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Abstract 

To accommodate an ever‑increasing human population, agriculture is rapidly intensifying at the expense of natural 
habitat, with negative and widely reported effects on biodiversity in general and on wild bee abundance and diversity 
in particular. Cities are similarly increasing in area, though the impact of urbanisation on wild bees is more equivo‑
cal and potentially positive in northern temperate regions. Yet agriculture and urbanisation both lead to the loss and 
alteration of natural habitat, its fragmentation, a potential reduction in floral availability, and warmer temperatures, 
factors thought to be drivers of wild bee decline. They have also been shown to be factors to which wild bee popula‑
tions respond through morphological change. Body size is one such trait that, because of its relation to individual 
fitness, has received growing attention as a morphological feature that responds to human induced modification in 
land use. Here, we investigated the change in body size of two sympatric orchid bee species on the Yucatan Peninsula 
of Mexico in response to urbanization and agricultural intensification. By measuring 540 male individuals sampled 
from overall 24 sites, we found that Euglossa dilemma and Euglossa viridissima were on average smaller in urban and 
agricultural habitats than in natural ones. We discuss the potential role of reduced availability of resources in driving 
the observed body size shifts. Agricultural and urban land management in tropical regions might benefit wild bees if 
it encompassed the planting of flowering herbs and trees to enhance their conservation.
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Introduction
The human population has been projected to reach 10 
billion by 2050 [1], with the proportion of the human 
population living in urban areas also likely to rise at a 
very high rate such that urban land cover is forecast to 
reach 0.6–1.3 million  km2 by 2050, an expansion of 
78–171% of the global urban land area of 2015 [2]. Urban 
development leads to habitat loss and degradation, to a 
high density of impervious surfaces such as roads, to pol-
lution of the air, soil and water, and to considerable light 
and noise pollution [3, 4]. For these reasons, the urban 

ecosystem is generally considered inhospitable for wild 
fauna [5], though recent studies in northern temperate 
cites have suggested that wild bees may benefit from the 
supply of flowers and nesting sites in gardens and public 
parks [6–8].

To support an ever increasing urban population, the 
area needed to grow food has increased, with a major 
impact on the biosphere [9], at the cost of millions of 
acres of tropical forests [10]. Given this degree of loss, it 
should not come as a surprise that insects are declining, 
both in species numbers and abundance [1, 11], wild bee 
species included [12].

Habitat loss, degradation and fragmentation are among 
the most important threats to wild bee abundance and 
species richness, primarily due to the loss of floral and 
nesting resources that fragmentation and habitat loss 
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entail [13]. Furthermore, malnutrition, pesticides, pol-
lutants, pathogens and competition with managed bees 
have all been linked to bee decline [14]. Interestingly, this 
is even more apparent for agriculture landscapes than for 
cities as, in the context of modern, industrial agriculture, 
rural areas can be completely deprived of any patch that 
might provide some resources to wild bees while viable 
habitats, albeit necessarily fragmented [15] and poten-
tially small and isolated, can be widespread in cities in 
the form of parks, community and private gardens [7], at 
least in northern temperate regions.

Human induced climate change is another, widely 
perceived driver of bee decline, especially in relation to 
the rising temperatures that it causes, leading to species 
migration towards cooler areas at higher latitudes and 
altitudes [16]. Cities can be even warmer than surround-
ing rural areas because of the urban heat island (UHI) 
effect [17], which itself can alter species richness and 
abundance [18].

In response to these environmental stressors, species 
are not only migrating [16], they are also changing, both 
physiologically [19, 20] and morphologically, particularly 
in body size [21]. Alteration in body size is not surprising 
given that it is one of the most fundamental life-history 
traits with pervasive effects on individual fitness [22, 23]. 
Body size affects important life-history attributes such as 
fecundity and longevity [24, 25]. It also correlates with 
energetic expenditure, diet, thermoregulation and home 
range size [26]. In bees, body size influences foraging 
range [27], genetic differentiation [28] and pollination 
efficacy [29].

Because of these fitness implications, body size 
is expected to respond to stressors associated with 
human activities such as increased fragmentation, 
increased temperatures [21], and decreased availability 
of resources [30]. Fragmentation is expected to favour 
larger bees as they are better suited to overcome dis-
tances that might separate green patches with floral 
and nesting resources [31]. Higher temperatures are 
expected to favour smaller bee individuals of a species 
and also smaller species because of the higher meta-
bolic costs they impose on larger organisms [23, 32]. As 
the quantity and quality of food received during larval 
stages determine the final adult size [23, 33, 34] and 
larger bees likely require more resources to successfully 
raise their brood [35], reduced resource availability is 
also expected to be associated with smaller body sizes. 
Larger bee species have indeed been found to be more 
vulnerable to the resource depletion typical of human 
affected habitats [30, 36–38]. Given this set of con-
siderations, expectations as to how intraspecific body 
size might change in human impacted areas are mixed: 
highly fragmented urban landscape are expected to 

favour bigger bees. But, because of the urban heat 
island effect [17], cities are also warmer, which leads to 
the prediction that smaller bee body size is favoured in 
cities compared to surrounding areas. Similarly, sites 
with intensive agriculture might also be relatively poor 
in floral resources, especially if monocultures consist of 
unsuitable plants with limited availability of pollen and 
nectar [39], and thereby favour small body size.

Some of these predictions have received partial sup-
port; bees have been found to be larger in the fragmented 
urban landscape [29], and a positive association has been 
shown between landscape fragmentation and body size 
[40]. In contrast to these results, Eggenberger et al. [41] 
found that urban bumble bees were smaller compared to 
conspecifics in rural populations, interpreted as an indi-
cation for temperature and floral availability to be more 
important in determining intraspecific body size com-
pared to the advantage of being large in fragmented areas 
[41]. The inconsistency of results across studies suggests 
that the response of intraspecific body size to anthropo-
genic challenges may be site- or species-dependent.

These equivocal results highlight the need for addi-
tional investigation into body size as a response trait. 
Most studies on body size responses to anthropogenic 
change have to date been carried out in temperate 
regions, often with bumble bees as model organisms (but 
see [42]). Results from studies undertaken on tropical 
bees are badly needed [43] because tropical habitats are 
among the most fragile [44] and the rate of deforestation 
they currently undergo is higher than in any other part of 
the world [10, 45]. Latin America is one of the regions in 
the world with the highest rate of urban growth, includ-
ing in the Yucatan Peninsula of Mexico [46]. Though the 
Yucatan Peninsula holds the largest tropical forest bio-
sphere in Mexico, since mechanised agriculture began 
in the 1960s, 10% of the region’s forests have been dis-
turbed by anthropogenic activities, with cascading effects 
on habitat and biodiversity loss [45]. Moreover, it is now 
unequivocal that rapid urbanization, especially because 
of its effects on vegetation cover, has an impact on the 
local climate [47, 48] through the urban heat island (UHI) 
effect [49, 50]. Data collected for the Yucatan Peninsula’s 
main city of Merida, the best studied city in Yucatan [46, 
51], have confirmed this pattern: Merida has experienced 
a land surface temperature increase of at least 3 °C in the 
last two decades [46] that may be attributed to a con-
spicuous contraction in vegetation cover [46]. Because 
of these dramatic and quick developments, tropical cit-
ies often differ markedly from those in temperate zones: 
temperate zone cities tend to be rich in parks and gar-
dens and therefore relatively generous in their offer of 
floral resources for bees [7, 52, 53], while cities in tropi-
cal zones tend to be uninterrupted cement and asphalt 
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expanses with very few green patches and therefore rela-
tively poor in floral resources [42, 54].

Euglossa viridissima and Euglossa dilemma are two 
cryptic, sympatric orchid bee species (tribe Euglossini) 
distributed from Costa Rica to Mexico, with E. dilemma 
having recently extended its distribution to subtropical 
Florida [55, 56]. These two medium-sized (∼  12 mm in 
length) metallic green orchid bees are frequently encoun-
tered within cites of their Neotropical distributional 
range, suggesting they are well adapted, more so than 
other Euglossini bees, to hotter and drier environments 
and seem to be less dependent on intact tropical forest. 
Importantly for this study, they are abundant in suburban 
parks and gardens or heavily degraded dry forests [55]. 
Pollen resources of these sibling species overlap substan-
tially, with little or no resource partitioning [57]. As for 
other orchid bees, they are also long-distance pollinators 
with considerable flight capabilities and use environmen-
tal odours for intraspecific communication, facilitating 
the capture of males [58–60]. Both E. viridissima and 
E. dilemma have been described as primitively eusocial 
[61–63].

Here we compare male body size of E. viridissima and 
E. dilemma that were collected on the Yucatan Peninsula 
(Mexico) from sites that differed in land use and level of 
anthropogenic disturbance to investigate the question 
of whether stressors related to anthropogenic activities, 
namely urbanization and agriculture intensification, have 
an impact on intraspecific body size. We formulated the 
following predictions: (1) if habitat fragmentation were 
the main driver of variation in body size, as in many tem-
perate bumble bees, then these two orchid bees would 
be larger in more fragmented urban or agricultural habi-
tats; (2) if temperature were the main driver of body size, 
then body size would be smaller in urban sites; (3) lack of 
resource supply should negatively affect bee body size in 
urban and agricultural sites. We further assess how body 
size of individuals from islands compare with body size 
of individuals from locations on the mainland. Islands are 
particular in that they are more isolated than any suitable 
fragment within the heterogeneous matrix of the main-
land landscape and notoriously poorer in resources. On 
islands we would therefore expect larger sizes if isolation 
were to sort for more vagile individuals migrating from 
the mainland, but smaller individuals if body size were to 
reflect a paucity of resources.

Results
In total, 540 male individuals of the two species E. 
dilemma and E. viridissima were individually meas-
ured, 140 from urban sites (E. dilemma, n = 100; E. 
viridissima, n = 40), 180 from agricultural sites (E. 

dilemma, n = 160; E. viridissima, n = 20), 180 from nat-
ural sites (E. dilemma, n = 140; E. viridissima, n = 40) 
and 40 from islands (E. dilemma, n = 40; E. viridissima, 
n = 0). Body size ranged from 3.06 to 3.87  mm for E. 
dilemma (n = 440, X ̅ = 3.47 ± 0.14 SD) and from 3.21 
to 3.91 mm for E. viridissima (n = 100, X ̅ = 3.54 ± 0.13 
SD).

When body size was analysed using the two species 
data sets together, we found a habitat effect (LMM: 
χ2 = 11.33, df = 3, p = 0.01), but also a species effect 
(LMM: χ2 = 9.39, df = 1, p = 0.002), with E. viridissima 
males being on average 2.2% bigger than E. dilemma 
males. Nevertheless, we did not find evidence for an 
interaction between habitat type and species identity 
on body size (LMM: χ2 = 2.18; df = 3, p = 0.53), suggest-
ing that the two species respond similarly to the differ-
ent types of habitat. Tukey’s HSD post hoc test showed 
that Euglossa males in natural habitats were signifi-
cantly bigger in size than in all other habitat types, 
while no significant difference in size was found among 
agricultural, city or island habitat types (Additional 
file 1: Table S1).

A significant effect of habitat on male body size 
was also found when E. dilemma was analysed alone 
(χ2 = 11.19, df = 3, p = 0.01). Tukey’s HSD post hoc 
test showed that E. dilemma males in natural habitats 
were significantly bigger in size than in all other habitat 
types, while no significant difference in size was found 
among agricultural, city or island habitat types (Fig. 1, 
Additional file 7: Fig. S1, Additional file 1: Table S1).

We could not confirm a significant ‘habitat’ effect 
on male body size in E. viridissima (χ2 = 5.73, df = 3, 
p = 0.13), but direct pairwise comparisons revealed that 
individuals sampled in the natural (N) habitat were on 
average significantly bigger than individuals sampled in 
cities (C) (Fig. 2, Additional file 8: Fig. S2, Tukey HSD; 
Z = 2.37, p = 0.02, Additional file  1: Table  S1). There 
was no effect of habitat type on the coefficient of vari-
ation of body size, either for E. dilemma (F-statistic: 
0.60 on 3 and 18 DF, p-value: 0.63), or for E. viridissima 
(F-statistic: 0.26, 3 and 1 DF, p-value: 0.86).

Land use variables were assessed at n = 24 sampling 
sites, including n = 6 urban sites, n = 9 agricultural 
sites, n = 9 natural sites and n = 3 islands. The propor-
tions of the different land use variables investigated dif-
fered among the four habitat types, apart from ‘water’ 
and ‘seminatural areas’ (Additional file  2: Table  S2). 
Apart from ‘water’, results did not change when com-
parison were made at the scale at which each vari-
able correlated most with body size (Additional file  2: 
Table S2).
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Fig. 1 Medians and interquartiles of body size (measured as intertegular distance, ITD) for Euglossa dilemma across four the four habitats 
‘Agricultural’, ‘City’, ‘Island’ and ‘Natural’

Fig. 2 Medians and interquartiles of body size (measured as intertegular distance, ITD) for Euglossa viridissima across four the four habitats 
‘Agricultural’, ‘City’, ‘Island’ and ‘Natural’
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Of all the land use variables that were used as pre-
dictors for body size across sites, none was significant 
(Additional file 3: Table S3).

Discussion
Our results revealed a significant shift to smaller body 
size of E. dilemma males in anthropogenic ecosystems 
such as cities and agricultural areas compared to natural 
habitats, suggesting that body size in bees is a sensitive 
response trait to anthropogenic changes, such as urbani-
zation [29, 41, 42] or agriculture intensification [31, 40, 
64, 65].

Our study focused on males because they are very eas-
ily captured (see Methods), while orchid bee females are 
extremely difficult to sample. While recognising this as 
a limitation of our study because size dependent fitness 
implications might be different between the two sexes, 
we note that there is very limited sexual size dimorphism 
between males and females [66]. Females are therefore 
likely to respond physiologically to environmental stress-
ors in a similar manner as males.

We did not find E. viridissima males to vary signifi-
cantly across habitat types, very likely because of the 
small dataset. Nevertheless, city males of E. viridis-
sima were, like those of E. dilemma, on average smaller 
than conspecifics caught in natural areas, indicating an 
urbanisation effect on E. viridissima males, too. For E. 
dilemma, our results are based on a well replicated sta-
tistically powerful sampling design, in nine independent 
regions on the Yucatan Peninsula of Mexico. That results 
for E. viridissima partially confirm those for E. dilemma 
suggests that the two species likely respond similarly to 
human induced changes, as also indicated by the lack 
of interaction effect between habitat and species iden-
tity. The two species were significantly different in size, 
but their nutritional niches greatly overlap [57] and there 
are no known differences in their physiology or foraging 
behaviour that might explain this difference. Among the 
land use variables analysed, none could be singled out as 
determining the habitat effect we detected.

Three main drivers associated with anthropogenic 
disturbance that are expected to have an effect on body 
size in bees are: fragmentation, increased temperatures 
and scarcity of food resources. The increase in habitat 
fragmentation of anthropogenic habitats is expected to 
be associated with bigger body sizes, as seen in bumble 
bees in temperate zone cities [29], as bigger bees can 
likely fly the longer distances needed to reach favourable 
fragments. Alternatively, the increased temperatures of 
urban habitats and the scarcity of food resources of both 
urban and intensively cultivated habitats are expected to 
be associated with a shift to smaller body sizes [21].

Our detection of a shift in body size suggests that 
local conditions, also in the tropics, can have a signifi-
cant and appreciable effect on male orchid bee body size. 
Our results exclude fragmentation, at least as an impor-
tant driver of the shift in body size, because we found 
bees to be smaller in cites and agricultural habitats. This 
could partly be attributed to the fact that orchid bees 
are known to fly long distances [67] and therefore they 
may not be sensitive to increased habitat fragmentation. 
In the following, we discuss the possible relative roles of 
the other two main drivers, temperature and availability 
of resources, in explaining the patterns of variability we 
observed.

Given the generality of the UHI phenomenon [51, 68], 
and that urbanisation processes in the Yucatan Penin-
sula are similar across its cities [51], we assume that the 
other cities in this study are, like the well-studied Merida 
(see introduction), significantly warmer than their cor-
responding rural and natural areas. We therefore plau-
sibly consider temperature as a potential factor behind 
the decrease in body size of orchid bees in the urban sites 
compared to the natural sites of this study.

Nevertheless, ongoing contraction and degradation 
of natural vegetation cover (for Merida ca. 16,000  ha 
between 1995 and 2014 [46]) and its replacement with 
artificial materials (ca. 9700  ha in Merida [46]), the 
main consequence of urban growth, are not only the 
cause of temperature increase, but also likely result in a 
reduction in floral resources and a change in vegetation 
composition [52], with detrimental effects on flower 
visiting insects [5], possibly due to some kind of nutri-
tional imbalance [69]. Therefore in the cities considered 
in this study, the two main acknowledged potential driv-
ers, increased temperatures and reduction of resources, 
are possibly affecting orchid bee body size concomitantly. 
City pollutants have also been shown to affect foraging 
efficiency [70] and pollination services [71], and might 
therefore be potential factors reducing body size.

Our results support the context-dependent nature of 
the response of body size to urbanisation. While cities of 
temperate zones can have a positive effect on body size 
([29] but see [41]), tropical cities seem to affect body size 
negatively, as also seen in the stingless bee species Nan-
notrigona perilampoides in the city of Merida [42]. Tropi-
cal cities are considered less hospitable for bees [42, 54] 
than their temperate counterparts [7, 52, 53], mainly 
because of the many parks and gardens that populate the 
latter that are scarce in the former [72, 73].

Consistent with the possibility that lack of floral 
resources is a driver of body size shifts in E. dilemma 
and E. viridissima is our observation that bee body size 
in the agricultural sites was smaller than in natural sites 
(forest). As agricultural sites in rural areas are likely to be 
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cooler than city sites [17], the reduction in body size we 
observed in agricultural sites is probably due to reduced 
availability of resources. Maize, one of the predominant 
crops in the agricultural sites, is not among the plant spe-
cies on which E. dilemma and E. viridissima feed [57]. 
Reduced floral resources are nevertheless only one aspect 
of the many factors associated with habitat modifications 
through human intervention in agricultural sites. Other 
important stressors, which might all contribute to the 
effect on body size that we observed, might be increased 
pathogen load through spillover from managed honey 
bees [74–76] and competition with honey bees, which 
are present in Yucatan at high density [77]. Nevertheless, 
neither pathogen spillover nor competition with man-
aged bees for floral resources have been directly studied 
in Yucatan.

Agricultural intensification is generally associated with 
landscape simplification and increased pesticide load [65, 
78]. Renauld et al. [65] observed a reduction in body size 
associated with agricultural intensification in the ground 
nesting bee species Andrena nasonii in the USA, sug-
gesting that landscape simplification reduces the overall 
quantity, quality and distribution of resources, with nega-
tive effects on offspring provisioning. Even if agriculture 
in Yucatan is not as intense as in Europe and USA [79], 
it has intensified since the beginning of the 1960s [45]. 
It has inexorably transitioned from the traditional slash-
and-burn maize-bean-squash ‘milpa’, which was ecologi-
cally and economically sustainable as long as population 
pressure was low enough to allow a prolonged time for 
forest regeneration [80], to an intensive agricultural pro-
duction for the Mexican market with higher reliance on 
pesticides, herbicides and fertilizers [81]. The negative 
effect of pesticides on body size has been documented 
in bees [82, 83] and might be due in part to pesticides 
impairing pollen foraging capabilities by affecting learn-
ing and memory [84, 85]. Loss of suitable nesting and 
foraging resources in intensively cultivated areas [86] are 
known to affect foraging times, distance and frequency of 
female bee provisioning trips and, therefore, indirectly, 
larval diet [65]. As larval development is dependent on 
pollen diversity and quality, their reduction will likely 
have a negative effect on adult bee body size [33, 87].

Despite the undisputable negative effects of lack of 
resources on bee body size, it remains to be discussed 
whether the body size shift we observed is due to the 
paucity of resources (in quality and quantity) in urban 
and agricultural habitats, which had an effect on the 
size or quality of the larval provision mass of the males 
we sampled in those locations (first possible explana-
tion), or whether it results from a process of size re-dis-
tribution of male orchid bees in the mosaic landscape 
they experience, with larger bees sorting themselves into 

resource-rich areas (second possible explanation). Orchid 
bees, particularly males, have relatively large home ranges 
[59], can fly long distances [67] and have great dispersal 
capabilities, which are also the reasons why E. dilemma 
and E. viridissima [88], like other orchid bees [89, 90], 
exhibit low genetic differentiation. Floral resource limi-
tation is a more plausible explanation for smaller body 
size in species with low dispersal capabilities [42]. Given 
that orchid bee males readily move among contrasting 
habitat types [91], we therefore consider ecological sort-
ing to be a plausible explanation for the size differences 
we observed. We note, though, that this explanation 
does not exclude the other; both floral resource limita-
tion and ecological sorting of adults could act in unison. 
The differences in body size we observed would then be 
determined by the distribution of resources across habi-
tat types and the increased ability of larger individuals to 
access them, which is what is expected to happen under 
the predictions of the so called ‘silver spoon effect’ [92]. 
The positive relationship between the individual male 
attributes (body size) and the quality of the habitat in 
which we found them (higher resource availability) could 
be then be explained by the ‘search hypothesis’ [92], 
according to which the quality of the habitat in which an 
individual will ultimately settle depends on the trait that 
makes it a good searcher i.e. large body size in the context 
of our study. This is an intriguing possibility that deserves 
greater attention because understanding the mechanisms 
of trait-mediated species-specific responses may also 
explain how anthropogenic changes to the natural land-
scape might affect population persistence [93].

We found a trend for island bees to be smaller than 
those from all other habitat types, further supporting 
the idea that the paucity of food resources is one prob-
able driver of shifts in body size in these neotropical bees. 
Genetic analyses of these bees [88] and of Euglossa cor-
data [94] have shown that island populations are geneti-
cally less diverse. Moreover even if genetic structuring is 
relatively modest [88, 94], it increases with isolation [94]. 
These findings indicate that islands population of orchid 
bees are relatively isolated from the mainland. Thus, the 
trend to smaller sizes on islands could be interpreted as 
reflecting the local (poorer in resources) conditions. Gen-
erally, island populations are known to differ in body size 
from their mainland relatives and evolve either gigantism 
or dwarfism, mainly according to the so-called ‘island 
rule’ [95, 96]. This rule has been revisited by [97] to 
explain body size distributions across islands of different 
sizes as the composite effect of limiting resource availa-
bility, which should drive body size shifts towards smaller 
individuals, and predation and competitive release, which 
should drive body size towards bigger individuals. How-
ever, most studies on the body size of insular animals 



Page 7 of 13Garlin et al. BMC Ecology and Evolution           (2022) 22:94  

have focused on vertebrates [98], with patterns of body 
size shifts of insular insects being scantly documented. 
Exceptions are two studies: Spengler et al. [99] found that 
body size (averaged across bees and wasps) decreased 
with increased island isolation; Palmer [100] found a pat-
tern that fitted the expectations of the ‘island rule’ in a 
tenebrionid beetle: a bell shaped relationship between 
body size and island area, with reduced body size on 
small islands potentially due to scarcity of resources and 
reduced body size on large islands explainable in terms 
of intensified competition and predation. Palmer’s [100] 
results suggest that the ‘island rule’ can be extrapolated to 
insects, and support the plausibility of limiting resources 
as a possible explanation for the trend to smaller bees on 
islands we observed in our study. Importantly, our results 
on the body size of island bees point to the potential of 
islands as natural laboratories for a further understand-
ing of the ecology of body size in bees.

Finally, even if patterns we observed in two orchid bees 
are consistent with the view that body size is governed 
by the availability of resources and temperature, none 
of the land use variables, which might be considered 
proxies for resources (forest, urban green areas or semi-
natural areas) or for temperature (proportion of imper-
vious surfaces) were significant predictors of body size. 
We can think of three possible reasons, for this negative 
result: (1) the resolution at which the land use variables 
were assessed (by visual inspection of google earth maps) 
was too coarse; (2) we did not measure important vari-
ables such as level of pollution, pesticide load, honey bee 
colony density, vegetation composition, flower abun-
dance and richness, and temperature that might have 
been important explanatory variables for body size; and 
(3) habitats are more than the mere sum of a few land use 
variables and the cause of body size is too complex to be 
ascribed to them, without consideration of their inter-
actions with other biotic factors such as competition or 
predation.

Conclusions
As pollinators, bees are of indisputable economic and 
ecological value [101, 102]. This is also true for orchid 
bees, key pollinators of plants from approximately 30 
families, including valuable crops and many species 
of orchids. Our results seem to point to floral resource 
availability as an important determinant of body size 
shifts in orchid bees, as the habitats in which bees in this 
study were found to be smaller (cities, agricultural areas 
and islands) are consistently poorer in resources than 
natural sites. Nevertheless, more accurate data on tem-
perature, precipitation, resource availability (resin, nectar 
and pollen, flower abundance and richness), foraging effi-
ciency, bee movement, pesticide use, and the intensity of 

pollution in tropical cities and surrounding agricultural 
areas would help provide a more nuanced analysis of 
the variables that are involved in determining body size 
shifts, which would allow more targeted conservation 
measures to maintain healthy bee populations.

Methods
Sampling
Euglossa dilemma and E. viridissima were collected on 
the Yucatan Peninsula of Mexico using synthetic odour 
baits, a standard sampling method that exploits the 
tendency of orchid male bees to be attracted to the flo-
ral odours that they collect to attract females [103] (see 
[88] for more details on the sampling methodology). 
Individual male bees were sampled from 24 sampling 
sites across 9 different regions (Fig. 3). Each region was 
subclassified in four site types corresponding to differ-
ent habitat types: ‘Natural’ (N) covered by at least 80% 
natural forest, characterised by trees at least 10  m high 
and with no evidence of recent human impact; ‘Agricul-
tural’ (A), localities situated within an agricultural matrix 
with maximum 20% forest cover; ‘City’ (C), indicating an 
urban area; and ‘Island’ (I), indicating sampling on an off-
shore island for regions by the coast (Fig. 3 and Table 1). 
At each of 22 sites, ca. 60 males of E. dilemma were sam-
pled from January to May 2010, totalling 1429 bees [88]. 
For E. viridissima an average of 46 males were collected 
at each of 5 sites from February to March 2010, total-
ling 257 bees [88]. The number of baited individuals per 
total baiting time was measured, providing an estimate 
of abundance per hour, which did not differ significantly 
between species (Mann–Whitney U Test: W = 1.27, 
p = 0.16), region (Kruskal–Wallis chi-squared = 7.89, 
df = 8, p-value = 0.45) or habitat type (Kruskal–Wallis 
chi-squared = 4.74, df = 3, p-value = 0.19).

Body size measurements
To investigate variation in body size among different 
habitats, we measured intertegular distance (ITD) as the 
span between the two insertion points of the wings (tegu-
lae) of each male. ITD is a good indicator of body size as 
it correlates well with dry body mass [104]. As body size 
is strongly correlated with species mobility [27], it is also 
considered a good indicator of dispersal ability. The coef-
ficient of variation (CV = SD/mean) of ITD was also cal-
culated and compared.

Measurements were performed using a stereo micro-
scope (Olympus SZX7) with an integrated camera to 
record pictures and the digital measurement tool in the 
cellSens software v1.6. Of the originally sampled indi-
viduals, we randomly chose and measured 20 individu-
als from each site per bee species, totalling 440 male E. 
dilemma and 120 male E. viridissima.
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Land use variables
Habitats differ in landscape characteristics and environ-
mental conditions, such as road density and land use, 
which may all be associated with shifts in body size and 
which may affect species at different spatial scales [21, 
29]. To account for the scale dependency of body size-
environmental relationships [105], we quantified road 
density, a metric for fragmentation, at 6 spatial scales 
(250 m, 500 m 750 m 1000 m, 2000 m and 3000 m) using 
Quantum GIS (QGIS.org, 2020) with data obtained 
from Geofabrik GmbH. We did so by computing the 
total length of roads contained in a circle centred on the 
coordinates of each site and at the six different radii cor-
responding to the 6 spatial scales. We chose to include 
three relatively wide spatial scales (1000 m, 2000 m and 
3000 m) as both E. dilemma and E. viridissima are rela-
tively big (mean ITD 3.47 mm and 3.54 mm respectively, 
see results), slightly bigger than the average European 
honey bee (mean ITD 3.3 mm; [27]). They are also known 
for their great flight capabilities (potentially up to 40 km, 
[67]). Using Google Earth Pro (Google Earth Version 
7.3.3), we characterized land use cover by quantifying 

at the same six spatial scales the proportions of six dif-
ferent land use types that might be relevant for resource 
acquisition: forest (Forest), agricultural areas (Agricul-
ture), semi-natural areas (SeminaturalAreas), impervi-
ous surface (ImperviousSurface), urban green spaces 
(UrbanGreenSpace) and water (Water) (Additional file 4: 
Table S4).

Statistical analyses
To investigate whether the body size of individuals 
from urban areas, agricultural areas, natural areas and 
islands differed among each other, we used linear mixed 
models (LMMs, lmer function of the ‘lme4’ package 
[106]), with habitat type, species and their interaction 
as fixed factors and sample site as a random effect fac-
tor. We then assessed the significance of effects using 
the Wald chi-square test (type II). We performed the 
same analysis for each species separately and tested 
for the significance of differences in body size between 
habitat types with Tukey’s HSD post hoc method using 
the R package ‘multcomp’ [107]. Using linear models 
(lm function in base R), we also tested for differences 

Oxk

Fig. 3 Map of Yucatan Peninsula indicating locations where males of Euglossa dilemma and Euglossa viridissima were sampled. The three letter 
codes refer to the regions to which sampling locations belong (See Table 1). The four different symbols correspond to the four treatments 
considered in this study: dots = natural; squares = agricultural; triangles = city; stars = island
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in body size variation (CV of ITD) among habitat types, 
both for E. dilemma and for E. viridissima.

To assess how the four habitat types (natural, agri-
cultural, city and island) are characterised in terms of 
land use variables that we quantified, we ran a series of 
Kruskal–Wallis tests followed by Dunn tests for multiple 
comparisons to test for differences in land use variables 
among habitat types. We compared proportions (not 
normally distributed, hence our use of the non-paramet-
ric Kruskal–Wallis test) of land use characterised at the 
1000  m scale because this was the scale at which sites 
were assigned to the three mainland habitat types [88].

To investigate the land use variables which best 
explained the observed variability in body size, we ran 
LMMs using the lmer function of the R package ‘lme4’ 
[106], with land uses at the scale at which the absolute 
value of their correlation coefficient with body size was 
highest. For E. dilemma, scales were: 3000 m for Agricul-
ture, 2000  m for Forest, 3000  m for ImperviousSurface, 
1000  m for RoadDensity, 2000  m for SeminaturalAr-
eas, 500 m for UrbanGreenSpace and 2000 m for Water 
(Additional file 5: Table S5). Sample site was added as a 
random factor. As insufficient data were available to run 
the same analysis for E. viridissima, we undertook this 
analysis only for E. dilemma. Values for all predictors 
were standardized (transformed to z-scores) before run-
ning each model. Model assumptions were checked visu-
ally and were found to conform to expectations (residuals 
normally distributed, homogeneity of variance, linear-
ity). The presence of outliers was checked using Cook’s 
distance within the R package ‘car’ [108]. The variance 
inflation factor (vif threshold = 5) was used to detect col-
linearity. As high collinearity was detected for RoadDen-
sity (vif = 29.5) in the initial global model for E. dilemma, 
we ran subsequent analyses without RoadDensity. The 
function Moran.I from the package ‘ape’ [109] was used 
to detect spatial autocorrelation; none was found.

All statistical analyses were performed using the sta-
tistical software R v. 4.0.4.

Abbreviations
CV: Coefficient of variation; ITD: Intertegular distance; SD: Standard deviation.
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