Moll D, Moll EO. The ecology, exploitation and conservation of river turtle. Oxford University Press on Demand; 2004.
Georges A. Setting conservation priorities for Australian freshwater turtles. In: Lunney D, Ayers D, editors. Herpetology in Australia: a diverse discipline. 1993. p. 49–58.
Rhodin AGJ, Stanford CB, van Dijk PP, Eisemberg C, Luiselli L, Mittermeier RA, et al. Global conservation status of turtles and tortoises (Order Testudines). Chelonian Conserv Biol [Internet]. 2018;17(2):135–61. https://doi.org/10.2744/CCB-1348.1.
Article
Google Scholar
Cann J, Sadlier R. Freshwater turtles of Austalia. ECO Wear & Publishing; 2017. 448 p.
FitzGibbon SI, Franklin CE. The importance of the cloacal bursae as the primary site of aquatic respiration in the freshwater turtle, Elseya albagula. Aust Zool. 2010;35(2):276–82.
Article
Google Scholar
Limpus C. The biology and management strategies for freshwater turtles in the Fitzroy Catchment, with particular emphasis on Elseya albagula and Rheodytes leukops. 2011.
Freeman A, Thomson S, Cann J. Elseya lavarackorum (White and Archer 1994)—Gulf Snapping Turtle, Gulf Snapper, Riversleigh Snapping Turtle, Lavarack’s Turtle. In: Rhodin AGJ, Pritchard PCH, van Dijk PP, Saumur RA, Buhlmann KA, Iverson JB, et al., editors. In Conservation Biology of Freshwater Turtles and Tortoises: A Compilation Project of the International Union for Conservation of Nature/Species Survival Commission Tortoise and Freshwater Turtle Specialist group Chelonian Research Monographs. Chelonian Research Foundation; 2014. p. 082.01–082.10.
Gordos MA, Franklin CE, Limpus CJ. Seasonal changes in the diving performance of the bimodally respiring freshwater turtle Rheodytes leukops in a natural setting. Can J Zool. 2003;81(4):617–25.
Article
Google Scholar
Tucker AD. Cumulative effects of dams and weirs on freshwater turtles: Fitzroy, Burnett, and Mary River Catchments. 2000.
Limpus DJ, Limpus CJ, Hodge WJ. Impacts of dams and weirs on freshwater turtles: Fairbairn Dam, March 2006. 2006.
Baxter RM. Environmental effects of dams and impoundments. Annu Rev Ecol Syst. 1977;8(1):255–83.
Article
Google Scholar
Bodie JR. Stream and riparian management for freshwater turtles. J Environ Manage. 2001;62(4):443–55.
Article
CAS
Google Scholar
Clark NJ, Gordos MA, Franklin CE. Implications of river damming: the influence of aquatic hypoxia on the diving physiology and behaviour of the endangered Mary River turtle. Anim Conserv. 2009;12(2):147–54.
Article
Google Scholar
McDougall AJ, Espinoza T, Hollier C, Limpus DJ, Limpus CJ. A risk assessment approach to manage inundation of elseya albagula nests in impounded waters: a win-win situation? Environ Manage. 2015;55(3):715–24.
Article
CAS
Google Scholar
Cann J. Irwin’s turtle. Monitor. 1997;9(1):36–40.
Google Scholar
Todd EV, Blair D, Georges A, Lukoschek V, Jerry DR. A biogeographical history and timeline for the evolution of Australian snapping turtles (Elseya: Chelidae) in Australia and New Guinea. J Biogeogr. 2014;41(5):905–18.
Article
Google Scholar
Schaffer JR, Hamann M, Rowe R, Burrows DW. Muddy waters: The influence of high suspended-sediment concentration on the diving behaviour of a bimodally respiring freshwater turtle from north-eastern Australia. Mar Freshw Res. 2016;67(4):505–12.
Article
Google Scholar
Burrows DW. An initial environmental assessment of water infrastructure options in the Burdekin catchment [Internet]. Townsville; 1999. Available from: https://d3n8a8pro7vhmx.cloudfront.net/nqcc2/pages/1587/attachments/original/1606458550/2.1.1_BURROWS_etal_1999_updated_%282%29.pdf?1606458550.
Cooper M, Lewis SE, Smithers SG. Spatial and temporal dynamics of suspended sediment causing persistent turbidity in a large reservoir: lake Dalrymple, Queensland, Australia. Mar Freshw Res. 2017;68(7):1377–90.
Article
CAS
Google Scholar
Gordos MA, Franklin CE, Limpus CJ. Effect of water depth and water velocity upon the surfacing frequency of the bimodally respiring freshwater turtle, Rheodytes leukops. J Exp Biol. 2004;207(17):3099–107.
Article
Google Scholar
Thomson S, Georges A, Limpus CJ. A new species of freshwater turtle in the genus Elseya (Testudines: Chelidae) from central coastal Queensland. Aust Chelonian Conserv Biol. 2006;5(1):74–86.
Article
Google Scholar
Micheli-Campbell MA, Connell MJ, Dwyer RG, Franklin CE, Fry B, Kennard MJ, et al. Identifying critical habitat for freshwater turtles: integrating long-term monitoring tools to enhance conservation and management. Biodivers Conserv. 2017;26(7):1675–88.
Article
Google Scholar
Deiner K, Altermatt F. Transport distance of invertebrate environmental DNA in a natural river. PLoS ONE. 2014;9(2):e88786.
Article
Google Scholar
Petruniak J, Bradley D, Kelly JM, Hanner RH. Commentary: integrating environmental DNA into applied ecological practice. J Environ Stud Sci. 2021;11(1):6–11.
Article
Google Scholar
Tarof SA, Crookes S, Moxley K, Hathaway J, Cameron G, Hanner RH. Environmental dna bioassays corroborate field data for detection of overwintering species at risk blanding’s turtles (Emydoidea blandingii). Genome. 2021;64(3):299–310.
Article
CAS
Google Scholar
Adams CIM, Hoekstra LA, Muell MR, Janzen FJ. A brief review of non-avian reptile environmental DNA (eDNA), with a case study of painted turtle (Chrysemys picta) eDNA under field conditions. Diversity. 2019;11(4):50.
Article
CAS
Google Scholar
Davy CM, Kidd AG, Wilson CC. Development and validation of environmental DNA (eDNA) markers for detection of freshwater turtles. PLoS One [Internet]. 2015;10(7):1–13. https://doi.org/10.1371/journal.pone.0130965.
Article
CAS
Google Scholar
Feng W, Bulté G, Lougheed SC. Environmental DNA surveys help to identify winter hibernacula of a temperate freshwater turtle. Environ DNA. 2020;2(2):200–9.
Article
Google Scholar
Kirtane AA, Wilder ML, Green HC. Development and validation of rapid environmental DNA (eDNA) detection methods for bog turtle (Glyptemys muhlenbergii). PLoS One. 2019;14(11).
Lacoursière-Roussel A, Dubois Y, Normandeau E, Bernatchez L. Improving herpetological surveys in eastern North America using the environmental DNA method1. Genome. 2016;59(11):991–1007.
Article
Google Scholar
Kessler EJ, Ash KT, Barratt SN, Larson ER, Davis MA. Radiotelemetry reveals effects of upstream biomass and UV exposure on environmental DNA occupancy and detection for a large freshwater turtle. Environ DNA. 2020;2(1):13–23.
Article
Google Scholar
West KM, Heydenrych M, Lines R, Tucker T, Fossette S, Whiting S, et al. Development of a 16S metabarcoding assay for the environmental DNA (eDNA) detection of aquatic reptiles across northern Australia. Mar Freshw Res. 2021;
Villacorta-Rath C, Adekunle A, Edmunds RC, Strugnell JM, Schwarzkopf L, Burrows D. Can environmental DNA be used to detect first arrivals of the cane toad, Rhinella marina, into novel locations? Environ DNA. 2020;(May):1–12.
Goldberg CS, Strickler KM, Fremier AK. Degradation and dispersion limit environmental DNA detection of rare amphibians in wetlands: increasing efficacy of sampling designs. Sci Total Environ [Internet]. 2018;633:695–703. https://doi.org/10.1016/j.scitotenv.2018.02.295.
Article
CAS
PubMed
Google Scholar
Littlefair JE, Hrenchuk LE, Blanchfield PJ, Rennie MD, Cristescu ME. Thermal stratification and fish thermal preference explain vertical eDNA distributions in lakes. Mol Ecol. 2021;30(13):3083–96.
Article
CAS
Google Scholar
Sepulveda AJ, Schabacker J, Smith S, Al-Chokhachy R, Luikart G, Amish SJ. Improved detection of rare, endangered and invasive trout in using a new large-volume sampling method for eDNA capture. Environ DNA. 2019;(May):1–11.
Villacorta-Rath C, Hoskin CJ, Strugnell JM, Burrows DW. Long distance (> 20 km) downstream detection of endangered stream frogs suggests an important role for eDNA in surveying for remnant amphibian populations. PeerJ. 2021;9: e12013.
Article
Google Scholar
Todd EV, Blair D, Farley S, Farrington L, Fitzsimmons NN, Georges A, et al. Contemporary genetic structure reflects historical drainage isolation in an Australian snapping turtle, Elseya albagula. Zool J Linn Soc. 2013;169(1):200–14.
Article
Google Scholar
Boothroyd M, Mandrak NE, Fox M, Wilson CC. Environmental DNA (eDNA) detection and habitat occupancy of threatened spotted gar (Lepisosteus oculatus). Aquat Conserv Mar Freshw Ecosyst. 2016;26(6):1107–19.
Article
Google Scholar
Sigsgaard EE, Carl H, Møller PR, Thomsen PF. Monitoring the near-extinct European weather loach in Denmark based on environmental DNA from water samples. Biol Conserv [Internet]. 2015;183:46–52. https://doi.org/10.1016/j.biocon.2014.11.023.
Article
Google Scholar
Janosik AM, Johnston CE. Environmental DNA as an effective tool for detection of imperiled fishes. Environ Biol Fishes [Internet]. 2015;98(8):1889–93. https://doi.org/10.1007/s10641-015-0405-5.
Article
Google Scholar
Sigsgaard EE, Carl H, Møller PR, Thomsen PF. Monitoring the near-extinct European weather loach in Denmark based on environmental DNA from water samples. Biol Conserv. 2015;183:46–52.
Article
Google Scholar
Darling JA, Mahon AR. From molecules to management: adopting DNA-based methods for monitoring biological invasions in aquatic environments. Environ Res [Internet]. 2011;111(7):978–88. https://doi.org/10.1016/j.envres.2011.02.001.
Article
CAS
PubMed
Google Scholar
Furlan EM, Gleeson D, Wisniewski C, Yick J, Duncan RP. eDNA surveys to detect species at very low densities: a case study of European carp eradication in Tasmania. Australia J Appl Ecol. 2019;56(11):2505–17.
Article
CAS
Google Scholar
Ayana E. Determinants of declining water quality [Internet]. Washington, D. C.; 2019. Available from: www.worldbank.org/gwsp.
Takahara T, Minamoto T, Yamanaka H, Doi H, Kawabata Z. Estimation of fish biomass using environmental DNA. PLoS ONE. 2012;7(4):3–10.
Article
Google Scholar
Cooper MK, Villacorta-Rath C, Burrows D, Jerry DR, Carr L, Barnett A, et al. Practical eDNA sampling methods inferred from particle size distribution and comparison of capture techniques for a Critically Endangered elasmobranch. Environ DNA. 2022;00:1–13.
CAS
Google Scholar
Raemy M, Ursenbacher S. Detection of the European pond turtle (Emys orbicularis) by environmental DNA: is eDNA adequate for reptiles? Amphib Reptil. 2018;39(2):135–43.
Article
Google Scholar
Renan S, Gafny S, Perl RGB, Roll U, Malka Y, Vences M, et al. Living quarters of a living fossil—uncovering the current distribution pattern of the rediscovered Hula painted frog (Latonia nigriventer) using environmental DNA. Mol Ecol. 2017;26(24):6801–12.
Article
Google Scholar
Villacorta‐Rath C, Burrows D. Standard operating procedure for environmental DNA field sample collection. Townsville; 2021.
Longmire JL, Maltbie M, Baker RJ. Use of “lysis buffer” in DNA isolation and its implication for museum collections. 1997;163.
Mauvisseau Q, Halfmaerten D, Neyrinck S, Burian A, Brys R. Effects of preservation strategies on environmental DNA detection and quantification using ddPCR. Environ DNA. 2021;3(4):815–22.
Article
Google Scholar
Edmunds RC, Burrows D. Got glycogen?: Development and multispecies validation of the novel preserve, precipitate, lyse, precipitate, purify (pplpp) workflow for environmental dna extraction from longmire’s preserved water samples. J Biomol Tech. 2020;31(4):125–50.
PubMed
PubMed Central
Google Scholar
Goldberg CS, Turner CR, Deiner K, Klymus KE, Thomsen PF, Murphy MA, et al. Critical considerations for the application of environmental DNA methods to detect aquatic species. Methods Ecol Evol. 2016;7(11):1299–307.
Article
Google Scholar
Dorazio RM, Erickson RA. EDNAOCCUPANCY: an R package for multiscale occupancy modelling of environmental DNA data. Mol Ecol Resour. 2018;18(2):368–80.
Article
CAS
Google Scholar
Huerlimann R, Cooper MK, Edmunds RC, Villacorta-Rath C, LePort A, Robson HLA, et al. Enhancing tropical conservation and ecology research with aquatic environmental DNA methods: an introduction for non-environmental DNA specialists. Anim Conserv. 2020;23(6):632–45.
Article
Google Scholar
Lance RF, Klymus KE, Richter C, Guan X, Farrington HL, Carr MR, et al. Experimental observations on the decay of environmental DNA from bighead and silver carps. Manag Biol Invasions. 2017;8:343–59.
Article
Google Scholar
Robson HLA, Noble TH, Saunders RJ, Robson SKA, Burrows DW, Jerry DR. Fine-tuning for the tropics: application of eDNA technology for invasive fish detection in tropical freshwater ecosystems. Mol Ecol Resour. 2016;16(4):922–32.
Article
CAS
Google Scholar
Vehtari A, Gelman A, Gabry J. Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC. Stat Comput. 2017;27(5):1413–32.
Article
Google Scholar