Raven PH. Our diminishing tropical forests. In: Wilson EO, editor. Biodiversity. Washington DC: National Academy Press; 1988. p. 119–22.
Google Scholar
Gibbs HK, Ruesch AS, Archard F, Clayton MK, Holmgren P, Ramankutty N, et al. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc Natl Acad Sci. 2010;107:16732–7.
Article
CAS
Google Scholar
McKee JK, Sciulli PW, Fooce CD, Waite TA. Forecasting global biodiversity threats associated with human population growth. Biol Conserv. 2004;115:161–4.
Article
Google Scholar
Laumonier Y, Uryu Y, Stüwe M, Budiman A, Setiabudi B, Hadian O. Eco-floristic sectors and deforestation threats in Sumatra: identifying new conservation area network priorities for ecosystem-based land use planning. Biodivers Conserv. 2010;19:1153–74.
Article
Google Scholar
Supriatna J, Dwiyahreni AA, Winarni N, Mariati S, Margules C. Deforestation of primate habitat on Sumatra and adjacent islands, Indonesia. Primate Conserv. 2017;31:71–82.
Google Scholar
Margono BA, Potapov PV, Turubanova S, Stolle F, Hansen MC. Primary forest cover loss in Indonesia over 2000–2012. Nat Clim Chang. 2014;4:730–5.
Article
Google Scholar
Miettinen J, Shi C, Liew SC. Deforestation rates in insular Southeast Asia between 2000 and 2010. Glob Change Biol. 2011;17:2261–70.
Article
Google Scholar
Böhnert T, Wenzel A, Altenhövel C, Beeretz L, Tjitrosoedirdjo SS, Meijide A, et al. Effects of land-use change on vascular epiphyte diversity in Sumatra (Indonesia). Biol Cons. 2016;202:20–9.
Article
Google Scholar
Sodhi NS, Koh LP, Clements R, Wanger TC, Hill JK, Hamer KC, et al. Conserving Southeast Asian forest biodiversity in human-modified landscapes. Biol Cons. 2010;143:2375–84.
Article
Google Scholar
Newbold T, Hudson LN, Hill SLL, Contu S, Lysenko I, Senior RA, et al. Global effects of land use on local terrestrial biodiversity. Nature. 2015;520:45–50.
Article
CAS
Google Scholar
Clough Y, Krishna VV, Corre MD, Darras K, Denmead LH, Meijide A, et al. Land-use choices follow profitability at the expense of ecological functions in Indonesian smallholder landscapes. Nat Commun. 2016;7:13137.
Article
CAS
Google Scholar
Grass I, Kubitza C, Krishna VV, Corre MD, Mußhoff O, Pütz P, et al. Trade-offs between multifunctionality and profit in tropical smallholder landscapes. Nat Commun. 2020;11:1186.
Article
CAS
Google Scholar
Hooper DU, Adair EC, Cardinale BJ, Byrnes JEK, Hungate BA, Matulich KL, et al. A global synthesis reveals biodiversity loss as a major driver of ecosystem change. Nature. 2012;486:105–8.
Article
CAS
Google Scholar
Nakamura A, Kitching RL, Cao M, Creedy TJ, Fayle TM, Freiberg M, et al. Forests and their canopies: achievements and horizons in canopy science. Trends Ecol Evol. 2017;32:438–51.
Article
Google Scholar
Erwin TL. Forest canopies, animal diversity. Encycl Biodivers. 2001;3(3):19–25.
Google Scholar
Dial RJ, Ellwood MDF, Turner EC, Foster WA. Arthropods abundance, canopy structure, and microclimate in a Bornean lowland tropical rain forest. Biotropica. 2006;38:643–52.
Article
Google Scholar
Lowman MD, Moffett M. The ecology of tropical rain forest canopies. TREE. 1993;8:104–7.
CAS
Google Scholar
Fisk FW. Abundance and diversity of arboreal Blattaria in moist tropical forests of the Panama canal area and Costa Rica. Trans Am Entomol Soc (1890). 1982;108:479–89.
Google Scholar
Morse DR, Stork NE, Lawton JH. Species number species abundance and body-length relationships of arboreal beetles in Bornean lowland rain forest trees. Ecol Entomol. 1988;13:25–37.
Article
Google Scholar
Kasmiatun, Hartke TR, Buchori D, Hidayat P, Siddikah F, Amrulloh R, et al. Rainforest conversion to smallholder cash crops leads to varying declines of beetles (Coleoptera) on Sumatra. Biotropica. 2022;00:1–13.
Klimes P, Fibich P, Idigel C, Rimandai M. Disentangling the diversity of arboreal ant communities in tropical forest trees. PLoS ONE. 2015;10: e0117853.
Article
Google Scholar
Nazarreta R, Hartke TR, Hidayat P, Scheu S, Buchori D, Drescher J. Rainforest conversion to smallholder plantations of rubber or oil palm leads to species loss and community shifts in canopy ants (Hymenoptera: Formicidae). Mymercol News. 2020;30:175–86.
Google Scholar
Rizqulloh MN, Drescher J, Hartke TR, Potapov A, Scheu S, Hidayat P, et al. Effects of rainforest transformation to monoculture cash crops on soil living ants (Formicidae) in Jambi Province, Sumatra, Indonesia. IOP Conf Ser Earth Environ Sci. 2021;771:12031.
Article
Google Scholar
Wolda H. Abundance and diversity of Homoptera in the canopy of a tropical forest. Ecol Entomol. 1979;4:181–90.
Article
Google Scholar
Junggebauer A, Hartke TR, Ramos D, Schaefer I, Buchori D, Hidayat P, et al. Changes in diversity and community assembly of jumping spiders (Araneae: Salticidae) after rainforest conversion to rubber and oil palm plantations. PeerJ. 2021;9: e11012.
Article
Google Scholar
Ramos D, Hartke TR, Buchori D, Dupérré N, Hidayat P, Lia M, et al. Rainforest conversion to rubber and oil palm reduces abundance, biomass and diversity of canopy spiders. PeerJ. 2022;10: e13898.
Article
Google Scholar
Schulze CH, Linsenmair KE, Fiedler K. Understorey versus canopy: patterns of vertical stratification and diversity among Lepidoptera in a Bornean rain forest. Plant Ecol. 2001;153:133–52.
Article
Google Scholar
Watt A, Zborowski P. Canopy insect, canopy arthropods and butterfly survey: preliminary report. In: Gillison AN, editor. Above-ground Biodiversity Assessment Working Group Summary Report 1996–99. Nairobi: ICRAF; 2000. p. 69–90.
Google Scholar
Panjaitan R, Drescher J, Buchori D, Peggie D, Harahap IS, Scheu S, et al. Diversity of butterflies (Lepidoptera) across rainforest transformation systems in Jambi, Sumatra, Indonesia. Biodiversitas. 2020;21:5119–27.
Article
Google Scholar
Wardle DA. The soil food web: Biotic interactions and regulators. In: Communities and Ecosystems: Linking the Aboveground and Belowground Components (MPB-34). Princeton University Press; 2002. p. 7–55.
Scheu S, Ruess L, Bonkowski M. Interactions between microorganisms and soil micro- and mesofauna. In: Varma A, Buscot F, editors. Microorganisms in soils: roles in genesis and functions. Springer, Berlin Heidelberg: Berlin, Heidelberg; 2005. p. 253–75.
Chapter
Google Scholar
Graf M, Bönn M, Feldhahn L, Kurth F, Grams TEE, Herrmann S, et al. Collembola interact with mycorrhizal fungi in modifying oak morphology, C and N incorporation and transcriptomics. Royal Soc Open Sci. 2019;6: 181869.
Article
CAS
Google Scholar
Hopkin SP. Biology of the springtails-Insectas: Collembola. Oxford: Oxford University Press; 1997.
Google Scholar
Díaz IA, Sieving KE, Peña-Foxon M, Armesto JJ. A field experiment links forest structure and biodiversity: epiphytes enhance canopy invertebrates in Chilean forests. Ecosphere. 2012;3:5.
Article
Google Scholar
Nadkarni NM, Longino JT. Invertebrates in canopy and ground organic matter in a neotropical montane forest, Costa Rica. Biotropica. 1990;22:286–9.
Article
Google Scholar
Rodgers DJ, Kitching RL. Vertical stratification of rainforest collembolan (Collembola: Insecta) assemblages: description of ecological patterns and hypotheses concerning their generation. Ecography. 1998;21:392–400.
Article
Google Scholar
Rodgers DJ, Kitching RL. Rainforest Collembola (Hexapoda: Collembola) and the insularity of epiphyte microhabitats. Insect Conserv Divers. 2011;4:99–106.
Article
Google Scholar
Potapov A, Bonnier R, Sandmann D, Wang S, Widyastuti R, Scheu S, et al. Aboveground soil supports high levels of biological activity in oil palm plantations. Front Ecol Environ. 2020;18:181–7.
Article
Google Scholar
Paoletti MG, Taylor RAJ, Stinner BR, Stinner DH, Benzing DH. Diversity of soil fauna in the canopy and forest floor of a Venezuelan cloud forest. J Trop Ecol. 1991;7:373–83.
Article
Google Scholar
Allen K, Hassler E, Kurniawan S, Veldkamp E, Corre MD. Canopy soil of oil palm plantations emits methane and nitrous oxide. Soil Biol Biochem. 2018;122:1–6.
Article
CAS
Google Scholar
Nadkarni NM, Schaeferz D, Matelson TJ, Solano R. Comparison of arboreal and terrestrial soil characteristics in a lower montane forest, Monteverde. Costa Rica Pedobiologia. 2002;46:24–33.
Article
Google Scholar
Palacios-Vargas JG, Castaño-Meneses G. Collembola associated with Tillandsia violacea (Bromeliaceae) in Mexican Quercus-Abies forests. Pedobiologia. 2002;46:395–403.
Article
Google Scholar
Lindo Z, Winchester NN. Oribatid mite communities and foliar litter decomposition in canopy suspended soils and forest floor habitats of western redcedar forests, Vancouver Island, Canada. Soil Biol Biochem. 2007;39:2957–66.
Article
CAS
Google Scholar
Beaulieu F, Walter DE, Proctor HC, Kitching RL. The canopy starts at 0.5 m: predatory mites (Acari: Mesostigmata) differ between rain forest floor soil and suspended soil at any height. Biotropica. 2010;42:704–9.
Article
Google Scholar
Halaj J, Wise DH. Impact of a detrital subsidy on trophic cascade in a terestrial grazing food web. Ecology. 2002;83:3141–51.
Article
Google Scholar
Oelbermann K, Langel R, Scheu S. Utilization of prey from the decomposer system by generalist predators of grassland. Oecologia. 2008;155:605–17.
Article
Google Scholar
Haraguchi TF, Uchida M, Shibata Y, Tayasu I. Contributions of detrital subsidies to aboveground spiders during secondary succession, revealed by radiocarbon and stable isotope signatures. Oecologia. 2013;171:935–44.
Article
Google Scholar
Hosaka T, Watanabe H, Saharjo BH. The abundance and composition of arboreal arthropods in Acacia mangium and Paraserianthes falcataria plantations in South Sumatra. Indonesia Tropics. 2005;14:255–61.
Article
Google Scholar
Palacios-Vargas JG, Castaño-Meneses G. Seasonality and community composition of springtails in Mexican forests. In: Basset Y, Novotny V, Miller SE, Kitching RL, editors. Arthropods of tropical forests: spatio-temporal dynamics and resource use in the canopy. Cambridge: Cambridge University Press; 2003. p. 159–69.
Google Scholar
Greenslade P. The potential of Collembola to act as indicators of landscape stress in Australia. Aust J Exp Agric. 2007;47:424–34.
Article
Google Scholar
Basset Y. Invertebrates in the canopy of tropical rain forests. How much do we really know? Plant Ecol. 2001;153:87–107.
Article
Google Scholar
Rembold K, Mangopo H, Sudarmiyati S, Kreft H. Plant diversity, forest dependency, and alien plant invasions in tropical agricultural landscapes. Biol Conserv. 2017;213:234–42.
Article
Google Scholar
Potapov AM, Dupérré N, Jochum M, Dreczko K, Klarner B, Barnes AD, et al. Functional losses in ground spider communities due to habitat structure degradation under tropical land-use change. Ecology. 2020;101: e02957.
Article
Google Scholar
Liebke DF, Harms D, Widyastuti R, Scheu S, Potapov AM. Impact of rainforest conversion into monoculture plantation systems on pseudoscorpion density, diversity and trophic niches. Soil Org. 2021;93:83–96.
Google Scholar
Susanti WI, Widyastuti R, Scheu S, Potapov A. Trophic niche differentiation and utilisation of food resources in Collembola is altered by rainforest conversion to plantation systems. PeerJ. 2021;9: e10971.
Article
Google Scholar
Azhar A, Hartke TR, Böttges L, Lang T, Larasati A, Novianti N, et al. Rainforest conversion to cash crops reduces abundance, biomass and species richness of parasitoid wasps in Sumatra, Indonesia. Agric Forest Entomol. 2022.
Yoshii R, Greenslade P. New records and new species of Paronellid and Cyphoderid Collembola from the Indonesian region, mainly Sulawesi. The Beagle, Records of the Northern Territory Museum of Arts and Sciences. 1993;10:75–86.
Zhang F, Ma Y, Greenslade P. New Australian Paronellidae (Collembola) reveal anomalies in existing tribal diagnoses. Invertebr Syst. 2017;31:375–93.
Article
Google Scholar
Soto-Adames FN. Review of the New World species of Salina (Collembola: Paronellidae) with bidentate mucro, including a key to all New World members of Salina. Zootaxa. 2010;2333:26–40.
Article
Google Scholar
Bellinger PF, Christiansen KA, Janssens F. Checklist of the Collembola of the World. http://www.collembola.org.
Guilbert E, Baylac M, Najt J. Canopy arthropod diversity in New Caledonian primary forest sampled by fogging. Pan Pac Entomol. 1995;71:3–12.
Google Scholar
Greenslade P, Florentine SK. Differences in composition and vertical distribution of Collembola from canopies of three Australian rainforests. Soil Org. 2016;88:175–92.
Google Scholar
Bolger T, Kenny J, Arroyo J. The Collembola fauna of Irish forests—a comparison between forest type and microhabitats within the forests. Soil Organisms. 2013;85:61–7.
Google Scholar
Shaw P, Ozanne C, Speight M, Palmer I. Edge effects and arboreal Collembola in coniferous plantations. Pedobiologia. 2007;51:287–93.
Article
Google Scholar
Yoshida T, Hijii N. Vertical distribution and seasonal dynamics of arboreal collembolan communities in a Japanese cedar (Cryptomeria japonica D. Don) plantation. Pedobiologia. 2005;49:425–34.
Article
Google Scholar
Delamare-Debouteville C. Microfaune du sol des pays tempérés et tropicaux. 1951.
Longino JT, Nadkarni NM. A comparison of ground and canopy leaf litter ants (Hymenoptera: Formicidae) in a neotropical montane forest. Psyche. 1990;97:81–93.
Article
Google Scholar
Sobek S, Tscharntke T, Scherber C, Schiele S, Steffan-Dewenter I. Canopy vs. understory: Does tree diversity affect bee and wasp communities and their natural enemies across forest strata? Forest Ecol Manag. 2009;258:609–15.
Article
Google Scholar
Lindo Z, Winchester NN. A comparison of microarthropod assemblages with emphasis on oribatid mites in canopy suspended soils and forest floors associated with ancient western redcedar trees. Pedobiologia. 2006;50:31–41.
Article
Google Scholar
Yanoviak SP, Nadkarni NM, Gering JC. Arthropods in epiphytes: a diversity component that is not effectively sampled by canopy fogging. Biodivers Conserv. 2003;12:731–41.
Article
Google Scholar
Niu F, Röll A, Meijide A, Hendrayanto, Hölscher D. Rubber tree transpiration in the lowlands of Sumatra. Ecohydrology. 2017;10:e1882.
Article
Google Scholar
Gouyon A, de Foresta H, Levang P. Does ‘jungle rubber’ deserve its name? An analysis of rubber agroforestry systems in southeast Sumatra. Agrofor Syst. 1993;22:181–206.
Article
Google Scholar
Heiniger C, Barot S, Ponge J-F, Salmon S, Meriguet J, Carmignac D, et al. Collembolan preferences for soil and microclimate in forest and pasture communities. Soil Biol Biochem. 2015;86:181–92.
Article
CAS
Google Scholar
Kasmiatun, Nazarreta R, Buchori D. Keanekaragaman dan komposisi kumbang elaterid (Coleoptera: Elateridae) di kawasan hutan hujan tropis Taman Nasional Bukit Duabelas dan Hutan Harapan, Jambi. Jurnal Entomologi Indonesia. 2020;17:33–44.
Article
Google Scholar
Rubiana R, Rizali A, Denmead LH, Alamsari W, Hidayat P, Pudjianto, et al. Agricultural land use alters species composition but not species richness of ant communities. Asian Myrmecol. 2015;7:73–85.
Google Scholar
Salamon J-A, Schaefer M, Alphei J, Schmid B, Scheu S. Effects of plant diversity on Collembola in an experimental grassland ecosystem. Oikos. 2004;106:51–60.
Article
Google Scholar
Pollierer MM, Scheu S. Driving factors and temporal fluctuation of Collembola communities and reproductive mode across forest types and regions. Ecol Evol. 2017;7:4390–403.
Article
Google Scholar
Basset Y, Cizek L, Cuénoud P, Didham RK, Novotny V, Frode Ø, et al. Arthropod distribution in a tropical rainforest: tackling a four dimensional puzzle. PLoS ONE. 2015;10: e0144110.
Article
Google Scholar
Merten J, Stiegler C, Hennings N, Purnama ES, Röll A, Agusta H, et al. Flooding and land use change in Jambi Province, Sumatra: integrating local knowledge and scientific inquiry. Ecol Soc. 2020;25:14.
Article
Google Scholar
Kotowska MM, Leuschner C, Triadiati T, Meriem S, Hertel D. Quantifying above- and belowground biomass carbon loss with forest conversion in tropical lowlands of Sumatra (Indonesia). Glob Change Biol. 2015;21:3620–34.
Article
Google Scholar
Ferreira AS, Medeiros I, Bellini BC, Vasconcellos A, dos Santos Rocha IM, Bellini BC, et al. Effects of habitat heterogeneity on epiedaphic Collembola (Arthropoda: Hexapoda) in a semiarid ecosystem in Northeast Brazil. Zoologia. 2018;35:1–5.
Article
Google Scholar
Dănescu A, Albrecht AT, Bauhus J. Structural diversity promotes productivity of mixed, uneven-aged forests in southwestern Germany. Oecologia. 2016;182:319–33.
Article
Google Scholar
Yamakura T, Hagihara A, Sukardjo S, Ogawa H. Aboveground biomass of tropical rain forest stands in Indonesian Borneo. Vegetatio. 1986;68:71–82.
Article
Google Scholar
Ellwood F, Jones D, Foster W. Canopy ferns in lowland dipterocarp forest support a prolific abundance of ants, termites, and other invertebrates. Biotropica. 2002;34:575–83.
Article
Google Scholar
Drescher J, Rembold K, Allen K, Beckschäfer P, Buchori D, Clough Y, et al. Ecological and socio-economic functions across tropical land use systems after rainforest conversion. Phil Trans R Soc B. 2016;371:20150275.
Article
Google Scholar
Feintrenie L, Levang P. Sumatra’s rubber agroforests: advent, rise and fall of a sustainable cropping system. Small-scale Forestry. 2009;8:323–35.
Article
Google Scholar
Mari Mutt JA. A revision of the Genus Dicranocentrus Schött (Insecta: Collembola: Entomobryidae). Agric Exp Station Univ Puerto rico Bull. 1979;259:1–79.
Google Scholar
Suhardjono YR, Deharveng L, Bedos A. Collembola (ekor pegas): biologi, klasifikasi, ekologi. Bogor, Indonesia: PT. Vega Briantama Vandanesia; 2012.
Börner C. Zur Collembolenfauna Javas. Das Trochanteralorgan der Entomobryiden. Tijdschrift Voor Entomologie. 1913;56:44–61.
Google Scholar
Yoshii R, Suhardjono YR. Notes on the Collembolan fauna of Indonesia and its vicinities I. Miscellaneous notes, with special references to Seirini and Lepidocyrtini. Acta Zoologica Asiae Orientalis (AZAO). 1989;1:23–90.
Google Scholar
Handschin E. Beiträge zur Collembolenfauna der Sundainseln. Treubia. 1925;6:225–70.
Google Scholar
Yoshii R. Miscellaneous notes on the Collembola of Macaronesia. Ann spel Inst Japan (Iwaizumi). 1990;3:1–6.
Google Scholar
Mari Mutt JA. Redescription of Willowsia jacobsoni (Börner), an Entomobryid with Conspicuous Sexual Dimorphism (lnsecta: Collembola). J Agric Univ P R. 1981;65:361–73.
Google Scholar
Yoshii R, Suhardjono YR. Notes on the Collembolan fauna of Indonesia and its vicinities. II. Collembola of Irian Jaya and Maluku Islands. Acta Zoologica Asiae Orientalis (AZAO). 1992;2:1–52.
Google Scholar
Yoshii R. Lepidocyrtid Collembola of Sabah. Ent Rep Sabah Forest Res Centre. 1982;5:1–45.
Google Scholar
Folsom JW. East Indian Collembola. Bull Mus Comp Zool. 1924;65:205–517.
Google Scholar
Yoshii R. Paronellid Collembola of Sabah. Ent Rep Sabah Forest Res Centre. 1981;3:1–51.
Google Scholar
Yoshii R. Studies on Paronellid Collembola of East Asia. Ent Rep Sabah Forest Res Centre. 1983;7:1–28.
Google Scholar
R Core Team. R: A language and environment for statistical computing. 2021.
RStudio Team. RStudio: Integrated Development for R. 2021.
Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag; 2016.
Book
Google Scholar
Hothorn T, Bretz F, Westfall P. Simultaneous inference in General Parametric Models. Biom J. 2008;50:346–63.
Article
Google Scholar
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community Ecology Package. 2020.
Hartke TR. RankAbund: calculate rank abundances and plot rank abundance curves. 2019.
Dray S, Dufour A. The ade4 Package: implementing the duality diagram for ecologists. J Stat Softw. 2007;22:1–20.
Article
Google Scholar
Bougeard S, Dray S. Supervised multiblock analysis in R with the ade4 package. J Stat Softw. 2018;86:1–17.
Article
Google Scholar
Chessel D, Dufour A, Thioulouse J. The ade4 package—I: one-table methods. R News. 2004;4:5–10.
Google Scholar
Dray S, Dufour A, Chessel D. The ade4 package—II: two-table and K-Table methods. R News. 2007;7:47–52.
Google Scholar
Thioulouse J, Dray S, Dufour A, Siberchicot A, Jombart T, Pavoine S. Multivariate Analysis of Ecological Data with ade4. Springer; 2018.
Meijide A, Badu CS, Moyano F, Tiralla N, Gunawan D, Knohl A. Impact of forest conversion to oil palm and rubber plantations on microclimate and the role of the 2015 ENSO event. Agric For Meteorol. 2018;252:208–19.
Article
Google Scholar
Ehbrecht M, Schall P, Ammer C, Seidel D. Quantifying stand structural complexity and its relationship with forest management, tree species diversity and microclimate. Agric For Meteorol. 2017;242:1–9.
Article
Google Scholar
Zemp DC, Ehbrecht M, Seidel D, Ammer C, Craven D, Erkelenz J, et al. Mixed-species tree plantings enhance structural complexity in oil palm plantations. Agr Ecosyst Environ. 2019;283: 106564.
Article
Google Scholar
Brinkmann N, Schneider D, Sahner J, Ballauff J, Edy N, Barus H, et al. Intensive tropical land use massively shifts soil fungal communities. Sci Rep. 2019;9:3403.
Article
Google Scholar
Borcard D, Gillet F, Legendre P. Numerical ecology with R. 1st ed. New York: Springer-Verlag; 2011.
Book
Google Scholar