Raven PH, Wagner DL. Agricultural intensification and climate change are rapidly decreasing insect biodiversity. PNAS. 2021;118(2): e2002548117.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang K, Li X, Liu X, Seto KC. Projecting global urban land expansion and heat island intensification through 2050. Environ Res Lett. 2019;14(11): 114037.
Article
Google Scholar
Grimm NB, Faeth SH, Golubiewski NE, Redman CL, Wu J, Bai X, Briggs JM. Global change and the ecology of cities. Science. 2008;319(5864):756–60.
Article
CAS
PubMed
Google Scholar
McDonnell MJ, Hahs AK, Breuste JH, editors. Ecology of cities and towns: a comparative approach. Cambridge: Cambridge University Press; 2009.
Google Scholar
Matteson KC, Grace JB, Minor ES. Direct and indirect effects of land use on floral resources and flower-visiting insects across an urban landscape. Oikos. 2013;122(5):682–94.
Article
Google Scholar
Baldock KCR, Goddard MA, Hicks DM, Kunin WE, Mitschunas N, Morse H, Osgathorpe LM, Potts SG, Robertson KM, Scott AV, et al. A systems approach reveals urban pollinator hotspots and conservation opportunities. Nat Ecol Evol. 2019;3(3):363–73.
Article
PubMed
PubMed Central
Google Scholar
Theodorou P, Radzevičiūtė R, Lentendu G, Kahnt B, Husemann M, Bleidorn C, Settele J, Schweiger O, Grosse I, Wubet T, et al. Urban areas as hotspots for bees and pollination but not a panacea for all insects. Nat Commun. 2020;11(1):576.
Article
CAS
PubMed
PubMed Central
Google Scholar
Theodorou P, Radzevičiūtė R, Settele J, Schweiger O, Murray TE, Paxton RJ. Pollination services enhanced with urbanization despite increasing pollinator parasitism. Proc Royal Soc B Biol Sci. 1833;2016(283):20160561.
Google Scholar
Haberl H, Erb KH, Krausmann F, Gaube V, Bondeau A, Plutzar C, Gingrich S, Lucht W, Fischer-Kowalski M. Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. PNAS. 2007;104(31):12942.
Article
CAS
PubMed
PubMed Central
Google Scholar
Curtis PG, Slay CM, Harris NL, Tyukavina A, Hansen MC. Classifying drivers of global forest loss. Science. 2018;361(6407):1108.
Article
CAS
PubMed
Google Scholar
Wilson RJ, Fox R. Insect responses to global change offer signposts for biodiversity and conservation. Ecol Ent. 2021;46(4):699–717.
Article
Google Scholar
Zattara EE, Aizen MA. Worldwide occurrence records suggest a global decline in bee species richness. One Earth. 2021;4(1):114–23.
Article
Google Scholar
Winfree R, Aguilar R, Vázquez DP, LeBuhn G, Aizen MA. A meta-analysis of bees’ responses to anthropogenic disturbance. Ecology. 2009;90(8):2068–76.
Article
PubMed
Google Scholar
Vanbergen AJ. Threats to an ecosystem service: pressures on pollinators. Front Ecol Environ. 2013;11(5):251–9.
Article
Google Scholar
Sattler T, Duelli P, Obrist MK, Arlettaz R, Moretti M. Response of arthropod species richness and functional groups to urban habitat structure and management. Landsc Ecol. 2010;25(6):941–54.
Article
Google Scholar
Kerr JT, Pindar A, Galpern P, Packer L, Potts SG, Roberts SM, Rasmont P, Schweiger O, Colla SR, Richardson LL, et al. Climate change impacts on bumblebees converge across continents. Science. 2015;349(6244):177–80.
Article
CAS
PubMed
Google Scholar
Manoli G, Fatichi S, Schläpfer M, Yu K, Crowther TW, Meili N, Burlando P, Katul GG, Bou-Zeid E. Magnitude of urban heat islands largely explained by climate and population. Nature. 2019;573(7772):55–60.
Article
CAS
PubMed
Google Scholar
McGlynn TP, Meineke EK, Bahlai CA, Li E, Hartop EA, Adams BJ, Brown BV. Temperature accounts for the biodiversity of a hyperdiverse group of insects in urban Los Angeles. Proc Royal Soc B Biol Sci. 1912;2019(286):20191818.
Google Scholar
Bordier C, Klein S, Le Conte Y, Barron AB, Alaux C. Stress decreases pollen foraging performance in honeybees. J Exp Biol. 2018;221(4):jeb171470.
Article
PubMed
Google Scholar
Tsvetkov N, MacPhail VJ, Colla SR, Zayed A. Conservation genomics reveals pesticide and pathogen exposure in the declining bumble bee Bombus terricola. Mol Ecol. 2021;30(17):4220–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Merckx T, Souffreau C, Kaiser A, Baardsen LF, Backeljau T, Bonte D, Brans KI, Cours M, Dahirel M, Debortoli N, et al. Body-size shifts in aquatic and terrestrial urban communities. Nature. 2018;558(7708):113–6.
Article
CAS
PubMed
Google Scholar
Brown J, Marquet P, Taper M. Evolution of body size: consequences of an energetic definition of fitness. Am Nat. 1993;142:573–84.
Article
CAS
PubMed
Google Scholar
Chole H, Woodard SH, Bloch G. Body size variation in bees: regulation, mechanisms, and relationship to social organization. Curr Opin Insect Sci. 2019;35:77–87.
Article
PubMed
Google Scholar
Brown JH, Gillooly JF, Allen AP, Savage VM, West GB. Toward a metabolic theory of ecology. Ecology. 2004;85(7):1771–89.
Article
Google Scholar
Horne Curtis R, Hirst Andrew G, Atkinson D. Seasonal body size reductions with warming covary with major body size gradients in arthropod species. Proc Royal Soc B Biol Sci. 1851;2017(284):20170238.
Google Scholar
Woodard SH, Lozier JD, Goulson D, Williams PH, Strange JP, Jha S. Molecular tools and bumble bees: revealing hidden details of ecology and evolution in a model system. Mol Ecol. 2015;24(12):2916–36.
Article
PubMed
Google Scholar
Greenleaf SS, Williams NM, Winfree R, Kremen C. Bee foraging ranges and their relationship to body size. Oecologia. 2007;153(3):589–96.
Article
PubMed
Google Scholar
López-Uribe MM, Jha S, Soro A. A trait-based approach to predict population genetic structure in bees. Mol Ecol. 2019;28(8):1919–29.
Article
PubMed
Google Scholar
Theodorou P, Baltz LM, Paxton RJ, Soro A. Urbanization is associated with shifts in bumblebee body size, with cascading effects on pollination. Evol Appl. 2021;14(1):53–68.
Article
PubMed
Google Scholar
Grab H, Brokaw J, Anderson E, Gedlinske L, Gibbs J, Wilson J, Loeb G, Isaacs R, Poveda K. Habitat enhancements rescue bee body size from the negative effects of landscape simplification. J App Ecol. 2019;56:2144.
Article
Google Scholar
Gérard M, Marshall L, Martinet B, Michez D. Impact of landscape fragmentation and climate change on body size variation of bumblebees during the last century. Ecography. 2020;44(2):255–64.
Article
Google Scholar
Radmacher S, Strohm E. Factors affecting offspring body size in the solitary bee Osmia bicornis (Hymenoptera, Megachilidae). Apidol. 2010;41(2):169–77.
Article
Google Scholar
Roulston TaH, Cane JH. The effect of pollen protein concentration on body size in the sweat bee Lasioglossum zephyrum (Hymenoptera: Apiformes). Evol Ecol. 2002;16(1):49–65.
Article
Google Scholar
Quezada-Euán JJG, López-Velasco A, Pérez-Balam J, Moo-Valle H, Velazquez-Madrazo A, Paxton RJ. Body size differs in workers produced across time and is associated with variation in the quantity and composition of larval food in Nannotrigona perilampoides (Hymenoptera, Meliponini). Insectes Soc. 2011;58(1):31–8.
Article
Google Scholar
Müller A, Diener S, Schnyder S, Stutz K, Sedivy C, Dorn S. Quantitative pollen requirements of solitary bees: implications for bee conservation and the evolution of bee–flower relationships. Biol Cons. 2006;130(4):604–15.
Article
Google Scholar
Bartomeus I, Ascher JS, Gibbs J, Danforth BN, Wagner DL, Hedtke SM, Winfree R. Historical changes in northeastern US bee pollinators related to shared ecological traits. PNAS. 2013;110(12):4656–60.
Article
CAS
PubMed
PubMed Central
Google Scholar
Scheper J, Reemer M, van Kats R, Ozinga WA, van der Linden GTJ, Schaminée JHJ, Siepel H, Kleijn D. Museum specimens reveal loss of pollen host plants as key factor driving wild bee decline in The Netherlands. PNAS. 2014;111(49):17552–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oliveira MO, Freitas BM, Scheper J, Kleijn D. Size and sex-dependent shrinkage of Dutch bees during one-and-a-half centuries of land-use change. PLoS ONE. 2016;11(2): e0148983.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kennedy CM, Lonsdorf E, Neel MC, Williams NM, Ricketts TH, Winfree R, Bommarco R, Brittain C, Burley AL, Cariveau D, et al. A global quantitative synthesis of local and landscape effects on wild bee pollinators in agroecosystems. Ecol Lett. 2013;16(5):584–99.
Article
PubMed
Google Scholar
Warzecha D, Diekötter T, Wolters V, Jauker F. Intraspecific body size increases with habitat fragmentation in wild bee pollinators. Landsc Ecol. 2016;31(7):1449–55.
Article
Google Scholar
Eggenberger H, Frey D, Pellissier L, Ghazoul J, Fontana S, Moretti M. Urban bumblebees are smaller and more phenotypically diverse than their rural counterparts. J Anim Ecol. 2019;88(10):1522–33.
Article
PubMed
Google Scholar
de Jesús M-I, de Araujo-Freitas C, Paxton RJ, Moo-Valle H, Medina-Medina LA, Quezada-Euán JJG. Stingless bees in urban areas: low body size and high frequency of diploid males at mating congregations of Nannotrigona perilampoides (Hymenoptera: Meliponini) in Mérida, Yucatán, México. Apidol. 2021;52(4):755–66.
Article
Google Scholar
Buchholz S, Egerer MH. Functional ecology of wild bees in cities: towards a better understanding of trait-urbanization relationships. Biodivers Conserv. 2020;29(9):2779–801.
Article
Google Scholar
Lewis SL, Edwards DP, Galbraith D. Increasing human dominance of tropical forests. Science. 2015;349(6250):827–32.
Article
CAS
PubMed
Google Scholar
Turner BL, Villar SC, Foster D, Geoghegan J, Keys E, Klepeis P, Lawrence D, Mendoza PM, Manson S, Ogneva-Himmelberger Y, et al. Deforestation in the southern Yucatán peninsular region: an integrative approach. For Ecol Manage. 2001;154(3):353–70.
Article
Google Scholar
Palafox B, López-Martínez J, Hernandez-Stefanoni JL, Nunez H. Impact of urban land-cover changes on the spatial-temporal land surface temperature in a tropical city of Mexico. Int J Geo-Inf. 2021;10:76.
Article
Google Scholar
Jenerette GD, Harlan SL, Brazel A, Jones N, Larsen L, Stefanov WL. Regional relationships between surface temperature, vegetation, and human settlement in a rapidly urbanizing ecosystem. Landsc Ecol. 2007;22(3):353–65.
Article
Google Scholar
Youngsteadt E, Dale AG, Terando AJ, Dunn RR, Frank SD. Do cities simulate climate change? A comparison of herbivore response to urban and global warming. Glob Change Biol. 2015;21(1):97–105.
Article
Google Scholar
Sarricolea P, Meseguer-Ruiz O. Urban climates of large cities: Comparison of the urban heat Island effect in Latin America. In: Henríquez C, Romero H, editors. Urban climates in latin America. Cham: Springer International Publishing; 2019. p. 17–32.
Chapter
Google Scholar
Buyantuyev A, Wu J. Urban heat islands and landscape heterogeneity: linking spatiotemporal variations in surface temperatures to land-cover and socioeconomic patterns. Landscape Ecol. 2010;25(1):17–33.
Article
Google Scholar
Biles JJ, Lemberg DS. A Multi-scale analysis of urban warming in residential areas of a Latin American city: the case of Mérida, Mexico. J Plan Educ Res 2020:0739456X20923002.
Williams NSG, Schwartz MW, Vesk PA, McCarthy MA, Hahs AK, Clemants SE, Corlett RT, Duncan RP, Norton BA, Thompson K, et al. A conceptual framework for predicting the effects of urban environments on floras. J Ecol. 2009;97(1):4–9.
Article
Google Scholar
Baldock KCR, Goddard Mark A, Hicks Damien M, Kunin William E, Mitschunas N, Osgathorpe Lynne M, Potts Simon G, Robertson Kirsty M, Scott Anna V, Stone Graham N, et al. Where is the UK’s pollinator biodiversity? The importance of urban areas for flower-visiting insects. Proc Royal Soc B Biol Sci. 1803;2015(282):20142849.
Google Scholar
Wright Wendel HE, Zarger RK, Mihelcic JR. Accessibility and usability: Green space preferences, perceptions, and barriers in a rapidly urbanizing city in Latin America. Landsc Urban Plan. 2012;107(3):272–82.
Article
Google Scholar
Eltz T, Fritzsch F, Pech JR, Zimmermann Y, RamÍRez SR, Quezada-Euan JJG, BembÉ B. Characterization of the orchid bee Euglossa viridissima (Apidae: Euglossini) and a novel cryptic sibling species, by morphological, chemical, and genetic characters. Zool J Linn Soc. 2011;163(4):1064–76.
Article
Google Scholar
Eltz T, Zimmermann Y, Pfeiffer C, Pech JR, Twele R, Francke W, Quezada-Euan JJG, Lunau K. An olfactory hift is associated with male perfume differentiation and species divergence in orchid bees. Curr Biol. 2008;18(23):1844–8.
Article
CAS
PubMed
Google Scholar
Villanueva-Gutierrez R, Quezada-Euan J, Eltz T. Pollen diets of two sibling orchid bee species, Euglossa, in Yucatán, southern Mexico. Apidol. 2013;44(4):440–6.
Article
CAS
Google Scholar
Janzen DH. Euglossine bees as long-distance pollinators of tropical plants. Science. 1971;171(3967):203–5.
Article
CAS
PubMed
Google Scholar
Dressler RL. Biology of the Orchid Bees (Euglossini). Annu Rev Ecol Syst. 1982;13(1):373–94.
Article
Google Scholar
Roubik DW, Hanson PE. Orchid bees of tropical America. Costa Rica: Instituto Nacional de Biodiversidad; 2004.
Google Scholar
Cocom Pech M, May-Itzá WdJ, Medina Medina L, Quezada-Euán J. Sociality in Euglossa (Euglossa ) viridissima Friese (Hymenoptera, Apidae, Euglossini). Insectes Soc. 2008;55(4):428–33.
Article
Google Scholar
May-Itzá W, Medina Medina LA, Medina S, Paxton RJ, Quezada-Euán JJG. Seasonal nest characteristics of a facultatively social orchid bee, Euglossa viridissima, in the Yucatan Peninsula, Mexico. Insectes Soc. 2014;61(2):183–90.
Article
Google Scholar
Saleh NW, Ramírez SR. Sociality emerges from solitary behaviours and reproductive plasticity in the orchid bee Euglossa dilemma. Proc Royal Soc B Biol Sci. 1906;2019(286):20190588.
Google Scholar
Persson AS, Smith HG. Bumblebee colonies produce larger foragers in complex landscapes. Basic Appl Ecol. 2011;12(8):695–702.
Google Scholar
Renauld M, Hutchinson A, Loeb G, Poveda K, Connelly H. Landscape simplification constrains adult size in a native ground-nesting bee. PLoS ONE. 2016;11(3): e0150946.
Article
PubMed
PubMed Central
CAS
Google Scholar
Medina RG, Fairbairn DJ, Bustillos A, Moo-Valle H, Medina S, Quezada-Euán JJG. Variable patterns of intraspecific sexual size dimorphism and allometry in three species of eusocial corbiculate bees. Insectes Soc. 2016;63(4):493–500.
Article
Google Scholar
Pokorny T, Loose D, Dyker G, Quezada-Euán JJ, Eltz T. Dispersal ability of male orchid bees and direct evidence for long-range flights. Apidol. 2015;46(2):224–37.
Article
Google Scholar
Liu L, Zhang Y. Urban heat island analysis using the landsat TM data and ASTER data: a case study in Hong Kong. Remote Sens. 2011;3(7):1535–52.
Article
Google Scholar
Filipiak ZM, Denisow B, Stawiarz E, Filipiak M. Unravelling the dependence of a wild bee on floral diversity and composition using a feeding experiment. Sci Total Environ. 2022;820: 153326.
Article
CAS
PubMed
Google Scholar
Reitmayer CM, Ryalls JMW, Farthing E, Jackson CW, Girling RD, Newman TA. Acute exposure to diesel exhaust induces central nervous system stress and altered learning and memory in honey bees. Sci Rep. 2019;9(1):5793.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ryalls JMW, Langford B, Mullinger NJ, Bromfield LM, Nemitz E, Pfrang C, Girling RD. Anthropogenic air pollutants reduce insect-mediated pollination services. Environ Pollut. 2022;297: 118847.
Article
CAS
PubMed
Google Scholar
Goddard MA, Dougill AJ, Benton TG. Scaling up from gardens: biodiversity conservation in urban environments. Trends Ecol Evol. 2010;25(2):90–8.
Article
PubMed
Google Scholar
Somme L, Moquet L, Quinet M, Vanderplanck M, Michez D, Lognay G, Jacquemart A-L. Food in a row: urban trees offer valuable floral resources to pollinating insects. Urban Ecosystems. 2016;19(3):1149–61.
Article
Google Scholar
Alvarez LJ, Reynaldi FJ, Ramello PJ, Garcia MLG, Sguazza GH, Abrahamovich AH, Lucia M. Detection of honey bee viruses in Argentinian stingless bees (Hymenoptera: Apidae). Insectes Soc. 2018;65(1):191–7.
Article
Google Scholar
de Souza FS, Kevill JL, Correia-Oliveira ME, de Carvalho CAL, Martin SJ. Occurrence of deformed wing virus variants in the stingless bee Melipona subnitida and honey bee Apis mellifera populations in Brazil. J Gen Virol. 2019;100(2):289–94.
Article
PubMed
CAS
Google Scholar
Ueira-Vieira C, Almeida LO, de Almeida FC, Amaral IMR, Brandeburgo MAM, Bonetti AM. Scientific note on the first molecular detection of the acute bee paralysis virus in Brazilian stingless bees. Apidol. 2015;46(5):628–30.
Article
Google Scholar
Moritz RFA, Kraus FB, Huth-Schwarz A, Wolf S, Carrillo CAC, Paxton RJ, Vandame R. Number of honeybee colonies in areas with high and low beekeeping activity in Southern Mexico. Apidol. 2013;44(1):113–20.
Article
Google Scholar
Goulson D, Nicholls E, Botías C, Rotheray EL. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science. 2015;347:6229.
Article
CAS
Google Scholar
Kehoe L, Kuemmerle T, Meyer C, Levers C, Václavík T, Kreft H. Global patterns of agricultural land-use intensity and vertebrate diversity. Divers Distrib. 2015;21:1308–18.
Article
Google Scholar
Nigh R, Diemont SAW. The Maya milpa: fire and the legacy of living soil. Front Ecol Environ. 2013;11(s1):e45–54.
Article
Google Scholar
Humphries S. The intensification of traditional agriculture among Yucatec Maya Farmers: facing up to the dilemma of livelihood sustainability. Hum Ecol. 1993;21(1):87–102.
Article
Google Scholar
Anderson NL, Harmon-Threatt AN. Chronic contact with realistic soil concentrations of imidacloprid affects the mass, immature development speed, and adult longevity of solitary bees. Sci Rep. 2019;9(1):3724.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wintermantel D, Locke B, Andersson GKS, Semberg E, Forsgren E, Osterman J, Rahbek Pedersen T, Bommarco R, Smith HG, Rundlöf M, et al. Field-level clothianidin exposure affects bumblebees but generally not their pathogens. Nat Commun. 2018;9(1):5446.
Article
CAS
PubMed
PubMed Central
Google Scholar
Siviter H, Koricheva J, Brown MJF, Leadbeater E. Quantifying the impact of pesticides on learning and memory in bees. J App Ecol. 2018;55(6):2812–21.
Article
Google Scholar
Feltham H, Park K, Goulson D. Field realistic doses of pesticide imidacloprid reduce bumblebee pollen foraging efficiency. Ecotoxicology. 2014;23(3):317–23.
Article
CAS
PubMed
Google Scholar
Löpez-Forment IS. Changes in Diversity in the Process of Milpa Intensification in the Henequen Zone in Yucatan, Mexico. In: 1998 meeting of the Latin American Studies Association, Chicago Illinois, September 24–26.
Vanderplanck M, Moerman R, Rasmont P, Lognay G, Wathelet B, Wattiez R, Michez D. How does pollen chemistry impact development and feeding behaviour of polylectic bees? PLoS ONE. 2014;9(1): e86209.
Article
PubMed
PubMed Central
CAS
Google Scholar
Soro A, Quezada-Euan JJG, Theodorou P, Moritz RFA, Paxton RJ. The population genetics of two orchid bees suggests high dispersal, low diploid male production and only an effect of island isolation in lowering genetic diversity. Conserv Genet. 2017;18(3):607–19.
Article
Google Scholar
Suni SS, Bronstein JL, Brosi BJ. Spatio-temporal Genetic structure of a tropical bee species suggests high dispersal over a fragmented landscape. Biotropica. 2014;46(2):202–9.
Article
PubMed
PubMed Central
Google Scholar
Suni SS. Dispersal of the orchid bee Euglossa imperialis over degraded habitat and intact forest. Conserv Genet. 2017;18(3):621–30.
Article
CAS
Google Scholar
Tonhasca A Jr, Blackmer JL, Albuquerque GS. Within-habitat heterogeneity of euglossine bee populations: a re-evaluation of the evidence. J Trop Ecol. 2002;18:929–33.
Article
Google Scholar
Stamps J. The silver spoon effect and habitat selection by natal dispersers. Ecol Lett. 2006;9:1179–85.
Article
PubMed
Google Scholar
Williams NM, Kremen C. Resource distributions among habitats determine solitary bee offspring production in a mosaic landscape. Ecol Appl. 2007;17(3):910–21.
Article
PubMed
Google Scholar
Boff S, Soro A, Paxton R, Alves-dos-Santos I. Island isolation reduces genetic diversity and connectivity but does not significantly elevate diploid male production in a neotropical orchid bee. Conserv Genet. 2014;15:1123–35.
Article
CAS
Google Scholar
Foster JB. Evolution of mammals on islands. Nature. 1964;202(4929):234–5.
Article
Google Scholar
Van Valen L. Body size and numbers of plants and animals. Evolution. 1973;27(1):27–35.
Article
PubMed
Google Scholar
Lomolino MV. Body size of mammals on islands: the island rule reexamined. Am Nat. 1985;125(2):310–6.
Article
Google Scholar
Benítez-López A, Santini L, Gallego-Zamorano J, Milá B, Walkden P, Huijbregts MAJ, Tobias JA. The island rule explains consistent patterns of body size evolution in terrestrial vertebrates. Nat Ecol Evol. 2021;5(6):768–86.
Article
PubMed
Google Scholar
Spengler A, Hartmann P, Buchori D, Schulze CH. How island size and isolation affect bee and wasp ensembles on small tropical islands: a case study from Kepulauan Seribu, Indonesia. J Biogeogr. 2011;38(2):247–58.
Article
Google Scholar
Palmer M. Testing the ‘island rule’ for a tenebrionid beetle (Coleoptera, Tenebrionidae). Acta Oecologica. 2002;23(2):103–7.
Article
Google Scholar
Gallai N, Salles J-M, Settele J, Vaissière BE. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol Econ. 2009;68(3):810–21.
Article
Google Scholar
Biesmeijer JC, Roberts SPM, Reemer M, Ohlemüller R, Edwards M, Peeters T, Schaffers AP, Potts SG, Kleukers R, Thomas CD, et al. Parallel declines in pollinators and insect-pollinated plants in Britain and The Netherlands. Science. 2006;313(5785):351–4.
Article
CAS
PubMed
Google Scholar
Eltz T, Sager A, Lunau K. Juggling with volatiles: exposure of perfumes by displaying male orchid bees. J Comp Physiol A. 2005;191(7):575–81.
Article
Google Scholar
Cane JH. Estimation of bee size using intertegular span (Apoidea). J Kansas Entomol Soc. 1987;60(1):145–7.
Google Scholar
Benjamin FE, Reilly JR, Winfree R. Pollinator body size mediates the scale at which land use drives crop pollination services. J App Ecol. 2014;51(2):440–9.
Article
Google Scholar
Bates D, Mächler M, Bolker BM, Walker SC. Fitting linear mixed-effects models using lme4. J Stat Softw. 2015;67(1):1–48.
Article
CAS
Google Scholar
Hothorn T, Bretz F, Westfall P. Simultaneous inference in general parametric models. Biom J. 2008;50(3):346–63.
Article
PubMed
Google Scholar
Fox J, Weisberg S. A R Companion to Applied Regreggion. Los Angeles: SAGE; 2011.
Google Scholar
Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2019;35(3):526–8.
Article
CAS
PubMed
Google Scholar