scholar
Lemieux C, Otis C, Turmel M: A clade uniting the green algae Mesostigma viride and Chlorokybus atmophyticus represents the deepest branch of the Streptophyta in chloroplast genome-based phylogenies. BMC Biol. 2007, 5: 2-10.1186/1741-7007-5-2.
PubMed
PubMed Central
Google Scholar
Rodriguez-Ezpeleta N, Philippe H, Brinkmann H, Becker B, Melkonian M: Phylogenetic analyses of nuclear, mitochondrial, and plastid multigene data sets support the placement of Mesostigma in the Streptophyta. Mol Biol Evol. 2007, 24 (3): 723-731.
PubMed
Google Scholar
Timme RE, Bachvaroff TR, Delwiche CF: Broad phylogenomic sampling and the sister lineage of land plants. PLoS ONE. 2012, 7 (1): e29696-10.1371/journal.pone.0029696.
PubMed
PubMed Central
Google Scholar
Turmel M, Otis C, Lemieux C: An unexpectedly large and loosely packed mitochondrial genome in the charophycean green alga Chlorokybus atmophyticus. BMC Genomics. 2007, 8: 12-10.1186/1471-2164-8-12.
Google Scholar
Cocquyt E, Verbruggen H, Leliaert F, De Clerck O: Evolution and cytological diversification of the green seaweeds (Ulvophyceae). Mol Biol Evol. 2010, 27 (9): 2052-2061. 10.1093/molbev/msq091.
PubMed
Google Scholar
Turmel M, Gagnon M-C, O’Kelly CJ, Otis C, Lemieux C: The chloroplast genomes of the green algae Pyramimonas, Monomastix, and Pycnococcus shed new light on the evolutionary history of prasinophytes and the origin of the secondary chloroplasts of euglenids. Mol Biol Evol. 2009, 26 (3): 631-648.
PubMed
Google Scholar
Turmel M, Otis C, Lemieux C: The chloroplast genomes of the green algae Pedinomonas minor, Parachlorella kessleri, and Oocystis solitatia reveal a shared ancestry between the Pedinomonadales and Chlorellales. Mol Biol Evol. 2009, 26 (10): 2317-2331. 10.1093/molbev/msp138.
PubMed
Google Scholar
Zhong B, Xi Z, Goremykin VV, Fong R, Mclenachan PA, Novis PM, Davis CC, Penny D: Streptophyte algae and the origin of land plants revisited using heterogeneous models with three new algal chloroplast genomes. Mol Biol Evol. 2014, 31 (1): 177-183. 10.1093/molbev/mst200.
PubMed
Google Scholar
Groth-Malonek M, Pruchner D, Grewe F, Knoop V: Ancestors of trans-splicing mitochondrial introns support serial sister group relationships of hornworts and mosses with vascular plants. Mol Biol Evol. 2005, 22 (1): 117-125.
PubMed
Google Scholar
Qiu YL, Li L, Wang B, Chen Z, Dombrovska O, Lee JH, Kent L, Li RQ, Jobson RW, Hendry TA, et al: A nonflowering land plant phylogeny inferred from nucleotide sequences of seven chloroplast, mitochondrial, and nuclear genes. Int J Pl Sci. 2007, 168 (5): 691-708. 10.1086/513474.
Google Scholar
Renzaglia KS, Duff RJ, Nickrent DL, Garbary DJ: Vegetative and reproductive innovations of early land plants: implications for a unified phylogeny. Philos Transs R Soc Lon B. 2000, 355: 769-793. 10.1098/rstb.2000.0615.
Google Scholar
Renzaglia KS, Garbary DJ: Motile gametes of land plants: diversity, development, and evolution. CRC Crit Rev Plant Sci. 2001, 20 (2): 107-213. 10.1080/20013591099209.
Google Scholar
Garbary DJ, Renzaglia KS, Duckett JG: The phylogeny of land plants-a cladistic analysis based on male gametogenesis. Pl Syst Evol. 1993, 188: 237-269.
Google Scholar
Garbary DJ, Renzaglia KS: Bryophyte phylogeny and the evolution of land plants: evidence from development and ultrastructure. Bryology for the twenty-first century. Edited by: Bates JW, Ashton NW, Duckett JG. 1998, Leeds, U.K: Maney Publishing and British Bryological Society, 45-63.
Google Scholar
Nishiyama T, Wolf PG, Kugita M, Sinclair RB, Sugita M, Sugiura C, Wakasugi T, Yamada K, Yoshinaga K, Yamaguchi K, et al: Chloroplast phylogeny indicates that bryophytes are monophyletic. Mol Biol Evol. 2004, 21 (10): 1813-1819. 10.1093/molbev/msh203.
PubMed
Google Scholar
Goremykin VV, Hellwig FH: Evidence for the most basal split in land plants dividing bryophyte and tracheophyte lineages. Pl Syst Evol. 2005, 254 (1–2): 93-103.
Google Scholar
Pryer KM, Schneider H, Smith AR, Cranfill R, Wolf PG, Hunt JS, Sipes SD: Horsetails and ferns are a monophyletic group and the closest living relatives to seed plants. Nature. 2001, 409: 618-622. 10.1038/35054555.
PubMed
Google Scholar
Pryer KM, Schneider H, Magallón S: The radiation of vascular plants. Assembling the Tree of Life. Edited by: Cracraft J, Donoghue MJ. 2004, New York: University Press, 138-153.
Google Scholar
Kranz HD, Huss VAR: Molecular evolution of pteridophytes and their relationship to seed plants: evidence from complete 18S rRNA gene sequences. Pl Syst Evol. 1996, 202 (1–2): 1-11.
Google Scholar
Raubeson LA, Jansen RK: Chloroplast DNA evidence on the ancient evolutionary split in vascular land plants. Science. 1992, 255 (5052): 1697-1699. 10.1126/science.255.5052.1697.
PubMed
Google Scholar
Grewe F, Guo W, Gubbels E, Hansen AK, Mower J: Complete plastid genomes from Ophioglossum californicum, Psilotum nudum, and Equisetum hyemale reveal an ancestral land plant genome structure and resolve the position of Equisetales among monilophytes. BMC Evol Biol. 2013, 13 (1): 8-10.1186/1471-2148-13-8.
PubMed
PubMed Central
Google Scholar
Soltis DE, Soltis PS, Zanis MJ: Phylogeny of seed plants based on evidence from eight genes. Amer J Bot. 2002, 89 (10): 1670-1681. 10.3732/ajb.89.10.1670.
Google Scholar
Xi Z, Rest J, Davis CC: Phylogenomics and coalescent analyses resolve extant seed plant relationships. PLoS ONE. 2013, 8 (11): e80870-10.1371/journal.pone.0080870.
PubMed
PubMed Central
Google Scholar
Soltis DE, Smith SA, Cellinese N, Wurdack KJ, Tank DC, Brockington SF, Refulio-Rodriguez NF, Walker JB, Moore MJ, Carlsward BS, et al: Angiosperm phylogeny: 17 genes, 640 taxa. Am J Bot. 2011, 98 (4): 704-730. 10.3732/ajb.1000404.
PubMed
Google Scholar
Jansen RK, Saski C, Lee SB, Hansen AK, Daniell H: Complete plastid genome sequences of three rosids (Castanea, Prunus, Theobroma): evidence for at least two independent transfers of rpl22 to the nucleus. Mol Biol Evol. 2011, 28 (1): 835-847. 10.1093/molbev/msq261.
PubMed
PubMed Central
Google Scholar
Jansen RK, Cai Z, Raubeson LA, Daniell H, Depamphilis CW, Leebens-Mack J, Muller KF, Guisinger-Bellian M, Haberle RC, Hansen AK, et al: Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc Natl Acad Sci USA. 2007, 104: 19369-19374. 10.1073/pnas.0709121104.
PubMed
PubMed Central
Google Scholar
Moore MJ, Bell CD, Soltis PS, Soltis DE: Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms. Proc Natl Acad Sci USA. 2007, 104 (49): 19363-19368. 10.1073/pnas.0708072104.
PubMed
PubMed Central
Google Scholar
Soltis DE, Soltis PS, Endress PK, Chase MW: Phylogeny and evolution of angiosperms. 2005, Sunderland, Mass: Sinauer Associates
Google Scholar
Barrett CF, Davis JI, Leebens-Mack J, Conran JG, Stevenson DW: Plastid genomes and deep relationships among the commelinid monocot angiosperms. Cladistics. 2013, 29 (1): 65-87. 10.1111/j.1096-0031.2012.00418.x.
Google Scholar
Ane C, Burleigh JG, McMahon MM, Sanderson MJ: Covarion structure in plastid genome evolution: a new statistical test. Mol Biol Evol. 2005, 22 (4): 914-924. 10.1093/molbev/msi076.
PubMed
Google Scholar
Goremykin VV, Nikiforova SV, Biggs PJ, Zhong BJ, Delange P, Martin W, Woetzel S, Atherton RA, McLenachan PA, Lockhart PJ: The evolutionary root of flowering plants. Syst Biol. 2013, 62 (1): 50-61. 10.1093/sysbio/sys070.
PubMed
Google Scholar
Foster PG: Modeling compositional heterogeneity. Syst Biol. 2004, 53 (3): 485-495. 10.1080/10635150490445779.
PubMed
Google Scholar
Jermiin LS, Ho SYW, Ababneh F, Robinson J, Larkum AWD: The biasing effect of compositional heterogeneity on phylogenetic estimates may be underestimated. Syst Biol. 2004, 53 (4): 638-643. 10.1080/10635150490468648.
PubMed
Google Scholar
Erixon P, Oxelman B: Whole-gene positive selection, elevated synonymous substitution rates, duplication, and indel evolution of the chloroplast clpP1 gene. PLoS ONE. 2008, 3 (1): 10-
Google Scholar
Guisinger MM, Kuehl JV, Boore JL, Jansen RK: Genome-wide analyses of Geraniaceae plastid DNA reveal unprecedented patterns of increased nucleotide substitutions. Proc Natl Acad Sci USA. 2008, 105 (47): 18424-18429. 10.1073/pnas.0806759105.
PubMed
PubMed Central
Google Scholar
Cai ZQ, Penaflor C, Kuehl JV, Leebens-Mack J, Carlson JE, dePamphilis CW, Boore JL, Jansen RK: Complete plastid genome sequences of Drimys, Liriodendron, and Piper: implications for the phylogenetic relationships of magnoliids. BMC Evol Biol. 2006, 6: 20-10.1186/1471-2148-6-20.
Google Scholar
Raubeson LA, Peery R, Chumley TW, Dziubek C, Fourcade HM, Boore JL, Jansen RK: Comparative chloroplast genomics: analyses including new sequences from the angiosperms Nuphar advena and Ranunculus macranthus. BMC Genomics. 2007, 8: 27-10.1186/1471-2164-8-27.
Google Scholar
Guisinger MM, Kuehl JV, Boore JL, Jansen RK: Extreme reconfiguration of plastid genomes in the angiosperm family Geraniaceae: rearrangements, repeats, and codon usage. Mol Biol Evol. 2011, 28 (1): 583-600. 10.1093/molbev/msq229.
PubMed
Google Scholar
Phillips MJ, Penny D: The root of the mammalian tree inferred from whole mitochondrial genomes. Mol Phylogenet and Evol. 2003, 28 (2): 171-185. 10.1016/S1055-7903(03)00057-5.
Google Scholar
Phillips MJ, Delsuc F, Penny D: Genome-scale phylogeny and the detection of systematic biases. Mol Biol Evol. 2004, 21: 1455-10.1093/molbev/msh137.
PubMed
Google Scholar
Ishikawa SA, Inagaki Y, Hashimoto T: RY-coding and non-homogeneous models can ameliorate the maximum-likelihood inferences from nucleotide sequence data with parallel compositional heterogeneity. Evol Bioinform. 2012, 8: 357-371. 10.6026/97320630008357.
Google Scholar
Delsuc F, Phillips MJ, Penny D: Comment on “Hexapod origins: monophyletic or paraphyletic?”. Science. 2003, 301 (5639): 1482-
PubMed
Google Scholar
Parks M, Cronn R, Liston A: Separating the wheat from the chaff: mitigating the effects of noise in a plastome phylogenomic data set from Pinus L. (Pinaceae). BMC Evol Biol. 2012, 12 (1): 100-10.1186/1471-2148-12-100.
PubMed
PubMed Central
Google Scholar
Jeffroy O, Brinkmann H, Delsuc F, Philippe H: Phylogenomics: the beginning of incongruence?. Trends Genet. 2006, 22 (4): 225-231. 10.1016/j.tig.2006.02.003.
PubMed
Google Scholar
Foster PG, Hickey DA: Compositional bias may affect both DNA-based and protein-based phylogenetic reconstructions. J Mol Evol. 1999, 48 (3): 284-290. 10.1007/PL00006471.
PubMed
Google Scholar
Mathews S, Clements MD, Beilstein MA: A duplicate gene rooting of seed plants and the phylogenetic position of flowering plants. Philos Trans R Soc B-Biol Sci. 2010, 365 (1539): 383-395. 10.1098/rstb.2009.0233.
Google Scholar
Soltis DE, Albert VA, Savolainen V, Hilu K, Qiu YL, Chase MW, Farris JS, Stefanovic S, Rice DW, Palmer JD, et al: Genome-scale data, angiosperm relationships, and “ending incongruence”: a cautionary tale in phylogenetics. Trends Plant Sci. 2004, 9 (10): 477-483. 10.1016/j.tplants.2004.08.008.
PubMed
Google Scholar
Graybeal A: Is it better to add taxa or characters to a difficult phylogenetic problem?. Syst Biol. 1998, 47: 9-17. 10.1080/106351598260996.
PubMed
Google Scholar
Hillis DM: Taxonomic sampling, phylogenetic accuracy, and investigator bias. Syst Biol. 1998, 47 (1): 3-8. 10.1080/106351598260987.
PubMed
Google Scholar
Zwickl DJ, Hillis DM: Increased taxon sampling greatly reduces phylogenetic error. Syst Biol. 2002, 51: 588-598. 10.1080/10635150290102339.
PubMed
Google Scholar
Hillis DM, Pollock DD, McGuire JA, Zwickl DJ: Is sparse taxon sampling a problem for phylogenetic inference?. Syst Biol. 2003, 52: 124-126. 10.1080/10635150390132911.
PubMed
PubMed Central
Google Scholar
Leebens-Mack J, Raubeson LA, Cui L, Kuehl JV, Fourcade MH, Chumley TW, Boore JL, Jansen RK, dePamphilis CW: Identifying the basal angiosperm node in chloroplast genome phylogenies: sampling one’s way out of the Felsenstein Zone. Mol Biol Evol. 2005, 22 (10): 1948-1963. 10.1093/molbev/msi191.
PubMed
Google Scholar
Stull GW, Moore MJ, Mandala VS, Douglas NA, Kates H-R, Qi X, Brockington SF, Soltis PS, Soltis DE, Gitzendanner MA: A targeted enrichment strategy for massively parallel sequencing of angiosperm plastid genomes. Appl Plant Sci. 2013, 1 (2): 1200497-
Google Scholar
Wiens JJ: Missing data, incomplete taxa, and phylogenetic accuracy. Syst Biol. 2003, 52 (4): 528-538. 10.1080/10635150390218330.
PubMed
Google Scholar
Wiens JJ, Moen DS: Missing data and the accuracy of Bayesian phylogenetics. J Syst Evol. 2008, 46 (3): 307-314.
Google Scholar
Ruhfel BR, Stevens PF, Davis CC: Combined morphological and molecular phylogeny of the clusioid clade (Malpighiales) and the placement of the ancient rosid macrofossil Paleoclusia. Int J Pl Sci. 2013, 174 (6): 910-936. 10.1086/670668.
Google Scholar
Wiens JJ: Paleontology, genomics, and combined-data phylogenetics: can molecular data improve phylogeny estimation for fossil taxa?. Syst Biol. 2009, 58 (1): 87-99. 10.1093/sysbio/syp012.
PubMed
Google Scholar
Wang H, Moore MJ, Soltis PS, Bell CD, Brockington SF, Alexandre R, Davis CC, Latvis M, Manchester SR, Soltis DE: Rosid radiation and the rapid rise of angiosperm-dominated forests. Proc Natl Acad Sci USA. 2009, 106 (10): 3853-3858. 10.1073/pnas.0813376106.
PubMed
PubMed Central
Google Scholar
Kubatko LS, Degnan JH: Inconsistency of phylogenetic estimates from concatenated data under coalescence. Syst Biol. 2007, 56 (1): 17-24. 10.1080/10635150601146041.
PubMed
Google Scholar
Matsen FA, Steel M: Phylogenetic mixtures on a single tree can mimic a tree of another topology. Syst Biol. 2007, 56 (5): 767-775. 10.1080/10635150701627304.
PubMed
Google Scholar
Penny D, White WT, Hendy MD, Phillips MJ: A bias in ML estimates of branch lengths in the presence of multiple signals. Mol Biol Evol. 2008, 25 (2): 239-242. 10.1093/molbev/msm263.
PubMed
Google Scholar
Maddison WP: Gene trees in species trees. Syst Biol. 1997, 46 (3): 523-536. 10.1093/sysbio/46.3.523.
Google Scholar
Mossel E, Steel M: How much can evolved characters tell us about the tree that generated them?. Mathematics of Evolution and Phylogeny. Edited by: Gascuel O, Steel M. 2005, Oxford: Oxford University Press, 384-412.
Google Scholar
Ponciano JM, Burleigh JG, Braun EL, Taper ML: Assessing parameter identifiability in phylogenetic models using data cloning. Syst Biol. 2012, 61 (6): 955-972. 10.1093/sysbio/sys055.
PubMed
PubMed Central
Google Scholar
Goffinet B, Buck WR, Shaw AJ: Morphology and classification of the Bryophyta. Bryophyte Biology. Edited by: Goffinet B, Shaw AJ. 2008, Cambridge, UK: Cambridge University Press, 55-138. 2
Google Scholar
Stotler RE, Crandall-Stotler B: A revised classification of the Anthocerotophyta and a checklist of the hornworts of North America, north of Mexico. Bryologist. 2005, 108 (1): 16-26. 10.1639/0007-2745(2005)108[16:ARCOTA]2.0.CO;2.
Google Scholar
Crandall-Stotler B, Stotler RE, Long DG: Phylogeny and classification of the Marchantiophyta. Edinb J Bot. 2009, 66 (1): 155-198. 10.1017/S0960428609005393.
Google Scholar
Cantino PD, Doyle JA, Graham SW, Judd WS, Olmstead RG, Soltis DE, Soltis PS, Donoghue MJ: Towards a phylogenetic nomenclature of Tracheophyta. Taxon. 2007, 56 (3): 1E-44E.
Google Scholar
Christenhusz MJM, Zhang X-C, Schneider H: A linear sequence of extant families and genera of lycophytes and ferns. Phytotaxa. 2011, 19: 7-54.
Google Scholar
Christenhusz MJM, Reveal JL, Farjon A, Gardner MF, Mill RR, Chase MW: A new classification and linear sequence of extant gymnosperms. Phytotaxa. 2011, 19: 55-70.
Google Scholar
III A: An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Bot J Linn Soc. 2009, 161 (2): 105-121.
Google Scholar
McNeill J, Barrie FR, Buck WR, Demoulin V, Greuter W, Hawkworth DL, Herendeen PS, Knapp S, Marhold K, Prado J, et al: International code of nomenclature for algae, fungi, and plants (Melbourne code); adopted by the Eighteenth International Botanical Congress, Melbourne, Australia, July 2011. 2012, Königstein, Germany: Koeltz Scientific Books
Google Scholar
Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997, 25 (17): 3389-3402. 10.1093/nar/25.17.3389.
PubMed
PubMed Central
Google Scholar
Katoh K, Misawa K, Kuma KÄ, Miyata T: MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002, 30 (14): 3059-3066. 10.1093/nar/gkf436.
PubMed
PubMed Central
Google Scholar
Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T: trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009, 25 (15): 1972-1973. 10.1093/bioinformatics/btp348.
PubMed
PubMed Central
Google Scholar
Suyama M, Torrents D, Bork P: PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 2006, 34 (suppl 2): W609-W612.
PubMed
PubMed Central
Google Scholar
Stamatakis A: RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006, 22 (21): 2688-2690. 10.1093/bioinformatics/btl446.
PubMed
Google Scholar
Ott M, Zola J, Aluru S, Stamatakis A: Large-scale maximum likelihood-based phylogenetic analysis on the IBM BlueGene/L. Proceedings of IEEE/ACM Supercomputing (SC2007) conference: 2007. 2007, Reno, Nevada, USA: ACM
Google Scholar
Kuck P, Meusemann K: FASconCAT: Convenient handling of data matrices. Mol Phylogenet Evol. 2010, 56 (3): 1115-1118. 10.1016/j.ympev.2010.04.024.
PubMed
Google Scholar
Woese CR, Achenbach L, Rouviere P, Mandelco L: Archaeal phylogeny: reexamination of the phylogenetic position of Archaeoglobus fulgidus in light of certain composition-induced artifacts. Syst Appl Microbiol. 1991, 14: 364-10.1016/S0723-2020(11)80311-5.
PubMed
Google Scholar
Delsuc F, Brinkmann H, Philippe H: Phylogenomics and the reconstruction of the tree of life. Nat Rev Genet. 2005, 6 (5): 361-375.
PubMed
Google Scholar
Philippe H, Delsuc F, Brinkmann H, Lartillot N: Phylogenomics. Annu Rev Ecol Evol Syst. 2005, 36 (1): 541-562. 10.1146/annurev.ecolsys.35.112202.130205.
Google Scholar
Swofford DL: PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4b10. 2003, Sunderland, MA: Sinauer Associates
Google Scholar
Team RC: R: A language and environment for statistical computing. 2012, Vienna, Austria: R Foundation for Statistical Computing
Google Scholar
Hurvich CM, Tsai CL: Regression and time-series model selection in small samples. Biometrika. 1989, 76 (2): 297-307. 10.1093/biomet/76.2.297.
Google Scholar
Posada D, Buckley TR: Model selection and model averaging in phylogenetics: advantages of Akaike Information Criterion and Bayesian approaches over likelihood ratio tests. Syst Biol. 2004, 53 (5): 793-808. 10.1080/10635150490522304.
PubMed
Google Scholar
Lanfear R, Calcott B, Ho SYW, Guindon S: PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol Biol Evol. 2012, 29 (6): 1695-1701. 10.1093/molbev/mss020.
PubMed
Google Scholar
Pattengale ND, Alipour M, Bininda-Emonds ORP, Moret BME, Stamatakis A: How many bootstrap replicates are necessary?. J Comput Biol. 2010, 17 (3): 337-354. 10.1089/cmb.2009.0179.
PubMed
Google Scholar