Waldvogel AM, Feldmeyer B, Rolshausen G, Exposito-Alonso M, Rellstab C, Kofler R, Mock T, Schmid K, Schmitt I, Bataillon T, et al. Evolutionary genomics can improve prediction of species’ responses to climate change. Evol Lett. 2020;4(1):4–18. https://doi.org/10.1002/evl3.154.
Article
PubMed
PubMed Central
Google Scholar
Healy TM, Brennan RS, Whitehead A, Schulte PM. Tolerance traits related to climate change resilience are independent and polygenic. Global Change Biol. 2018;24(11):5348–60. https://doi.org/10.1111/gcb.14386.
Article
Google Scholar
Somero GN. The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers.’ J Exp Biol. 2010;213(6):912–20. https://doi.org/10.1242/jeb.037473.
Article
CAS
PubMed
Google Scholar
Travis JMJ, Delgado M, Bocedi G, Baguette M, Bartoń K, Bonte D, Boulangeat I, Hodgson JA, Kubisch A, Penteriani V, et al. Dispersal and species’ responses to climate change. Oikos. 2013;122(11):1532–40. https://doi.org/10.1111/j.1600-0706.2013.00399.x.
Article
Google Scholar
Pearson RG, Stanton JC, Shoemaker KT, Aiello-Lammens ME, Ersts PJ, Horning N, Fordham DA, Raxworthy CJ, Ryu HY, McNees J, et al. Life history and spatial traits predict extinction risk due to climate change. Nat Clim Chang. 2014;4(3):217–21. https://doi.org/10.1038/nclimate2113.
Article
Google Scholar
Williams SE, Shoo LP, Isaac JL, Hoffmann AA, Langham G. Towards an integrated framework for assessing the vulnerability of species to climate change. PLoS Biol. 2008;6(12):2621–6. https://doi.org/10.1371/journal.pbio.0060325.
Article
CAS
PubMed
Google Scholar
Hoffmann AA, Sgro CM. Climate change and evolutionary adaptation. Nature. 2011;470(7335):479–85. https://doi.org/10.1038/nature09670.
Article
CAS
PubMed
Google Scholar
Stange M, Barrett RDH, Hendry AP. The importance of genomic variation for biodiversity, ecosystems and people. Nat Rev Genet. 2021;22(2):89–105. https://doi.org/10.1038/s41576-020-00288-7.
Article
CAS
PubMed
Google Scholar
Lai Y-T, Yeung CKL, Omland KE, Pang E-L, Hao Y, Liao B-Y, Cao H-F, Zhang B-W, Yeh C-F, Hung C-M, et al. Standing genetic variation as the predominant source for adaptation of a songbird. PNAS. 2019;116(6):2152–7. https://doi.org/10.1073/pnas.1813597116.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morris MRJ, Bowles E, Allen BE, Jamniczky HA, Rogers SM. Contemporary ancestor? Adaptive divergence from standing genetic variation in Pacific marine threespine stickleback. BMC Evol Biol. 2018;18(1):113. https://doi.org/10.1186/s12862-018-1228-8.
Article
PubMed
PubMed Central
Google Scholar
DeWoody JA, Harder AM, Mathur S, Willoughby JR. The long-standing significance of genetic diversity in conservation. Mol Ecol. 2021;30(17):4147–54. https://doi.org/10.1111/mec.16051.
Article
PubMed
Google Scholar
Eckert CG, Samis KE, Lougheed SC. Genetic variation across species’ geographical ranges: the central-marginal hypothesis and beyond. Mol Ecol. 2008;17(5):1170–88. https://doi.org/10.1111/j.1365-294X.2007.03659.x.
Article
CAS
PubMed
Google Scholar
Smith S, Brauer CJ, Sasaki M, Unmack PJ, Guillot G, Laporte M, Bernatchez L, Beheregaray LB. Latitudinal variation in climate-associated genes imperils range edge populations. Mol Ecol. 2020;29(22):4337–49. https://doi.org/10.1111/mec.15637.
Article
CAS
PubMed
Google Scholar
Polechova J, Barton NH. Limits to adaptation along environmental gradients. PNAS. 2015;112(20):6401–6. https://doi.org/10.1073/pnas.1421515112.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bridle JR, Polechova J, Kawata M, Butlin RK. Why is adaptation prevented at ecological margins? New insights from individual-based simulations. Ecol Lett. 2010;13(4):485–94. https://doi.org/10.1111/j.1461-0248.2010.01442.x.
Article
PubMed
Google Scholar
Angert AL, Bradshaw HD Jr, Schemske DW. Using experimental evolution to investigate geographic range limits in monkeyflowers. Evolution. 2008;62(10):2660–75. https://doi.org/10.1111/j.1558-5646.2008.00471.x.
Article
PubMed
Google Scholar
Fordham DA, Brook BW, Moritz C, Nogues-Bravo D. Better forecasts of range dynamics using genetic data. Trends Ecol Evol. 2014;29(8):436–43. https://doi.org/10.1016/j.tree.2014.05.007.
Article
PubMed
Google Scholar
Potter S, Xue AT, Bragg JG, Rosauer DF, Roycroft EJ, Moritz C. Pleistocene climatic changes drive diversification across a tropical savanna. Mol Ecol. 2018;27(2):520–32. https://doi.org/10.1111/mec.14441.
Article
PubMed
Google Scholar
Paz A, Ibanez R, Lips KR, Crawford AJ. Testing the role of ecology and life history in structuring genetic variation across a landscape: a trait-based phylogeographic approach. Mol Ecol. 2015;24(14):3723–37. https://doi.org/10.1111/mec.13275.
Article
PubMed
Google Scholar
Avise JC, Bowen BW, Ayala FJ. In the light of evolution X: comparative phylogeography. PNAS. 2016;113(29):7957–61. https://doi.org/10.1073/pnas.1604338113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zamudio KR, Bell RC, Mason NA. Phenotypes in phylogeography: species’ traits, environmental variation, and vertebrate diversification. PNAS. 2016;113(29):8041–8. https://doi.org/10.1073/pnas.1602237113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Papadopoulou A, Knowles LL. Toward a paradigm shift in comparative phylogeography driven by trait-based hypotheses. PNAS. 2016;113(29):8018–24. https://doi.org/10.1073/pnas.1601069113.
Article
CAS
PubMed
PubMed Central
Google Scholar
DeChaine EG, Martin AP. Historical biogeography of two alpine butterflies in the Rocky Mountains: broad-scale concordance and local-scale discordance. J Biogeogr. 2005;32(11):1943–56. https://doi.org/10.1111/j.1365-2699.2005.01356.x.
Article
Google Scholar
Byrne M, Yeates DK, Joseph L, Kearney M, Bowler J, Williams MA, Cooper S, Donnellan SC, Keogh JS, Leys R, et al. Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota. Mol Ecol. 2008;17(20):4398–417. https://doi.org/10.1111/j.1365-294X.2008.03899.x.
Article
CAS
PubMed
Google Scholar
McLaren S, Wallace MW. Plio-Pleistocene climate change and the onset of aridity in southeastern Australia. Global Planet Change. 2010;71(1–2):55–72. https://doi.org/10.1016/j.gloplacha.2009.12.007.
Article
Google Scholar
Duckett PE, Stow AJ, Burridge C. Higher genetic diversity is associated with stable water refugia for a gecko with a wide distribution in arid Australia. Divers Distrib. 2013;19(8):1072–83. https://doi.org/10.1111/ddi.12089.
Article
Google Scholar
Schultz MB, Ierodiaconou DA, Smith SA, Horwitz P, Richardson AM, Crandall KA, Austin CM. Sea-level changes and palaeo-ranges: reconstruction of ancient shorelines and river drainages and the phylogeography of the Australian land crayfish Engaeus sericatus Clark (Decapoda: Parastacidae). Mol Ecol. 2008;17(24):5291–314. https://doi.org/10.1111/j.1365-294X.2008.03996.x.
Article
PubMed
Google Scholar
Unmack PJ, Hammer MP, Adams M, Johnson JB, Dowling TE. The role of continental shelf width in determining freshwater phylogeographic patterns in south-eastern Australian pygmy perches (Teleostei: Percichthyidae). Mol Ecol. 2013;22(6):1683–99. https://doi.org/10.1111/mec.12204.
Article
CAS
PubMed
Google Scholar
Neal WC, James EA, Bayly MJ. Phylogeography, classification and conservation of pink zieria (Zieria veronicea; Rutaceae): influence of changes in climate, geology and sea level in south-eastern Australia. Plant Syst Evol. 2019. https://doi.org/10.1007/s00606-019-01589-z.
Article
Google Scholar
Byrne M, Steane DA, Joseph L, Yeates DK, Jordan GJ, Crayn D, Aplin K, Cantrill DJ, Cook LG, Crisp MD, et al. Decline of a biome: evolution, contraction, fragmentation, extinction and invasion of the Australian mesic zone biota. J Biogeogr. 2011;38(9):1635–56. https://doi.org/10.1111/j.1365-2699.2011.02535.x.
Article
Google Scholar
Pepper M, Keogh JS. Life in the “dead heart” of Australia: The geohistory of the Australian deserts and its impact on genetic diversity of arid zone lizards. J Biogeogr. 2021;48(4):716–46. https://doi.org/10.1111/jbi.14063.
Article
Google Scholar
Norgate M, Chamings J, Pavlova A, Bull JK, Murray ND, Sunnucks P. Mitochondrial DNA indicates late Pleistocene divergence of populations of Heteronympha merope, an emerging model in environmental change biology. PLoS ONE. 2009;4(11): e7950. https://doi.org/10.1371/journal.pone.0007950.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kreger KM, Shaban B, Wapstra E, Burridge CP. Phylogeographic parallelism: concordant patterns in closely related species illuminate underlying mechanisms in the historically glaciated Tasmanian landscape. J Biogeogr. 2020;47(8):1674–86. https://doi.org/10.1111/jbi.13831.
Article
Google Scholar
Davis CD, Epps CW, Flitcroft RL, Banks MA. Refining and defining riverscape genetics: how rivers influence population genetic structure. Wiley Interdiscip Rev Water. 2018;5(2): e1269. https://doi.org/10.1002/wat2.1269.
Article
Google Scholar
Wedderburn SD, Hammer MP, Bice CM. Shifts in small-bodied fish assemblages resulting from drought-induced water level recession in terminating lakes of the Murray-Darling Basin, Australia. Hydrobiologia. 2012;691(1):35–46. https://doi.org/10.1007/s10750-011-0993-9.
Article
CAS
Google Scholar
Hammer MP, Bice CM, Hall A, Frears A, Watt A, Whiterod NS, Beheregaray LB, Harris JO, Zampatti BP. Freshwater fish conservation in the face of critical water shortages in the southern Murray-Darling Basin, Australia. Mar Freshw Res. 2013;64(9):807. https://doi.org/10.1071/mf12258.
Article
Google Scholar
Cole TL, Hammer MP, Unmack PJ, Teske PR, Brauer CJ, Adams M, Beheregaray LB. Range-wide fragmentation in a threatened fish associated with post-European settlement modification in the Murray-Darling Basin. Australia Conserv Genet. 2016;17(6):1377–91. https://doi.org/10.1007/s10592-016-0868-8.
Article
Google Scholar
Brauer CJ, Hammer MP, Beheregaray LB. Riverscape genomics of a threatened fish across a hydroclimatically heterogeneous river basin. Mol Ecol. 2016;25(20):5093–113. https://doi.org/10.1111/mec.13830.
Article
CAS
PubMed
Google Scholar
Brauer CJ, Unmack PJ, Hammer MP, Adams M, Beheregaray LB. Catchment-scale conservation units identified for the threatened Yarra pygmy perch (Nannoperca obscura) in highly modified river systems. PLoS ONE. 2013;8(12): e82953. https://doi.org/10.1371/journal.pone.0082953.
Article
PubMed
PubMed Central
Google Scholar
Buckley SJ, Domingos FMCB, Attard C, Brauer CJ, Sandoval-Castillo J, Lodge R, Unmack P, Beheregaray LB. Phylogenomic history of enigmatic pygmy perches: implications for biogeography, taxonomy and conservation. Royal Soc Open Sci. 2018. https://doi.org/10.1098/rsos.172125.
Article
Google Scholar
Hammer MP, Unmack PJ, Adams M, Johnson JB, Walker KF. Phylogeographic structure in the threatened Yarra pygmy perch Nannoperca obscura (Teleostei: Percichthyidae) has major implications for declining populations. Conserv Genet. 2010;11(1):213–23. https://doi.org/10.1007/s10592-009-0024-9.
Article
Google Scholar
Morrongiello JR, Bond NR, Crook DA, Wong BB. Nuptial coloration varies with ambient light environment in a freshwater fish. J Evol Biol. 2010;23(12):2718–25. https://doi.org/10.1111/j.1420-9101.2010.02149.x.
Article
CAS
PubMed
Google Scholar
Morrongiello JR, Bond NR, Crook DA, Wong BBM. Spatial variation in egg size and egg number reflects trade-offs and bet-hedging in a freshwater fish. J Anim Ecol. 2012;81(4):806–17. https://doi.org/10.1111/j.1365-2656.2012.01961.x.
Article
PubMed
Google Scholar
Brauer CJ, Unmack PJ, Beheregaray LB. Comparative ecological transcriptomics and the contribution of gene expression to the evolutionary potential of a threatened fish. Mol Ecol. 2017;26(24):6841–56. https://doi.org/10.1111/mec.14432.
Article
PubMed
Google Scholar
Beheregaray LB, Attard CR, Brauer CJ, Whiterod NS, Wedderburn SD, Hammer MP. Conservation breeding and reintroduction of pygmy perches in the lower Murray-Darling Basin, Australia: two similar species, two contrasting outcomes. In: Soorae PS, editor. Global conservation translocation perspectives: 2021 Case studies from around the globe. Gland, Switzerland; IUCN SSC Conservation Translocation Specialist Group, Environment Agency, 2021.p. 26–31.
Attard CR, Moller LM, Sasaki M, Hammer MP, Bice CM, Brauer CJ, Carvalho DC, Harris JO, Beheregaray LB. A novel holistic framework for genetic-based captive-breeding and reintroduction programs. Conserv Biol. 2016;30(5):1060–9. https://doi.org/10.1111/cobi.12699.
Article
CAS
PubMed
Google Scholar
Brauer CJ, Beheregaray LB. Recent and rapid anthropogenic habitat fragmentation increases extinction risk for freshwater biodiversity. Evol Appl. 2020;13(10):2857–69. https://doi.org/10.1111/eva.13128.
Article
PubMed
PubMed Central
Google Scholar
Wedderburn SD, Whiterod NS, Vilizzi L. Occupancy modelling confirms the first extirpation of a freshwater fish from one of the world’s largest river systems. Aquat Conserv Mar Freshwat Ecosyst. 2021. https://doi.org/10.1002/aqc.3755.
Article
Google Scholar
Buckley SJ, Brauer C, Unmack PJ, Hammer MP, Beheregaray LB. The roles of aridification and sea level changes in the diversification and persistence of freshwater fish lineages. Mol Ecol. 2021;30(19):4866–83. https://doi.org/10.1111/mec.16082.
Article
CAS
PubMed
Google Scholar
Sunnucks P, Hales DF. Numerous transposed sequences of mitochondrial cytochrome oxidase I-II in aphids of the genus Sitobion (Hemiptera: Aphididae). Mol Biol Evol. 1996;13(3):510–24. https://doi.org/10.1093/oxfordjournals.molbev.a025612.
Article
CAS
PubMed
Google Scholar
Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE. Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS ONE. 2012;7(5): e37135. https://doi.org/10.1371/journal.pone.0037135.
Article
CAS
PubMed
PubMed Central
Google Scholar
Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA. Stacks: an analysis tool set for population genomics. Mol Ecol. 2013;22(11):3124–40. https://doi.org/10.1111/mec.12354.
Article
PubMed
PubMed Central
Google Scholar
Eaton DA. PyRAD: assembly of de novo RADseq loci for phylogenetic analyses. Bioinformatics. 2014;30(13):1844–9. https://doi.org/10.1093/bioinformatics/btu121.
Article
CAS
PubMed
Google Scholar
Goudet J. hierfstat, a package for r to compute and test hierarchical F-statistics. Mol Ecol Notes. 2005;5(1):184–6. https://doi.org/10.1111/j.1471-8286.2004.00828.x.
Article
Google Scholar
Do C, Waples RS, Peel D, Macbeth GM, Tillett BJ, Ovenden JR. NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne ) from genetic data. Mol Ecol Resour. 2014;14(1):209–14. https://doi.org/10.1111/1755-0998.12157.
Article
CAS
PubMed
Google Scholar
Rozas J, Ferrer-Mata A, Sanchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sanchez-Gracia A. DnaSP 6: DNA sequence polymorphism analysis of large data sets. Mol Biol Evol. 2017;34(12):3299–302. https://doi.org/10.1093/molbev/msx248.
Article
CAS
PubMed
Google Scholar
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30(9):1312–3. https://doi.org/10.1093/bioinformatics/btu033.
Article
CAS
PubMed
PubMed Central
Google Scholar
Minh BQ, Schmidt HA, Chernomor O, Schrempf D, Woodhams MD, von Haeseler A, Lanfear R. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol Biol Evol. 2020;37(5):1530–4. https://doi.org/10.1093/molbev/msaa015.
Article
CAS
PubMed
PubMed Central
Google Scholar
Minh BQ, Hahn MW, Lanfear R. New methods to calculate concordance factors for phylogenomic datasets. Mol Biol Evol. 2020. https://doi.org/10.1093/molbev/msaa106.
Article
PubMed
PubMed Central
Google Scholar
Chifman J, Kubatko L. Quartet inference from SNP data under the coalescent model. Bioinformatics. 2014;30(23):3317–24. https://doi.org/10.1093/bioinformatics/btu530.
Article
CAS
PubMed
PubMed Central
Google Scholar
Swofford DL: PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4.0b10, vol. Version 4.0. Sunderland, Massachusetts: Sinauer Associates; 2002.
Pickrell JK, Pritchard JK. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet. 2012;8(11): e1002967. https://doi.org/10.1371/journal.pgen.1002967.
Article
CAS
PubMed
PubMed Central
Google Scholar
Humphries P. Life history, food and habitat of southern pygmy perch, Nannoperca australis, in the Macquarie River. Tasmania Mar Freshw Res. 1995;46(8):1159–69. https://doi.org/10.1071/MF9951159.
Article
Google Scholar
Excoffier L, Dupanloup I, Huerta-Sanchez E, Sousa VC, Foll M. Robust demographic inference from genomic and SNP data. PLoS Genet. 2013;9(10): e1003905. https://doi.org/10.1371/journal.pgen.1003905.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xue AT, Hickerson MJ. multi-dice: r package for comparative population genomic inference under hierarchical co-demographic models of independent single-population size changes. Mol Ecol Resour. 2017;17(6):e212–24. https://doi.org/10.1111/1755-0998.12686.
Article
CAS
PubMed
PubMed Central
Google Scholar
Csilléry K, François O, Blum MGB. abc: an R package for approximate Bayesian computation (ABC). Methods Ecol Evol. 2012;3(3):475–9. https://doi.org/10.1111/j.2041-210X.2011.00179.x.
Article
Google Scholar
Thuiller W, Lafourcade B, Engler R, Araújo MB. BIOMOD—a platform for ensemble forecasting of species distributions. Ecography. 2009;32(3):369–73. https://doi.org/10.1111/j.1600-0587.2008.05742.x.
Article
Google Scholar
Brown JL, Hill DJ, Dolan AM, Carnaval AC, Haywood AM. PaleoClim, high spatial resolution paleoclimate surfaces for global land areas. Sci Data. 2018;5(1): 180254. https://doi.org/10.1038/sdata.2018.254.
Article
PubMed
PubMed Central
Google Scholar
Barbet-Massin M, Jiguet F, Albert CH, Thuiller W. Selecting pseudo-absences for species distribution models: how, where and how many? Methods Ecol Evol. 2012;3(2):327–38. https://doi.org/10.1111/j.2041-210X.2011.00172.x.
Article
Google Scholar
Hao T, Elith J, Guillera-Arroita G, Lahoz-Monfort JJ. A review of evidence about use and performance of species distribution modelling ensembles like BIOMOD. Divers Distrib. 2019;25(5):839–52. https://doi.org/10.1111/ddi.12892.
Article
Google Scholar
Waters JM, Burridge CP, Craw D. The lasting biological signature of Pliocene tectonics: reviewing the re-routing of Australia’s largest river drainage system. J Biogeogr. 2019;46:1494–503. https://doi.org/10.1111/jbi.13612.
Article
Google Scholar
Liu L, Xi Z, Davis CC. Coalescent methods are robust to the simultaneous effects of long branches and incomplete lineage sorting. Mol Biol Evol. 2015;32(3):791–805. https://doi.org/10.1093/molbev/msu331.
Article
CAS
PubMed
Google Scholar
Byrne M. Evidence for multiple refugia at different time scales during Pleistocene climatic oscillations in southern Australia inferred from phylogeography. Quat Sci Rev. 2008;27(27):2576–85. https://doi.org/10.1016/j.quascirev.2008.08.032.
Article
Google Scholar
Hesse PP, Magee JW, van der Kaars S. Late Quaternary climates of the Australian arid zone: a review. Quat Int. 2004;118–119:87–102. https://doi.org/10.1016/S1040-6182(03)00132-0.
Article
Google Scholar
Fitzsimmons KE, Cohen TJ, Hesse PP, Jansen J, Nanson GC, May J-H, Barrows TT, Haberlah D, Hilgers A, Kelly T, et al. Late Quaternary palaeoenvironmental change in the Australian drylands. Quat Sci Rev. 2013;74:78–96. https://doi.org/10.1016/j.quascirev.2012.09.007.
Article
Google Scholar
Aitken SN, Yeaman S, Holliday JA, Wang T, Curtis-McLane S. Adaptation, migration or extirpation: climate change outcomes for tree populations. Evol Appl. 2008;1(1):95–111. https://doi.org/10.1111/j.1752-4571.2007.00013.x.
Article
PubMed
PubMed Central
Google Scholar
Woodward GMA, Malone B. Patterns of abundance and habitat use by Nannoperca obscura (Yarra pygmy perch) and Nannoperca australis (southern pygmy perch). Proc R Soc Vic. 2002;114(1–2):61–72.
Google Scholar
Prentis PJ, Wilson JR, Dormontt EE, Richardson DM, Lowe AJ. Adaptive evolution in invasive species. Trends Plant Sci. 2008;13(6):288–94. https://doi.org/10.1016/j.tplants.2008.03.004.
Article
CAS
PubMed
Google Scholar
Williams JL, Hufbauer RA, Miller TEX. How evolution modifies the variability of range expansion. Trends Ecol Evol. 2019;34(10):903–13. https://doi.org/10.1016/j.tree.2019.05.012.
Article
PubMed
Google Scholar
Bridle JR, Vines TH. Limits to evolution at range margins: when and why does adaptation fail? Trends Ecol Evol. 2007;22(3):140–7. https://doi.org/10.1016/j.tree.2006.11.002.
Article
PubMed
Google Scholar
Bouzat JL. Conservation genetics of population bottlenecks: the role of chance, selection, and history. Conserv Genet. 2010;11(2):463–78. https://doi.org/10.1007/s10592-010-0049-0.
Article
Google Scholar
Szűcs M, Vahsen ML, Melbourne BA, Hoover C, Weiss-Lehman C, Hufbauer RA. Rapid adaptive evolution in novel environments acts as an architect of population range expansion. PNAS. 2017;114(51):13501–6. https://doi.org/10.1073/pnas.1712934114.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pavlova A, Beheregaray LB, Coleman R, Gilligan D, Harrisson KA, Ingram BA, Kearns J, Lamb AM, Lintermans M, Lyon J, et al. Severe consequences of habitat fragmentation on genetic diversity of an endangered Australian freshwater fish: a call for assisted gene flow. Evol Appl. 2017;10(6):531–50. https://doi.org/10.1111/eva.12484.
Article
PubMed
PubMed Central
Google Scholar