Blackledge TA, Hayashi CY: Silken toolkits: biomechanics of silk fibers spun by the orb web spider Argiope argentata (Fabricius 1775). J Exp Biol. 2006, 209: 2452-2461. 10.1242/jeb.02275.
Article
PubMed
Google Scholar
Swanson BO, Blackledge TA, Summers AP, Hayashi CY: Spider dragline silk: correlated and mosaic evolution in high-performance biological materials. Evolution. 2006, 60: 2539-2551.
Article
PubMed
Google Scholar
Gosline JM, Guerette PA, Ortlepp CS, Savage KN: The mechanical design of spider silks: from fibroin sequence to mechanical function. J Exp Biol. 1999, 202: 3295-3303.
CAS
PubMed
Google Scholar
Hayashi CY, Shipley NH: Hypotheses that correlate the sequence, structure, and mechanical properties of spider silk proteins. Int J Biol Macromol. 1999, 24: 271-275. 10.1016/S0141-8130(98)00089-0.
Article
CAS
PubMed
Google Scholar
Hinman MB, Lewis RV: Isolation of a clone encoding a second dragline silk fibroin. Nephila clavipes dragline silk is a two-protein fiber. J Biol Chem. 1992, 267: 19320-19324.
CAS
PubMed
Google Scholar
Gatesy J, Hayashi C, Motriuk D, Woods J, Lewis R: Extreme diversity, conservation, and convergence of spider silk fibroin sequences. Science. 2001, 291: 2603-2605. 10.1126/science.1057561.
Article
CAS
PubMed
Google Scholar
Garb JE, DiMauro T, Lewis RV, Hayashi CY: Expansion and intragenic homogenization of spider silk genes since the Triassic: evidence from Mygalomorphae (tarantulas and their kin) spidroins. Mol Biol Evol. 2007, 24: 2454-2464. 10.1093/molbev/msm179.
Article
CAS
PubMed
Google Scholar
Ayoub NA, Hayashi CY: Multiple recombining loci encode MaSp1, the primary constituent of dragline silk, in widow spiders (Latrodectus: Theridiidae). Mol Biol Evol. 2008, 25: 277-286. 10.1093/molbev/msm246.
Article
CAS
PubMed
Google Scholar
Xu M, Lewis RV: Structure of a protein superfiber: spider dragline silk. Proc Natl Acad Sci. 1990, 87: 7120-7124. 10.1073/pnas.87.18.7120.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hayashi CY, Lewis RV: Molecular architecture and evolution of a modular spider silk protein gene. Science. 2000, 287: 1477-1479. 10.1126/science.287.5457.1477.
Article
CAS
PubMed
Google Scholar
Zhao A-C', Zhao T-F, Nakagaki K, Zhang Y-S, SiMa Y-H', Miao Y-G', Shiomi K, Kajiura Z, Nagata Y, Takadera M, Nakagaki M: Novel molecular and mechanical properties of egg case silk from wasp spider, Argiope bruennichi. Biochemistry. 2006, 45: 3348-3356. 10.1021/bi052414g.
Article
CAS
PubMed
Google Scholar
Ayoub NA, Garb JE, Tinghitella RM, Collin MA, Hayashi CY: Blueprint for a high-performance biomaterial: full-length spider dragline silk genes. PLoS ONE. 2007, 2 (6): e514-10.1371/journal.pone.0000514.
Article
PubMed Central
PubMed
Google Scholar
Simmons AH, Michal CA, Jelinski LW: Molecular orientation and two-component nature of the crystalline fraction of spider dragline silk. Science. 1996, 271: 84-87. 10.1126/science.271.5245.84.
Article
CAS
PubMed
Google Scholar
van Beek JD, Hess S, Vollrath F, Meier BH: The molecular structure of spider dragline silk: folding and orientation of the protein backbone. Proc Natl Acad Sci. 2002, 99: 10266-10271. 10.1073/pnas.152162299.
Article
PubMed Central
CAS
PubMed
Google Scholar
Becker N, Oroudjev E, Mutz S, Cleveland JP, Hansma PK, Hayashi CY, Makarov DE, Hansma HG: Molecular nanosprings in spider capture-silk threads. Nat Mater. 2003, 2: 278-283. 10.1038/nmat858.
Article
CAS
PubMed
Google Scholar
Beckwitt R, Arcidiacono S: Sequence conservation in the C-terminal region of spider silk proteins (Spidroin) from Nephila clavipes (Tetragnathidae) and Araneus bicentenarius (Araneidae). J Biol Chem. 1994, 269: 6661-6663.
CAS
PubMed
Google Scholar
Sponner A, Unger E, Grosse F, Weisshart K: Conserved C-termini of spidroins are secreted by the major ampullate glands and retained in the silk thread. Biomacromolecules. 2004, 5: 840-845. 10.1021/bm034378b.
Article
CAS
PubMed
Google Scholar
Hu X', Kohler K, Falick AM, Moore AMF, Jones PR, Vierra C: Spider egg case core fibers: trimeric complexes assembled from TuSp1, ECP-1, and ECP-2. Biochemistry. 2006, 45: 3506-3516. 10.1021/bi052105q.
Article
CAS
PubMed
Google Scholar
Hayashi CY, Lewis RV: Evidence from flagelliform silk cDNA for the structural basis of elasticity and modular nature of spider silks. J Mol Biol. 1998, 275: 773-784. 10.1006/jmbi.1997.1478.
Article
CAS
PubMed
Google Scholar
Motriuk-Smith D, Smith A, Hayashi CY, Lewis RV: Analysis of the conserved Nterminal domains in major ampullate spider silk proteins. Biomacromolecules. 2005, 6: 3152-3159. 10.1021/bm050472b.
Article
CAS
PubMed
Google Scholar
Rising A, Hjälm G, Engström W, Johansson J: N-terminal nonrepetitive domain common to dragline, flagelliform, and cylindriform spider silk proteins. Biomacromolecules. 2006, 7: 3120-3124. 10.1021/bm060693x.
Article
CAS
PubMed
Google Scholar
Huemmerich D, Helsen CW, Quedzuweit S, Oschmann J, Rudolph R, Scheibel T: Primary structure elements of spider dragline silks and their contribution to protein solubility. Biochemistry. 2004, 43: 13604-13612. 10.1021/bi048983q.
Article
CAS
PubMed
Google Scholar
Sponner A, Vater W, Rommerskirch W, Vollrath F, Unger E, Grosse F, Weisshart K: The conserved C-termini contribute to the properties of spider silk fibroins. Biochem Biophys Res Commun. 2005, 338: 897-902. 10.1016/j.bbrc.2005.10.048.
Article
CAS
PubMed
Google Scholar
Ittah S, Cohen S, Garty S, Cohn D, Gat U: An essential role for the C-terminal domain of a dragline spider silk protein in directing fiber formation. Biomacromolecules. 2006, 7: 1790-1795. 10.1021/bm060120k.
Article
CAS
PubMed
Google Scholar
Ittah S, Michaeli A, Goldblum A, Gat U: A model for the structure of the C-terminal domain of dragline spider silk and the role of its conserved cysteine. Biomacromolecules. 2007, 8: 2768-2773. 10.1021/bm7004559.
Article
CAS
PubMed
Google Scholar
Hedhammar M, Rising A, Grip S, Saenz Martinez A, Nordling K, Casals C, Stark M, Johansson J: Structural properties of recombinant nonrepetitive and repetitive parts of major ampullate spidroin 1 from Euprosthenops australis: implications for fiber formation. Biochemistry. 2008, 47: 3407-3417. 10.1021/bi702432y.
Article
CAS
PubMed
Google Scholar
Lin Z, Huang W, Zhang J, Fan J.-S, Yang D: Solution structure of eggcase silk protein and its implications for silk fiber formation. Proc Natl Acad Sci. 2009, 106: 8906-8911. 10.1073/pnas.0813255106.
Article
PubMed Central
CAS
PubMed
Google Scholar
Askarieh G, Hedhammar M, Nordling K, Saenz A, Casals C, Rising A, Johansson J, Knight SD: Self-assembly of spider silk proteins is controlled by a pH-sensitive relay. Nature. 2010, 465: 236-239. 10.1038/nature08962.
Article
CAS
PubMed
Google Scholar
Garb JE, Hayashi CY: Modular evolution of egg case silk genes across orbweaving spider superfamilies. Proc Natl Acad Sci. 2005, 102: 11379-11384. 10.1073/pnas.0502473102.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hayashi CY: Evolution of spider silk proteins: insights from phylogenetic analyses. Molecular Systematics and Evolution: Theory and Practice. Edited by: DeSalle R, Giribet G, Wheeler W. 2002, Birkhauser, Berlin, 209-224.
Chapter
Google Scholar
Phillips AJ: Homology assessment and molecular sequence alignment. J Biomed Inform. 2006, 39: 18-33. 10.1016/j.jbi.2005.11.005.
Article
CAS
PubMed
Google Scholar
Garb JE, DiMauro T, Vo V, Hayashi CY: Silk genes support the single origin of orb-webs. Science. 2006, 312: 1762-10.1126/science.1127946.
Article
CAS
PubMed
Google Scholar
Ayoub NA, Hayashi CY: Spiders (Araneae). The Timetree of Life. Edited by: Hedges SB, Kumar S. 2009, Oxford University Press, 255-259.
Google Scholar
Gaines WA, Marcotte WR: Identification and characterization of multiple Spidroin 1 genes encoding major ampullate silk proteins in Nephila clavipes. Insect Mol Biol. 2008, 17: 465-474. 10.1111/j.1365-2583.2008.00828.x.
Article
PubMed Central
CAS
PubMed
Google Scholar
Beuken E, Vink C, Bruggeman CA: One-step procedure for screening recombinant plasmids by size. Biotechniques. 1998, 24: 748-750.
CAS
PubMed
Google Scholar
Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997, 25: 3389-3402. 10.1093/nar/25.17.3389.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kyte J, Doolittle RF: A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982, 157: 105-32. 10.1016/0022-2836(82)90515-0.
Article
CAS
PubMed
Google Scholar
Garnier J, Osguthorpe DJ, Robson B: Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J Mol Biol. 1978, 120: 97-120. 10.1016/0022-2836(78)90297-8.
Article
CAS
PubMed
Google Scholar
Swofford D: PAUP*: phylogenetic analysis using parsimony (*and other methods). Version 4. 2006, Sunderland, MA.: Sinauer Associates
Google Scholar
Sorenson MD, Franzosa EA: TreeRot, Version 3. 2007, Boston University, Boston, MA
Google Scholar
Huelsenbeck JP, Ronquist F: MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001, 17: 754-755. 10.1093/bioinformatics/17.8.754.
Article
CAS
PubMed
Google Scholar
Abascal F, Zardoya R, Posada D: ProtTest: selection of best-fit models of protein evolution. Bioinformatics. 2005, 21: 2104-2105. 10.1093/bioinformatics/bti263.
Article
CAS
PubMed
Google Scholar
Posada D, Crandall KA: MODELTEST: testing the model of DNA substitution. Bioinformatics. 1998, 14: 817-818. 10.1093/bioinformatics/14.9.817.
Article
CAS
PubMed
Google Scholar
Coddington JA, Giribet G, Harvey MS, Prendini L, Walter DE: Arachnida. Assembling the tree of life. Edited by: Cracraft J, Donoghue M. 2004, New York: Oxford University Press, 296-318.
Google Scholar
Kuntner M, Coddington JA, Hormiga G: Phylogeny of extant nephilid orb-weaving spiders (Araneae, Nephilidae): testing morphological and ethological homologies. Cladistics. 2008, 24: 147-217. 10.1111/j.1096-0031.2007.00176.x.
Article
Google Scholar
Scharff N, Coddington JA: A phylogenetic analysis of the orb-weaving spider family Araneidae (Arachnida, Araneae). Zool J Linn Soc. 1997, 120: 355-434. 10.1111/j.1096-3642.1997.tb01281.x.
Article
Google Scholar
Elices M, Plaza GR, Arnedo MA, Prez-Rigueiro J, Torres FG, Guinea GV: Mechanical behavior of silk during the evolution of orb-web spinning spiders. Biomacromolecules. 2009, 10: 1904-1910. 10.1021/bm900312c.
Article
CAS
PubMed
Google Scholar
Vernot B, Stolzer M, Goldman A, Durand D: Reconciliation with non-binary species trees. J Comp Biol. 2008, 15: 981-1006. 10.1089/cmb.2008.0092.
Article
CAS
Google Scholar
Wiens JJ: Combining data sets with different phylogenetic histories. Syst Biol. 1998, 47: 568-581. 10.1080/106351598260581.
Article
CAS
PubMed
Google Scholar
Shimodaira H, Hasegawa M: Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol. 1999, 16: 1114-1116.
Article
CAS
Google Scholar
Schmidt HA, Strimmer K, Vingron M, von Haeseler A: TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics. 2002, 18: 502-504. 10.1093/bioinformatics/18.3.502.
Article
CAS
PubMed
Google Scholar
Baker RH, DeSalle R: Multiple sources of character information and the phylogeny of Hawaiian drosophilids. Syst Biol. 1997, 46: 654-673.
Article
CAS
PubMed
Google Scholar
Gatesy JE, O'Grady P, Baker RH: Corroboration among data sets in simultaneous analysis: hidden support for phylogenetic relationships among higher level artiodactyl taxa. Cladistics. 1999, 15: 271-313. 10.1111/j.1096-0031.1999.tb00268.x.
Article
Google Scholar
Maddison DR, Maddison WP: MacClade 4: analysis of phylogeny and character evolution. Version 4.08. 2005, Sunderland, MA.: Sinauer Associates
Google Scholar
Tian MZ, Liu CZ, Lewis RV: Analysis of major ampullate silk cDNAs from two non-orb-weaving spiders. Biomacromolecules. 2004, 5: 657-660. 10.1021/bm034391w.
Article
CAS
PubMed
Google Scholar
Selden PA, Gall JC: A Triassic mygalomorph spider from the northern Vosges, France. Palaeontology. 1992, 35: 211-235.
Google Scholar
La Mattina C, Reza R, Hu X, Falick AM, Vasanthavada K, McNary S, Yee R, Vierra CA: Spider minor ampullate silk proteins are constituents of prey wrapping silk in the cob weaver Latrodectus hesperus. Biochemistry. 2008, 47: 4692-4700. 10.1021/bi800140q.
Article
CAS
PubMed
Google Scholar
Tanaka K, Kajiyama N, Ishikura K, Waga S, Kukuchi A, Ohtomo K, Takagi T, Mizuno S: Determination of the site of disulfide linkage between heavy and light chains of silk fibroin produced by Bombyx mori. Biochim. Biophys. Acta. 1999, 1432: 92-103.
Article
CAS
PubMed
Google Scholar
Hayashi CY, Blackledge TA, Lewis RV: Molecular and mechanical characterization of aciniform silk: uniformity of iterated sequence modules in a novel member of the spider silk fibroin gene family. Mol Biol Evol. 2004, 21: 1950-1959. 10.1093/molbev/msh204.
Article
CAS
PubMed
Google Scholar
Blasingame E, Tuton-Blasingame T, Larkin L, Falick AM, Zhao L, Fong J, Vaidyanathan V, Visperas A, Geurts P, Hu X, La Mattina C, Vierra CA: Pyriform spidroin 1, a novel member of the silk gene family that anchors dragline silk fibers in attachment discs of the black widow spider, Latrodectus hesperus. J Biol Chem. 2009, 284: 29097-29108. 10.1074/jbc.M109.021378.
Article
PubMed Central
CAS
PubMed
Google Scholar
Colgin MA, Lewis RV: Spider minor ampullate silk proteins contain new repetitive sequences and highly conserved non-silk-like "spacer regions". Protein Sci. 1998, 7: 667-672. 10.1002/pro.5560070315.
Article
PubMed Central
CAS
PubMed
Google Scholar
Schulz JW: The origin of the spinning apparatus in spiders. Biol Rev. 1987, 62: 89-113.
Google Scholar
Griswold CE, Coddington JA, Platnick NI, Forster RR: Towards a phylogeny of entelegyne spiders (Araneae, Araneomorphae, Entelegynae). J Arachnol. 1999, 27: 53-63.
Google Scholar
Zhao A, Zhao T, Sima Y, Zhang Y, Nakagaki K, Miao Y, Shiomi K, Kajiura Z, Nagata Y, Nakagaki M: Unique molecular architecture of egg case silk protein in a spider, Nephila clavata. J Biochem. 2005, 138: 593-604. 10.1093/jb/mvi155.
Article
CAS
PubMed
Google Scholar
Stark M, Grip S, Rising A, Hedhammar M, Engström W, Hjälm G, Johansson J: Macroscopic fibers self-assembled from recombinant miniature spider silk proteins. Biomacromolecules. 2007, 8: 1695-1701. 10.1021/bm070049y.
Article
CAS
PubMed
Google Scholar