Avise JC, Arnold J, Ball MR, Bermingham E, Lamb T, Neigel JE, et al. Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu Rev Ecol Syst. 1987;18:489–522.
Google Scholar
Moritz C, Dowling TE, Brown WM. Evolution of animal mitochondrial DNA: relevance for population biology and systematics. Annu Rev Ecol Syst. 1987;18:269–92.
Google Scholar
Wilson AC, Cann RL, Carrii SM, George M, Gyllenstenis ULFB, Kathleen M, et al. Mitochondrial DNA and two perspectives on evolutionary genetics. Biol J Linn Soc. 1985;26:375–400.
Google Scholar
Harrison RG. Animal mitochondrial DNA as a genetic marker in population and evolutionary biology. Trends Ecol Evol. 1989;4:6–11.
CAS
PubMed
Google Scholar
Ballard JWO, Rand DM. The population biology of mitochondrial DNA and its phylogenetic implications. Annu Rev Ecol Evol Syst. 2005;36:621–42.
Google Scholar
Rubinoff D, Holland BS. Between two extremes: mitochondrial DNA is neither the panacea nor the nemesis of phylogenetic and taxonomic inference. Syst Biol. 2005;54:952–61.
PubMed
Google Scholar
Dong Z, Wang Y, Li C, Li L, Men X. Mitochondrial DNA as a molecular marker in insect ecology: current status and future prospects. Ann Entomol Soc Am. 2021;114:470–6.
Google Scholar
Fouquet A, Gilles A, Vences M, Marty C, Blanc M, Gemmell NJ. Underestimation of species richness in neotropical frogs revealed by mtDNA analyses. PLoS ONE. 2007;2:e1109.
PubMed
PubMed Central
Google Scholar
Hajibabaei M, Janzen DH, Burns JM, Hallwachs W, Hebert PDN. DNA barcodes distinguish species of tropical Lepidoptera. Proc Natl Acad Sci USA. 2006;103:968–71.
PubMed
PubMed Central
Google Scholar
Nishikawa K, Matsui M, Hoi-Sen Y, Ahmad N, Yambun P, Belabut DM, et al. Molecular phylogeny and biogeography of caecilians from Southeast Asia (Amphibia, Gymnophiona, Ichthyophiidae), with special reference to high cryptic species diversity in Sundaland. Mol Phylogenet Evol. 2012;63:714–23. https://doi.org/10.1016/j.ympev.2012.02.017.
Article
PubMed
Google Scholar
McLeod DS. Of least concern? Systematics of a cryptic species complex: Limnonectes kuhlii (Amphibia: Anura: Dicroglossidae). Mol Phylogenet Evol. 2010;56:991–1000. https://doi.org/10.1016/j.ympev.2010.04.004.
Article
CAS
PubMed
Google Scholar
Hebert PDN, Cywinska A, Ball SL, DeWaard JR. Biological identifications through DNA barcodes. Proc R Soc Lond B. 2003;270:313–21.
CAS
Google Scholar
Pentinsaari M, Salmela H, Mutanen M, Roslin T. Molecular evolution of a widely-adopted taxonomic marker (COI) across the animal tree of life. Sci Rep. 2016;6:35275.
CAS
PubMed
PubMed Central
Google Scholar
Monaghan MT, Wild R, Elliot M, Fujisawa T, Balke M, Inward DJG, et al. Accelerated species inventory on Madagascar using coalescent-based models of species delineation. Syst Biol. 2009;58:298–311.
CAS
PubMed
Google Scholar
Ratnasingham S, Hebert PDN. A DNA-based registry for all animal species: the Barcode Index Number (BIN) system. PLoS ONE. 2013;8:e66213.
CAS
PubMed
PubMed Central
Google Scholar
Tang CQ, Humphreys AM, Fontaneto D, Barraclough TG. Effects of phylogenetic reconstruction method on the robustness of species delimitation using single-locus data. Methods Ecol Evol. 2014;5:1086–94. https://doi.org/10.1111/2041-210X.12246.
Article
PubMed
PubMed Central
Google Scholar
Kapli P, Lutteropp S, Zhang J, Kobert K, Pavlidis P, Stamatakis A, et al. Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics. 2017;33:1630–8.
CAS
PubMed
PubMed Central
Google Scholar
Blair C, Bryson RW. Cryptic diversity and discordance in single-locus species delimitation methods within horned lizards (Phrynosomatidae: Phrynosoma). Mol Ecol Resour. 2017;17:1168–82. https://doi.org/10.1111/1755-0998.12658.
Article
CAS
PubMed
Google Scholar
Vences M, Thomas M, Bonett RM, Vieites DR. Deciphering amphibian diversity through DNA barcoding: chances and challenges. Philos Trans R Soc B. 2005;360:1859–68. https://doi.org/10.1098/rstb.2005.1717.
Article
CAS
Google Scholar
Fujisawa T, Barraclough TG. Delimiting species using single-locus data and the Generalized Mixed Yule Coalescent approach: a revised method and evaluation on simulated data sets. Syst Biol. 2013;62:707–24.
PubMed
PubMed Central
Google Scholar
Rach J, Bergmann T, Paknia O, De Salle R, Schierwater B, Hadrys H. The marker choice: unexpected resolving power of an unexplored CO1 region for layered DNA barcoding approaches. PLoS ONE. 2017;12:e0174842.
PubMed
PubMed Central
Google Scholar
Hertwig S, De Sá RO, Haas A. Phylogenetic signal and the utility of 12S and 16S mtDNA in frog phylogeny. J Zool Syst Evol Res. 2004;42:2–18.
Google Scholar
Smith MA, Poyarkov NA, Hebert PDN. CO1 DNA barcoding amphibians: take the chance, meet the challenge. Mol Ecol Resour. 2008;8:235–46.
CAS
PubMed
Google Scholar
Murphy RW, Crawford AJ, Bauer AM, Che J, Donnellan SC, Fritz U, et al. Cold Code: The global initiative to DNA barcode amphibians and nonavian reptiles. Mol Ecol Resour. 2013;13:161–7.
CAS
Google Scholar
Che J, Chen HM, Yang JX, Jin JQ, Jiang K, Yuan ZY, et al. Universal COI primers for DNA barcoding amphibians. Mol Ecol Resour. 2012;12:247–58.
CAS
PubMed
Google Scholar
Vences M, Thomas M, van der Meijden A, Chiari Y, Vieites DR. Comparative performance of the 16S rRNA gene in DNA barcoding of amphibians. Front Zool. 2005;2:5.
PubMed
PubMed Central
Google Scholar
Vences M, Nagy ZT, Sonet G, Verheyen E. DNA barcoding amphibians and reptiles. Methods Mol Biol. 2012;858:79–107.
CAS
PubMed
Google Scholar
Remigio EA, Hebert PDN. Testing the utility of partial COI sequences for phylogenetic estimates of gastropod relationships. Mol Phylogenet Evol. 2003;29:641–7.
CAS
PubMed
Google Scholar
Zheng L, He J, Lin Y, Cao W, Zhang W. 16S rRNA is a better choice than COI for DNA barcoding hydrozoans in the coastal waters of China. Acta Oceanol Sin. 2014;33:55–76.
Google Scholar
Goebel AM, Donnelly JM, Atz ME. PCR primers and amplification methods for 12S ribosomal DNA, the control region, Cytochrome Oxidase I, and Cytochrome b in bufonids and other frogs, and an overview of PCR primers which have amplified DNA in amphibians successfully. Mol Phylogenet Evol. 1999;11:163–99.
CAS
PubMed
Google Scholar
Darst CR, Cannatella DC. Novel relationships among hyloid frogs inferred from 12S and 16S mitochondrial DNA sequences. Mol Phylogenet Evol. 2004;31:462–75.
CAS
PubMed
Google Scholar
Chan KO, Wood PLJ, Anuar S, Muin MA, Quah ESH, Sumarli AXY, et al. A new species of upland Stream Toad of the genus Ansonia Stoliczka, 1870 (Anura: Bufonidae) from northeastern Peninsular Malaysia. Zootaxa. 2014;3764:427–40.
PubMed
Google Scholar
Chan KO, Hutter CR, Wood PLJ, Su Y-C, Brown RM. Gene flow increases phylogenetic structure and inflates cryptic species estimations: a case study on widespread Philippine Puddle Frogs (Occidozyga laevis). Syst Biol. 2022;71:40–57.
Google Scholar
Rowley JJL, Le DTT, Hoang HD, Dau VQ, Cao TT. Two new species of Theloderma (Anura: Rhacophoridae) from Vietnam. Zootaxa. 2011;3098:1–20.
Google Scholar
Chandramouli SR, Vasudevan K, Harikrishnan S, Dutta SK, Janani SJ, Sharma R, et al. A new genus and species of arboreal toad with phytotelmonous larvae, from the Andaman Islands, India (Lissamphibia, Anura, Bufonidae). Zookeys. 2016;2016:57–90.
Google Scholar
Garg S, Biju SD. Molecular and morphological study of Leaping Frogs (Anura, Ranixalidae) with description of two new species. PLoS ONE. 2016;11:e0166326.
PubMed
PubMed Central
Google Scholar
Rojas RR, Chaparro JC, de Carvalho VT, Ávila RW, Farias IP, Hrbek T, et al. Uncovering the diversity in the Amazophrynella minuta complex: integrative taxonomy reveals a new species of Amazophrynella (Anura, Bufonidae) from southern Peru. Zookeys. 2016;2016:43–71.
Google Scholar
Wang J, Yang J, Li Y, Lyu Z, Zeng Z, Liu Z, et al. Morphology and molecular genetics reveal two new Leptobrachella species in southern China (Anura, Megophryidae). Zookeys. 2018;2018:105–37.
Google Scholar
Al-Razi H, Maria M, Muzaffar SB. A new species of cryptic bush frog (anura, rhacophoridae, Raorchestes) from northeastern Bangladesh. Zookeys. 2020;2020:127–51.
Google Scholar
Crottini A, Rosa GM, Penny SG, Cocca W, Holderied MW, Rakotozafy LMS, et al. A new stump-toed frog from the transitional forests of NW Madagascar (Anura, Microhylidae, Cophylinae, Stumpffia). Zookeys. 2020;2020:139–64.
Google Scholar
Köhler G, Vargas J, Than NL, Schell T, Janke A, Pauls SU, et al. A taxonomic revision of the genus Phrynoglossus in Indochina with the description of a new species and comments on the classification within Occidozyginae (Amphibia, Anura, Dicroglossidae). Vertebr Zool. 2021;71:1–26.
Google Scholar
Puillandre N, Brouillet S, Achaz G. ASAP: assemble species by automatic partitioning. Mol Ecol Resour. 2021;21:609–20.
PubMed
Google Scholar
Chan KO, Hutter CR, Wood PL, Grismer LL, Das I, Brown RM. Gene flow creates a mirage of cryptic species in a Southeast Asian spotted stream frog complex. Mol Ecol. 2020;29:3970–87.
CAS
PubMed
Google Scholar
Wiens JJ. Missing data, incomplete taxa, and phylogenetic accuracy. Syst Biol. 2003;52:528–38.
PubMed
Google Scholar
Wiens JJ. Incomplete taxa, incomplete characters, and phylogenetic accuracy: Is there a missing data problem? J Vertebr Paleontol. 2003;23:297–310.
Google Scholar
Philippe H, Snell EA, Bapteste E, Lopez P, Holland PWH, Casane D. Phylogenomics of eukaryotes: impact of missing data on large alignments. Mol Biol Evol. 2004;21:1740–52.
CAS
PubMed
Google Scholar
Thomson RC, Shaffer HB. Sparse supermatrices for phylogenetic inference: taxonomy, alignment, rogue taxa, and the phylogeny of living turtles. Syst Biol. 2010;59:42–58.
PubMed
Google Scholar
Wiens JJ. Can incomplete taxa rescue phylogenetic analyses from long-branch attraction? Syst Biol. 2005;54:731–42.
PubMed
Google Scholar
Wiens JJ, Morrill MC. Missing data in phylogenetic analysis: reconciling results from simulations and empirical data. Syst Biol. 2011;60:719–31.
PubMed
Google Scholar
Chan KO, Schoppe S, Rico ELB, Brown RM. Molecular systematic investigation of Philippine Puddle Frogs (Anura: Dicroglossidae: Occidozyga Kuhl and Van Hasselt 1822) reveal new candidate species and a novel pattern of species dyads. Philipp J Syst Biol. 2021;14:1–14.
Google Scholar
Pauly GB, Hillis DM, Cannatella DC. The history of a nearctic colonization: molecular phylogenetics and biogeography of the nearctic toads (Bufo). Evolution (N Y). 2004;58:2517–35.
CAS
Google Scholar
Xia Y, Gu HF, Peng R, Chen Q, Zheng YC, Murphy RW, et al. COI is better than 16S rRNA for DNA barcoding Asiatic salamanders (Amphibia: Caudata: Hynobiidae). Mol Ecol Resour. 2012;12:48–56.
CAS
PubMed
Google Scholar
Rockney HJ, Ofori-Boateng C, Porcino N, Leaché AD. A comparison of DNA barcoding markers in West African frogs. Afr J Herpetol. 2015;64:135–47.
Google Scholar
Maya-Soriano MJ, Holt WV, Lloyd RE. Biobanked amphibian samples confirmed to species level using 16S rRNA DNA barcodes. Biopreserv Biobank. 2012;10:22–8.
CAS
PubMed
Google Scholar
Grosjean S, Ohler A, Chuaynkern Y, Cruaud C, Hassanin A. Improving biodiversity assessment of anuran amphibians using DNA barcoding of tadpoles. Case studies from Southeast Asia. C R Biol. 2015;338:351–61. https://doi.org/10.1016/j.crvi.2015.03.015.
Article
PubMed
Google Scholar
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–9. https://doi.org/10.1093/bioinformatics/bts199.
Article
PubMed
PubMed Central
Google Scholar
Flury JM, Haas A, Brown R, Das I, Yong Min P, Boon-Hee K, et al. Unexpectedly high levels of lineage diversity in Sundaland Puddle Frogs (Dicroglossidae: Occidozyga Kuhl and Van Hasselt, 1822). Mol Phylogenet Evol. 2021;163:107210.
PubMed
Google Scholar
Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74. https://doi.org/10.1093/molbev/msu300.
Article
CAS
PubMed
Google Scholar
Hoang DT, Chernomor O, von Haeseler A, Minh BQ, Le SV. UFBoot2: improving the ultrafast bootstrap approximation. Mol Biol Evol. 2017;35:518–22. https://doi.org/10.1093/molbev/msx281.
Article
CAS
PubMed Central
Google Scholar
Schliep KP. phangorn: phylogenetic analysis in R. Bioinformatics. 2011;27:592–3.
CAS
PubMed
Google Scholar
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35:1547–9.
CAS
PubMed
PubMed Central
Google Scholar