Solomon EI, Baldwin MJ, Lowery MD: Electronic structures of active sites in copper proteins: contributions to reactivity. Chem Rev. 1992, 92: 521-542. 10.1021/cr00012a003.
Article
CAS
Google Scholar
Solomon EI, Sundaram UM, Machonkin TE: Multicopper oxidases and oxygenases. Chem Rev. 1996, 96: 2563-2605. 10.1021/cr950046o.
Article
CAS
PubMed
Google Scholar
Festa RA, Thiele DJ: Copper: An essential metal in biology. Curr Biol. 2011, 21 (21): R877-R883. 10.1016/j.cub.2011.09.040.
Article
CAS
PubMed Central
PubMed
Google Scholar
Andreini C, Banci L, Bertini I, Rosato A: Occurrence of copper proteins through the three domains of life: A bioinformatic approach. Proteome Res. 2008, 7: 209-216. 10.1021/pr070480u.
Article
CAS
Google Scholar
van Gelder CW, Flurkey WH, Wichers HJ: Sequence and structural features of plant and fungal tyrosinases. Phytochemistry. 1997, 45 (7): 1309-1323. 10.1016/S0031-9422(97)00186-6.
Article
CAS
PubMed
Google Scholar
van Holde K, Miller KI: Hemocyanins. Adv Protein Chem. 1995, 47: 1-81.
Article
CAS
PubMed
Google Scholar
Claus H, Decker H: Bacterial tyrosinases. Syst Appl Microbiol. 2006, 29: 3-14. 10.1016/j.syapm.2005.07.012.
Article
CAS
PubMed
Google Scholar
Mattar S, Scharf B, Kent SBH, Rodewald K, Oesterhelt D, Engelhard M: The primary structure of halocyanin, an archaeal blue copper protein, predicts a lipid anchor for membrane fixation. J Biolg Chem. 1994, 269 (21): 14939-14945.
CAS
Google Scholar
Sanchez-Ferrer A, Rodriguez-Lopez JN, Garcia-Canovas F, Garcia-Carmona F: Tyrosinase: a comprehensive review of its mechanism. Biochim Biophys Acta. 1995, 1247: 1-11. 10.1016/0167-4838(94)00204-T.
Article
PubMed
Google Scholar
Decker H, Terwilliger N: Cops and robbers: putative evolution of copper oxygen-binding proteins. J Exp Biol. 2000, 203: 1777-1782.
CAS
PubMed
Google Scholar
Decker H, Tuczek F: Tyrosinase/catecholoxidase activity of hemocyanins: structural basis and molecular mechanism. Trends Biochem Sci. 2000, 25: 392-397. 10.1016/S0968-0004(00)01602-9.
Article
CAS
PubMed
Google Scholar
Decker H, Rimke T: Tarantula hemocyanin shows phenoloxidase activity. J Biol Chem. 1998, 273 (40): 25889-25892. 10.1074/jbc.273.40.25889.
Article
CAS
PubMed
Google Scholar
Decker H, Ryan M, Jaenicke E, Terwilliger N: SDS-induced phenoloxidase activity of hemocyanins from Limulus polyphemus, Eurypelma californicum, and Cancer magister. J Biol Chem. 2001, 276 (21): 17796-17799. 10.1074/jbc.M010436200.
Article
CAS
PubMed
Google Scholar
Hristova R, Dolashki A, Voelter W, Stevanovic S, Dolashka-Angelova P: o-diphenol oxidase activity of molluscan hemocyanins. Comp Biochem Physiol B. 2008, 149: 439-446. 10.1016/j.cbpb.2007.11.004.
Article
PubMed
Google Scholar
Decker H, Schweikardt T, Nillius D, Salzbrunn U, Jaenicke E, Tuczek F: Similar enzyme activation and catalysis in hemocyanins and tyrosinases. Gene. 2007, 398: 183-191. 10.1016/j.gene.2007.02.051.
Article
CAS
PubMed
Google Scholar
van Holde KE, Miller KI, Decker H: Hemocyanins and invertebrate evolution. J Biol Chem. 2001, 276 (19): 15563-15566. 10.1074/jbc.R100010200.
Article
CAS
PubMed
Google Scholar
Hofreiter M, Schoneberg T: The genetic and evolutionary bases of colour variation in vertebrates. Cell Mol Life Sci. 2010, 67: 2591-2603. 10.1007/s00018-010-0333-7.
Article
CAS
PubMed
Google Scholar
Cieslak M, Ressmann M, Hofreiter M, Ludwig A: Colours of domestication. Biol Rev. 2011, 86: 885-899. 10.1111/j.1469-185X.2011.00177.x.
Article
PubMed
Google Scholar
Cerenius L, Lee BL, Soderhall K: The proPO-system: pros and cons for its role in invertebrate immunity. Trends Immunol. 2008, 29 (6): 263-271. 10.1016/j.it.2008.02.009.
Article
CAS
PubMed
Google Scholar
Andersen SO: Insect cuticular sclerotization: A review. Insect Biochem Mol Biol. 2010, 40: 166-178. 10.1016/j.ibmb.2009.10.007.
Article
CAS
PubMed
Google Scholar
Nagai K, Yano M, Morimoto K, Miyamoto H: Tyrosinase localization in mollusc shells. Comp Biochem Physiol B. 2007, 146: 207-214. 10.1016/j.cbpb.2006.10.105.
Article
PubMed
Google Scholar
Zhang C, Xie L, Huang J, Chen L, Zhang R: A novel putative tyrosinase involved in periostracum formation from the pearl oyster (Pinctada fucata). Biochem Biophys Res Commun. 2006, 342: 632-639. 10.1016/j.bbrc.2006.01.182.
Article
CAS
PubMed
Google Scholar
Zhang G, Fang X, Guo X, Li L, Luo R, Xu F, Yang P, Zhang L, Wang X, Qi H: The oyster genome reveals stress adaptation and complexity of shell formation. Nature. 2012, 490: 49-54. 10.1038/nature11413.
Article
CAS
PubMed
Google Scholar
Morrison R, Mason K, Frost-Mason S: A cladistic analysis of the evolutionary relationships of the members of the tyrosinase gene family using sequence data. Pigment Cell Res. 1994, 7: 388-393. 10.1111/j.1600-0749.1994.tb00066.x.
Article
CAS
PubMed
Google Scholar
Burmester T: Origin and evolution of arthropod hemocyanins and related proteins. J Comp Physiol B. 2002, 172 (2): 95-107. 10.1007/s00360-001-0247-7.
Article
CAS
PubMed
Google Scholar
Burmester T, Scheller K: Common origin of arthropod tyrosinase, arthropod hemocyanin, insect hexamerin, and dipteran arylphorin receptor. J Mol Evol. 1996, 42: 713-728. 10.1007/BF02338804.
Article
CAS
PubMed
Google Scholar
Camacho-Hubner , Richard C, Beermann F: Genomic structure and evolutionary conservation of the tyrosinase gene family from Fugu. Gene. 2002, 285: 59-68. 10.1016/S0378-1119(02)00411-0.
Article
CAS
PubMed
Google Scholar
Sturm RA, O’Sullivan BJ, Box NF, Smith AG, Smit SE, Puttick ER, Parsons PG, Dunn IS: Chromosomal structure of the human TYRP1 and TYRP2 loci and comparison of the tyrosinase-related protein gene family. Genomics. 1995, 29: 24-34. 10.1006/geno.1995.1211.
Article
CAS
PubMed
Google Scholar
Lieb B, Althenhein B, Markl J, Vincent A, van Olden E, van Holde KE, Miller KI: Structures of two molluscan hemocyanin genes: Significance for gene evolution. Proc Natl Acad Sci USA. 2001, 98 (8): 4546-4551. 10.1073/pnas.071049998.
Article
CAS
PubMed Central
PubMed
Google Scholar
Esposito R, D’Aniello S, Squarzoni P, Pezzotti MR, Ristoratore F, Spagnuolo A: New insights into the evolution of metazoan tyrosinase gene family. PLoS One. 2012, 7 (4): e35731-10.1371/journal.pone.0035731.
Article
CAS
PubMed Central
PubMed
Google Scholar
Tran LT, Taylor JS, Constabel CP: The polyphenol oxidase gene family in land plants: Lineage-specific duplication and expansion. BMC Genomics. 2012, 13: 395-10.1186/1471-2164-13-395.
Article
CAS
PubMed Central
PubMed
Google Scholar
Fujimoto K, Okino N, Kawabata S-I, Iwanaga S, Ohnishi E: Nucleotide sequence of the cDNA encoding the proenzyme of phenol oxidase A1 of Drosophila melanogaster. Proc Natl Acad Sci USA. 1995, 92: 7769-7773. 10.1073/pnas.92.17.7769.
Article
CAS
PubMed Central
PubMed
Google Scholar
Kawabata T, Yasuhara Y, Ochiai M, Matsuura S, Ashida M: Molecular cloning of insect pro-phenol oxidase: a copper-containing protein homologous to arthropod hemocyanin. Proc Natl Acad Sci USA. 1995, 92: 7774-7778. 10.1073/pnas.92.17.7774.
Article
CAS
PubMed Central
PubMed
Google Scholar
Jackson IJ: Evolution and expression of tyrosinase-related proteins. Pigment Cell Res. 1994, 7: 241-242. 10.1111/j.1600-0749.1994.tb00056.x.
Article
CAS
PubMed
Google Scholar
Sato S, Yamamoto H: Development of pigment cells in the brain of ascidian tadpole larvale: Insights into the origins of vertebrate pigment cells. Pigment Cell Res. 2001, 14: 428-436. 10.1034/j.1600-0749.2001.140602.x.
Article
CAS
PubMed
Google Scholar
Olivares C, Solano F: New insights into the active site structure and catalytic mechanism of tyrosinase and its related proteins. Pigment Cell Melanoma Res. 2009, 22: 750-760. 10.1111/j.1755-148X.2009.00636.x.
Article
CAS
PubMed
Google Scholar
Magnus KA, Hazes B, Ton-That H, Bonaventura C, Bonaventura J, Hol WGJ: Crystallographic analysis of oxygenated and deoxygenated states of arthropod hemocyanin shows unusual differences. Proteins. 1994, 19: 302-309. 10.1002/prot.340190405.
Article
CAS
PubMed
Google Scholar
Sendovski M, Kanteev M, Ben-Yosef VS, Adir N, Fishman A: First structures of an active bacterial tyrosinase reveal copper plasticity. J Mol Biol. 2011, 405: 227-237. 10.1016/j.jmb.2010.10.048.
Article
CAS
PubMed
Google Scholar
Klabunde T, Eicken C, Saccettini JC, Krebs B: Crystal structure of a plant catechol oxidase containing a dicopper center. Nat Struct Biol. 1998, 5 (12): 1084-1090. 10.1038/4193.
Article
CAS
PubMed
Google Scholar
Li Y, Wang Y, Jiang H, Deng J: Crystal structure of Manduca sexta prophenoloxidase provides insights into the mechanism of type 3 copper enzymes. Proc Natl Acad Sci USA. 2009, 106 (40): 17002-17006. 10.1073/pnas.0906095106.
Article
CAS
PubMed Central
PubMed
Google Scholar
Hazes B, Magnus KA, Bonaventura C, Bonaventura J, Dauter Z, Kalk KH, Hol WGJ: Crystal structure of deoxygenated Limulus polyphemus subunit II hemocyanin at 2.18 A resolution: Clues for a mechanism for allosteric regulation. Protein Sci. 1993, 2: 597-619.
Article
CAS
PubMed Central
PubMed
Google Scholar
Virador VM, Reyes Grajeda JP, Blanco-Labra A, Mendiola-Olaya E, Smith GM, Moreno A, Whitaker JR: Cloning, sequencing, purification, and crystal structure of greache (Vitis vinifera) polyphenol oxidase. J Agric Food Chem. 2010, 58: 1189-1201. 10.1021/jf902939q.
Article
CAS
PubMed
Google Scholar
Gaykema WPJ, Hol WGJ, Vereijken JM, Soeter NM, Bak HJ, Beintema JJ: 3.2 A structure of the copper-containing oxygen-carrying protein Panulirus interruptus haemocyanin. Nature. 1984, 309: 23-29. 10.1038/309023a0.
Article
CAS
Google Scholar
Matoba Y, Kumagai T, Yamamoto A, Yoshitsu H, Sugiyama M: Crystallographic evidence that the dinuclear copper center of tyrosinase is flexible during catalysis. J Biol Chem. 2006, 261 (13): 8981-8990.
Article
Google Scholar
Ismaya WT, Rozeboom HJ, Wejin A, Mes JJ, Fusetti F, Wichers HJ, Dijkstra BW: Crystal structure of Agaricus bisporus mushroom tyrosinase: Identity of the tetramer subunits and interaction with tropolone. Biochemistry. 2011, 50 (24): 5477-5486. 10.1021/bi200395t.
Article
CAS
PubMed
Google Scholar
Cuff ME, Miller KI, van Holde KE, Hendrickson WA: Crystal structure of a functional unit from Octopus hemocyanin. J Mol Biol. 1998, 278: 855-870. 10.1006/jmbi.1998.1647.
Article
CAS
PubMed
Google Scholar
Prud’homme B, Lartillot N, Balavoine G, Adoutte A, Veroort M: Phylogenetic analysis of the Wnt gene family: Insights from lophotrochozoan members. Curr Biol. 2002, 12: 1395-1400. 10.1016/S0960-9822(02)01068-0.
Article
PubMed
Google Scholar
Conant GC, Wolfe KH: Turning a hobby into a job: How duplicated genes find new functions. Nat Rev Genet. 2008, 9: 938-950. 10.1038/nrg2482.
Article
CAS
PubMed
Google Scholar
Chung H-R, Lohr U, Jackle H: Lineage-specific expansion of the Zinc Finger Associated Domain ZAD. Mol Biol Evol. 2007, 24 (9): 1934-1943. 10.1093/molbev/msm121.
Article
CAS
PubMed
Google Scholar
Lespinet O, Wolf YI, Koonin EV, Aravind L: The role of lineage-specific gene family expansion in the evolution of eukaryotes. Genome Res. 2002, 12: 1048-1059. 10.1101/gr.174302.
Article
CAS
PubMed Central
PubMed
Google Scholar
Wade NM, Tollenaere A, Hall MR, Degnan BM: Evolution of a novel carotenoid-binding protein responsible for crustacean shell color. Mol Biol Evol. 2009, 26 (8): 1851-1864. 10.1093/molbev/msp092.
Article
CAS
PubMed
Google Scholar
Ginbach JW, Kieber-Emmons MT, Nomoto R, Noguchi A, Ohnishi Y, Solomon EI: Structure/function correlations among coupled binuclear copper proteins through spectroscopic and reactivity studies of NspF. Proc Natl Acad Sci USA. 2012, 109 (27): 10793-10797. 10.1073/pnas.1208718109.
Article
Google Scholar
Cong Y, Zhang Q, Woolford D, Schweikardt T, Khant H, Dougherty M, Ludtke SJ, Chiu W, Decker H: Structural mechanism of SDS-induced enzyme activity of scorpion hemocyanin revealed by electron cryomicroscopy. Structure. 2009, 17: 749-758. 10.1016/j.str.2009.03.005.
Article
CAS
PubMed Central
PubMed
Google Scholar
Kusche K, Ruhberg H, Burmester T: A hemocyanin from the Onychophora and the energence of respiratory proteins. Proc Natl Acad Sci USA. 2002, 99 (16): 10545-10548. 10.1073/pnas.152241199.
Article
CAS
PubMed Central
PubMed
Google Scholar
Erwin DH, Laflamme M, Tweedt SM, Sperling EA, Pisani D, Peterson KJ: The Cambrian Conundrum: Early divergence and later ecological success in the early history of animals. Science. 2011, 334: 1091-1096. 10.1126/science.1206375.
Article
CAS
PubMed
Google Scholar
Terwilliger N: Functional adaptations of oxygen-transport proteins. J Exp Biol. 1998, 201: 1085-1098.
CAS
PubMed
Google Scholar
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997, 25 (17): 3389-3402. 10.1093/nar/25.17.3389.
Article
CAS
PubMed Central
PubMed
Google Scholar
Katoh K, Kuma K-i, Toh H, Miyata T: MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 2005, 33 (2): 511-518. 10.1093/nar/gki198.
Article
CAS
PubMed Central
PubMed
Google Scholar
Castresama J: Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000, 17 (4): 540-552. 10.1093/oxfordjournals.molbev.a026334.
Article
Google Scholar
Darriba D, Taboada GL, Doallo R, Posada D: ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics. 2011, 27 (8): 1164-1165. 10.1093/bioinformatics/btr088.
Article
CAS
PubMed
Google Scholar
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011, 28 (10): 2731-2739. 10.1093/molbev/msr121.
Article
CAS
PubMed Central
PubMed
Google Scholar
Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O: New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst Biol. 2010, 59 (3): 307-321. 10.1093/sysbio/syq010.
Article
CAS
PubMed
Google Scholar
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Hohna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP: MrBayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol. 2012, 61 (3): 539-542. 10.1093/sysbio/sys029.
Article
PubMed Central
PubMed
Google Scholar
Zdobnov EM, Apweiler R: InterProScan - an integration platform for the signature-recognition methods in InterPro. Bioinformatics. 2001, 17 (9): 847-848. 10.1093/bioinformatics/17.9.847.
Article
CAS
PubMed
Google Scholar
Nordahl Petersen T, Brunak S, Von Heijne G, Nielsen H: SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Meth. 2011, 8 (10): 785-786. 10.1038/nmeth.1701.
Article
Google Scholar
Emanuelsson O, Nielsen H, von Heijne G: ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci. 1999, 8: 978-984. 10.1110/ps.8.5.978.
Article
CAS
PubMed Central
PubMed
Google Scholar
Kelley LA, Sternberg MJE: Protein structure preduction on the web: a case study using the Phyre server. Nat Protoc. 2009, 4 (3): 363-371. 10.1038/nprot.2009.2.
Article
CAS
PubMed
Google Scholar
Prlic A, Bliven S, Rose PW, Bluhm WF, Bizon C, Godzik A, Bourne PE: Pre-calculated protein structure alignments at the RCSB PDB website. Bioinformatics. 2010, 26 (23): 2983-2985. 10.1093/bioinformatics/btq572.
Article
CAS
PubMed Central
PubMed
Google Scholar