Frank SA. Foundations of Social Evolution. Princeton: Princeton University Press; 1998.
Book
Google Scholar
Hamilton WD. The genetical evolution of social behaviour. I J Theor Biol. 1964;7:1–16.
Article
CAS
Google Scholar
Velicer GJ, Kroos L, Lenski RE. Developmental cheating in the social bacterium Myxococcus xanthus. Nature. 2000;404:598–601.
Article
CAS
Google Scholar
Holmfeldt K, Middelboe M, Nybroe O, Riemann L. Large variabilities in host strain susceptibility and phage host range govern interactions between Lytic Marine Phages and Their Flavobacterium Hosts. Appl Environ Microbiol. 2007;73:6730–9.
Article
CAS
Google Scholar
Best A, White A, Kisdi É, Antonovics J, Brockhurst MA, Boots M. The evolution of host-parasite range. Am Nat. 2010;176:63–71.
Article
CAS
Google Scholar
Scanlan PD, Hall AR, Burlinson P, Preston G, Buckling A. No effect of host-parasite co-evolution on host range expansion. J Evol Biol. 2013;26:205–9.
Article
CAS
Google Scholar
Fletcher JA, Doebeli M. A simple and general explanation for the evolution of altruism. Proc R Soc B Biol Sci. 2009;276:13–9.
Article
Google Scholar
Fiegna F, Velicer GJ. Competitive fates of bacterial social parasites: persistence and self–induced extinction of Myxococcus xanthus cheaters. Proc R Soc London Ser B Biol Sci. 2003;270:1527–34.
Article
Google Scholar
Foster KR, Shaulsky G, Strassmann JE, Queller DC, Thompson CRL. Pleiotropy as a mechanism to stabilize cooperation. Nature. 2004;431:693–6.
Article
CAS
Google Scholar
Travisano M, Velicer GJ. Strategies of microbial cheater control. Trends Microbiol. 2004;12:72–8.
Article
CAS
Google Scholar
Brockhurst MA, Hochberg ME, Bell T, Buckling A. Character displacement promotes cooperation in bacterial biofilms. Curr Biol. 2006;16:2030–4.
Article
CAS
Google Scholar
Fiegna F, Yu YN, Kadam SV, Velicer GJ. Evolution of an obligate social cheater to a superior cooperator. Nature. 2006;441:310–4.
Article
CAS
Google Scholar
Chuang JS, Rivoire O, Leibler S. Simpson’s paradox in a synthetic microbial system. Science. 2009;323:272–5.
Article
CAS
Google Scholar
Khare A, Santorelli LA, Strassmann JE, Queller DC, Kuspa A, Shaulsky G. Cheater-resistance is not futile. Nature. 2009;461:980–2.
Article
CAS
Google Scholar
Smith AA, Hölldober B, Liebig J. Cuticular hydrocarbons reliably identify cheaters and allow enforcement of altruism in a social insect. Curr Biol. 2009;19:78–81.
Article
CAS
Google Scholar
Gardner A, West SA. Greenbeards. Evolution. 2010;64:25–38.
Article
Google Scholar
Manhes P, Velicer GJ. Experimental evolution of selfish policing in social bacteria. Proc Natl Acad Sci. 2011;108:8357–62.
Article
CAS
Google Scholar
Xavier JB, Kim W, Foster KR. A molecular mechanism that stabilizes cooperative secretions in Pseudomonas aeruginosa. Mol Microbiol. 2011;79:166–79.
Article
CAS
Google Scholar
Waite AJ, Shou W. Adaptation to a new environment allows cooperators to purge cheaters stochastically. Proc Natl Acad Sci. 2012;109:19079–86.
Article
CAS
Google Scholar
Allen RC, McNally L, Popat R, Brown SP. Quorum sensing protects bacterial co-operation from exploitation by cheats. ISME J. 2016;10:1706–16.
Article
CAS
Google Scholar
Morgan AD, Quigley BJZ, Brown SP, Buckling A. Selection on non-social traits limits the invasion of social cheats. Ecol Lett. 2012;15:841–6.
Article
Google Scholar
Kümmerli R, Santorelli LA, Granato ET, Dumas Z, Dobay A, Griffin AS, et al. Co-evolutionary dynamics between public good producers and cheats in the bacterium Pseudomonas aeruginosa. J Evol Biol. 2015;28:2264–74.
Article
Google Scholar
Butaitė E, Baumgartner M, Wyder S, Kümmerli R. Siderophore cheating and cheating resistance shape competition for iron in soil and freshwater Pseudomonas communities. Nat Commun. 2017;8:414.
Article
Google Scholar
Dobzhansky T. Genetics and the origin of species. 2nd ed. New York: Columbia University Press; 1950.
Google Scholar
Mayr E. Animal Species and Evolution. Cambridge Mass: Harvard University Press; 1963.
Book
Google Scholar
Fischer B, Foitzik S. Local co-adaptation leading to a geographical mosaic of coevolution in a social parasite system. J Evol Biol. 2004;17:1026–34.
Article
CAS
Google Scholar
Johnson CA, Herbers JM. Impact of parasite sympatry on the geographic mosaic of coevolution. Ecology. 2006;87:382–94.
Article
Google Scholar
Vos M, Velicer GJ. Social Conflict in Centimeter-and Global-Scale Populations of the Bacterium Myxococcus xanthus. Curr Biol. 2009;19:1763–7.
Article
CAS
Google Scholar
Rendueles O, Zee PC, Dinkelacker I, Amherd M, Wielgoss S, Velicer GJ. Rapid and widespread de novo evolution of kin discrimination. Proc Natl Acad Sci. 2015;112:9076–81.
Article
CAS
Google Scholar
Nair RR, Fiegna F, Velicer GJ. Indirect evolution of social fitness inequalities and facultative social exploitation. Proc R Soc B Biol Sci. 2018;285:20180054.
Article
Google Scholar
Muñoz-Dorado J, Marcos-Torres FJ, García-Bravo E, Moraleda-Muñoz A, Pérez J. Myxobacteria: moving, killing, feeding, and surviving together. Front Microbiol. 2016;7:1–18.
Article
Google Scholar
Kroos L. Highly signal-responsive gene regulatory network governing Myxococcus development. Trends Genet. 2017;33:3–15.
Article
CAS
Google Scholar
Kuspa A, Kroos L, Kaiser D. Intercellular signaling is required for developmental gene expression in Myxococcus xanthus. Dev Biol. 1986;117:267–76.
Article
CAS
Google Scholar
Shimkets LJ, Asher SJ. Use of recombination techniques to examine the structure of the csg locus of Myxococcus xanthus. Mol Gen Genet. 1988;211:63–71.
Article
CAS
Google Scholar
Van Dyken JD, Linksvayer TA, Wade MJ. Kin Selection-mutation balance: a model for the origin, maintenance, and consequences of social cheating. Am Nat. 2011;177:288–300.
Article
Google Scholar
Waite AJ, Cannistra C, Shou W. Defectors can create conditions that rescue cooperation. PLOS Comput Biol. 2015;11: e1004645.
Article
Google Scholar
Moreno-Fenoll C, Cavaliere M, Martínez-García E, Poyatos JF. Eco-evolutionary feedbacks can rescue cooperation in microbial populations. Sci Rep. 2017;7:42561.
Article
CAS
Google Scholar
Oldroyd BP. The Cape honeybee: an example of a social cancer. Trends Ecol Evol. 2002;17:249–51.
Article
Google Scholar
Rendueles O, Amherd M, Velicer GJ. Positively frequency-dependent interference competition maintains diversity and pervades a natural population of cooperative microbes. Curr Biol. 2015;25:1673–81.
Article
CAS
Google Scholar
Yu YTN, Kleiner M, Velicer GJ. Spontaneous Reversions of an Evolutionary Trait Loss Reveal Regulators of a Small RNA That Controls Multicellular Development in Myxobacteria. J Bacteriol. 2016;198:3142–51.
Article
CAS
Google Scholar
Kuspa A, Plamann L, Kaiser D. A-signalling and the cell density requirement for Myxococcus xanthus development. J Bacteriol. 1992;174:7360–9.
Article
CAS
Google Scholar
Shimkets LJ, Rafiee H. CsgA, an extracellular protein essential for Myxococcus xanthus development. J Bacteriol. 1990;172:5299–306.
Article
CAS
Google Scholar
Lobedanz S, Søgaard-Andersen L. Identification of the C-signal, a contact-dependent morphogen coordinating multiple developmental responses in Myxococcus xanthus. Genes Dev. 2003;17:2151–61.
Article
CAS
Google Scholar
Rolbetzki A, Ammon M, Jakovljevic V, Konovalova A, Søgaard-Andersen L. Regulated secretion of a protease activates intercellular signaling during fruiting body formation in M. xanthus. Dev Cell. 2008;15:627–34.
Article
CAS
Google Scholar
Boynton TO, Shimkets LJ. Myxococcus CsgA, Drosophila Sniffer, and human HSD10 are cardiolipin phospholipases. Genes Dev. 2015;29:1903–14.
Article
CAS
Google Scholar
Chandler CH, Chari S, Dworkin I. Does your gene need a background check? How genetic background impacts the analysis of mutations, genes, and evolution. Trends Genet. 2013;29:358–66.
Article
CAS
Google Scholar
Mullis MN, Matsui T, Schell R, Foree R, Ehrenreich IM. The complex underpinnings of genetic background effects. Nat Commun. 2018;9:3548.
Article
Google Scholar
Velicer GJ, Raddatz G, Keller H, Deiss S, Lanz C, Dinkelacker I, et al. Comprehensive mutation identification in an evolved bacterial cooperator and its cheating ancestor. Proc Natl Acad Sci. 2006;103:8107–12.
Article
CAS
Google Scholar
Kraemer SA, Velicer GJ. Endemic social diversity within natural kin groups of a cooperative bacterium. Proc Natl Acad Sci. 2011;108:10823–30.
Article
Google Scholar
Rajagopalan R, Wielgoss S, Lippert G, Velicer GJ, Kroos L. devI Is an Evolutionarily Young Negative Regulator of Myxococcus xanthus Development. J Bacteriol. 2015;197:1249–62.
Article
CAS
Google Scholar
Wielgoss S, Wolfensberger R, Sun L, Fiegna F, Velicer GJ. Social genes are selection hotspots in kin groups of a soil microbe. Science. 2019;363:1342–5.
Article
CAS
Google Scholar
Velicer GJ, Kroos L, Lenski RE. Loss of social behaviors by Myxococcus xanthus during evolution in an unstructured habitat. Proc Natl Acad Sci. 1998;95:12376–80.
Article
CAS
Google Scholar
Rendueles O, Velicer GJ. Evolution by flight and fight: diverse mechanisms of adaptation by actively motile microbes. ISME J. 2017;11:555–68.
Article
Google Scholar
Rendueles O, Velicer GJ. Hidden paths to endless forms most wonderful: Complexity of bacterial motility shapes diversification of latent phenotypes. BMC Evol Biol. 2020;20:145.
Article
CAS
Google Scholar
Ghoul M, Griffin AS, West SA. Toward an evolutionary definition of cheating. Evolution. 2014;68:318–31.
Article
Google Scholar
Vos M, Velicer GJ. Genetic population structure of the soil bacterium Myxococcus xanthus at the centimeter scale. Appl Environ Microbiol. 2006;72:3615–25.
Article
CAS
Google Scholar
Kraemer SA, Wielgoss S, Fiegna F, Velicer GJ. The biogeography of kin discrimination across microbial neighbourhoods. Mol Ecol. 2016;25:4875–88.
Article
CAS
Google Scholar
Kroos L, Kuspa A, Kaiser D. A global analysis of developmentally regulated genes in Myxococcus xanthus. Dev Biol. 1986;117:252–66.
Article
CAS
Google Scholar
Kroos L, Kaiser D. Expression of many developmentally regulated genes in Myxococcus depends on a sequence of cell interactions. Genes Dev. 1987;1:840–54.
Article
CAS
Google Scholar
Kaiser D, Robinson M, Kroos L. Myxobacteria, Polarity, and Multicellular Morphogenesis. Cold Spring Harb Perspect Biol. 2010;2:a000380–a000380.
Article
Google Scholar
McKenzie JA, Whitten MJ, Adena MA. The effect of genetic background on the fitness of diazinon resistance genotypes of the Australian sheep blowfly, Lucilia cuprina. Heredity. 1982;49:1–9.
Article
Google Scholar
Chandler CH, Chari S, Tack D, Dworkin I. Causes and Consequences of Genetic Background Effects Illuminated by Integrative Genomic Analysis. Genetics. 2014;196:1321–36.
Article
CAS
Google Scholar
Rio S, Mary-Huard T, Moreau L, Bauland C, Palaffre C, Madur D, et al. Disentangling group specific QTL allele effects from genetic background epistasis using admixed individuals in GWAS: An application to maize flowering. PLOS Genet. 2020;16: e1008241.
Article
CAS
Google Scholar
Jaramillo TC, Escamilla CO, Liu S, Peca L, Birnbaum SG, Powell CM. Genetic background effects in Neuroligin-3 mutant mice: Minimal behavioral abnormalities on C57 background. Autism Res. 2018;11:234–44.
Article
Google Scholar
Remold SK, Lenski RE. Pervasive joint influence of epistasis and plasticity on mutational effects in Escherichia coli. Nat Genet. 2004;36:423–6.
Article
CAS
Google Scholar
Safari Z, Bruneau A, Monnoye M, Mariadassou M, Philippe C, Zatloukal K, et al. Murine genetic background overcomes gut microbiota changes to explain metabolic response to high-fat diet. Nutrients. 2020;12:287.
Article
CAS
Google Scholar
Goodman CS, Coughlin BC. The evolution of evo-devo biology. Proc Natl Acad Sci. 2000;97:4424–5.
Article
CAS
Google Scholar
Carroll SB. Endless Forms Most Beautiful: The New Science of Evo Devo and the Making of the Animal Kingdom. New York: W.W. Norton & Company; 2005.
Google Scholar
True JR, Haag ES. Developmental system drift and flexibility in evolutionary trajectories. Evol Dev. 2001;3:109–19.
Article
CAS
Google Scholar
Pavlicev M, Wagner GP. A model of developmental evolution: Selection, pleiotropy and compensation. Trends Ecol Evol. 2012;27:316–22.
Article
Google Scholar
Wang X, Sommer RJ. Antagonism of LIN-17/frizzled and LIN-18/RyK in nematode vulva induction reveals evolutionary alterations in core developmental pathways. PLoS Biol. 2011;9:45.
Article
Google Scholar
Chipman AD, Erwin DH. The evolution of arthropod body plans: integrating phylogeny, fossils, and development - an introduction to the symposium. Integr Comp Biol. 2017;57:450–4.
Article
Google Scholar
Ewe CK, Torres Cleuren YN, Rothman JH. Evolution and Developmental System Drift in the Endoderm Gene Regulatory Network of Caenorhabditis and Other Nematodes. Front Cell Dev Biol. 2020;8:1–9.
Article
Google Scholar
Arias Del Angel JA, Escalante AE, Martínez-Castilla LP, Benítez M. An evo-devo perspective on multicellular development of myxobacteria. J Exp Zool Part B Mol Dev Evol. 2017;328:165–78.
Article
Google Scholar
Huntley S, Hamann N, Wegener-Feldbrugge S, Treuner-Lange A, Kube M, Reinhardt R, et al. Comparative genomic analysis of fruiting body formation in myxococcales. Mol Biol Evol. 2011;28:1083–97.
Article
CAS
Google Scholar
Yu YTN, Yuan X, Velicer GJ. Adaptive evolution of an sRNA that controls Myxococcus development. Science. 2010;328:993.
Article
CAS
Google Scholar
Velicer GJ, Mendes-soares H, Wielgoss S. Whence comes Social Diversity? Ecological and Evolutionary Analysis of the Myxobacteria. In: Yang Z, Higgs PI, editors. Myxobacteria: Genomics, Cellular and Molecular Biology. Caister Academic Press: U.K; 2014. p. 1–28.
Google Scholar
Hou J, Tan G, Fink GR, Andrews BJ, Boone C. Complex modifier landscape underlying genetic background effects. Proc Natl Acad Sci. 2019;116:5045–54.
Article
CAS
Google Scholar
Wang J, Hu W, Lux R, He X, Li Y, Shi W. Natural Transformation of Myxococcus xanthus. J Bacteriol. 2011;193:2122–32.
Article
CAS
Google Scholar
Wielgoss S, Didelot X, Chaudhuri RR, Liu X, Weedall GD, Velicer GJ, et al. A barrier to homologous recombination between sympatric strains of the cooperative soil bacterium Myxococcus xanthus. ISME J. 2016;56:1–10.
Google Scholar
Kadam SV, Wegener-Feldbrügge S, Søgaard-Andersen L, Velicer GJ. Novel transcriptome patterns accompany evolutionary restoration of defective social development in the bacterium Myxococcus xanthus. Mol Biol Evol. 2008;25:1274–81.
Article
CAS
Google Scholar
Vos M, Velicer GJ. Isolation by distance in the spore-forming soil bacterium Myxococcus xanthus. Curr Biol. 2008;18:386–91.
Article
CAS
Google Scholar
Thompson JN. The Geographic Mosaic of Coevolution. Chicago: University of Chicago Press; 2005.
Book
Google Scholar
Zhang Q-G, Buckling A, Ellis RJ, Godfray HCJ. Coevolution between cooperators and cheats in a microbial system. Evolution. 2009;63:2248–56.
Article
CAS
Google Scholar
Votaw HR, Ostrowski EA. Stalk size and altruism investment within and among populations of the social amoeba. J Evol Biol. 2017;30:2017–30.
Article
CAS
Google Scholar
Wade MJ. Adaptation in Metapopulations: How Interaction Changes Evolution. Chicago: University of Chicago Press; 2016.
Book
Google Scholar
Kraemer SA, Velicer GJ. Social complementation and growth advantages promote socially defective bacterial isolates. Proc R Soc B Biol Sci. 2014;281:20140036.
Article
Google Scholar
Kashefi K, Hartzell PL. Genetic suppression and phenotypic masking of a Myxococcus xanthus frzF- defect. Mol Microbiol. 1995;15:483–94.
Article
CAS
Google Scholar
Lee BU, Lee K, Mendez J, Shimkets LJ. A tactile sensory system of Myxococcus xanthus involves an extracellular NAD(P)(+)-containing protein. Genes Dev. 1995;9:2964–73.
Article
CAS
Google Scholar
Wall D, Kolenbrander PE, Kaiser D. The Myxococcus xanthus pilQ (sglA) Gene encodes a secretin homolog required for type iv pilus biogenesis, social motility, and development. J Bacteriol. 1999;181:24–33.
Article
CAS
Google Scholar
Kaiser D. Social gliding is correlated with the presence of pili in Myxococcus xanthus. Proc Natl Acad Sci U S A. 1979;76:5952–6.
Article
CAS
Google Scholar
Dworkin M. Nutritional requirements for vegetative growth of Myxococcus xanthus. J Bacteriol. 1962;84:250–7.
Article
CAS
Google Scholar
Voelz H, Dworkin M. Fine structure of Myxococcus xanthus during morphogenesis. J Bacteriol. 1962;84:943–52.
Article
CAS
Google Scholar
Beebe JM. Studies on the myxobacteria: I, Distribution in Iowa soils and description of a new species; II, Myxobacteria as bacterial parasites; III. Digital Repository: The morphology and cytology of Myxococcus xanthus sp.n. Iowa State University; 1941.
Google Scholar
Beebe JM. The Morphology and Cytology of Myxococcus xanthus. N Sp J Bacteriol. 1941;42:193–223.
Article
CAS
Google Scholar
Dey A, Vassallo CN, Conklin AC, Pathak DT, Troselj V, Wall D. Sibling Rivalry in Myxococcus xanthus Is Mediated by Kin Recognition and a Polyploid Prophage. J Bacteriol. 2016;198:994–1004.
Article
CAS
Google Scholar
Zee PC, Mendes-Soares H, Yu YTN, Kraemer SA, Keller H, Ossowski S, et al. A shift from magnitude to sign epistasis during adaptive evolution of a bacterial social trait. Evolution. 2014;68:2701–8.
Article
Google Scholar
Bretscher AP, Kaiser D. Nutrition of Myxococcus xanthus, a Fuiting Myxobacterium. J Bacteriol. 1978;133:763–8.
Article
CAS
Google Scholar
Wickham H. ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag; 2016.
Book
Google Scholar
Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol. 2011;7:539.
Article
Google Scholar
Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O. New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Syst Biol. 2010;59:307–21.
Article
CAS
Google Scholar
Junier T, Zdobnov EM. The Newick utilities: high-throughput phylogenetic tree processing in the UNIX shell. Bioinformatics. 2010;26:1669–70.
Article
CAS
Google Scholar
Afgan E, Baker D, Batut B, van den Beek M, Bouvier D, Čech M, et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 2018;46:W537–44.
Article
CAS
Google Scholar