Chapple DG, Hitchmough RA. Biogeography of New Zealand lizards. New Zealand Lizards. Berlin: Springer; 2016. p. 109–31. doi:https://doi.org/10.1007/978-3-319-41674-8_5.
Nielsen SV, Bauer AM, Jackman TR, Hitchmough RA, Daugherty CH. New Zealand geckos (Diplodactylidae): Cryptic diversity in a post-Gondwanan lineage with trans-Tasman affinities. Mol Phylogenet Evol. 2011;59(1):1–22.
Article
Google Scholar
Daugherty CH, Gibbs GW, Hitchmough RA. Mega-island or micro-continent? New Zealand and its fauna. Trends in ecology and evolution, vol. 8. New York: Elsevier; 1993. p. 437–42.
Google Scholar
Skipwith PL, Bi K, Oliver PM. Relicts and radiations: Phylogenomics of an Australasian lizard clade with east Gondwanan origins (Gekkota: Diplodactyloidea). Mol Phylogenet Evol. 2019;140:106589.
Article
Google Scholar
Hitchmough RA, Nielsen SV, Lysaght JA, Bauer AM. A new species of Naultinus from the Te Paki area, northern New Zealand. Zootaxa. 2021;4915(3):389–400. https://doi.org/10.11646/zootaxa.4915.3.7.
Article
Google Scholar
Hitchmough RA, Nielsen SV, Bauer AM. Earning your stripes: a second species of striped gecko in the New Zealand gecko genus Toropuku (Gekkota: Diplodactylidae). Zootaxa. 2020;4890(4):578–88.
Article
Google Scholar
Doughty P, Hutchinson MN. A new species of Lucasium (Squamata: Diplodactylidae) from the southern deserts of Western Australia and South Australia. Rec West Aust Museum. 2008;25:95–106. https://doi.org/10.18195/issn.0312-3162.25(1).2008.095-106.
Article
Google Scholar
Vanderduys E. A new species of gecko (Squamata: Diplodactylidae: Strophurus) from north Queensland. Australia Zootaxa. 2016;4117(3):341–58. https://doi.org/10.11646/zootaxa.4117.3.3.
Article
PubMed
Google Scholar
Bauer AM, Jackman T, Sadlier RA, Whitaker AH, Anthony H. A new genus and species of diplodactylid gecko (Reptilia: Squamata: Diplodactylidae) from Northwestern New Caledonia. Pacific Sci. 2006;60(1):125–36. https://doi.org/10.1353/psc.2005.0055.
Article
Google Scholar
Bauer AM, Whitaker AH, Sadlier RA. Two new species of the genus Bavayia (Reptilia: Squamata: Diplodactylidae) from New Caledonia. Southwest Pacific Pacific Sci. 1998;52(4):342–55.
Google Scholar
Bauer AM, Jackman TR, Sadlier RA, Shea G, Whitaker AH. A new small-bodied species of Bavayia (Reptilia: Squamata: Diplodactylidae) from Southeastern New Caledonia. Pacific Sci. 2008;62(2):247.
Article
Google Scholar
Stephenson N, Stephenson E. The osteology of the New Zealand geckos and its bearing on their morphological status. Trans R Soc New Zeal. 1955;84(2):341–58.
Google Scholar
McCann C. The lizards of New Zealand. Dom Museum Bull. 1955;17:1–127.
Google Scholar
Hitchmough RA, Patterson GB, Chapple DG. Putting a name to diversity: Taxonomy of the New Zealand lizard fauna. Berlin: Springer; 2016. p. 87–108. doi: https://doi.org/10.1007/978-3-319-41674-8_4.
Daugherty CH, Patterson GB, Hitchmough RA. Taxonomic and conservation review of the New Zealand herpetofauna. New Zeal J Zool. 1994;21(4):317–23. https://doi.org/10.1080/03014223.1994.9518002.
Article
Google Scholar
Hitchmough RA. A systematic revision of the New Zealand Gekkonidae. Victoria University of Wellington; 1997.
Chambers GK, Wee Ming B, Buckley TR, Hitchmough RA. Using molecular methods to understand the Gondwanan affinities of the New Zealand biota: three case studies. Aust J Bot. 2001;49(3):377–87. https://doi.org/10.1071/BT00021.
Article
Google Scholar
Chong N. Phylogenetic analysis of the endemic New Zealand gecko species complex Hoplodactylus pacificus using DNA sequences of the 16S rRNA gene. New Zealand.: Victoria University; 1999.
Google Scholar
Bauer A. Phylogenetic systematics and biogeography of the Carphodactylini (Reptilia: Gekkonidae). Bonn Zool Bull. 1990;30:1–218.
Google Scholar
Russell AP, Bauer AM. The giant gecko Hoplodactylus delcourti and its relations to gigantism and insular endemism in the Gekkonidae. Bull Chicago Herpetol Soc. 1986;26:26–30.
Google Scholar
Daza JD, Bauer AM, Snively ED. On the fossil record of the Gekkota. Anat Rec. 2014;297(3):433–62. https://doi.org/10.1002/ar.22856.
Article
Google Scholar
Lee MSY, Hutchinson MN, Worthy TH, Archer M, Tennyson AJD, Worthy JP, et al. Miocene skinks and geckos reveal long-term conservatism of New Zealand’s lizard fauna. Biol Lett. 2009;5(6):833–7. https://doi.org/10.1098/rsbl.2009.0440.
Article
PubMed
PubMed Central
Google Scholar
Worthy TH, Holdaway RN. Quaternary fossil faunas from caves on Mt Cookson, North Canterbury, South Island, New Zealand. J R Soc New Zeal. 1995;25(3):333–70. https://doi.org/10.1080/03014223.1995.9517494.
Article
Google Scholar
Chapple DG. The future of New Zealand lizard research. In: New Zealand Lizards. Berlin: Springer; 2016. p. 361–75. doi: https://doi.org/10.1007/978-3-319-41674-8_14.
Worthy TH. Osteological observations on the larger species of the skink Cyclodina and the subfossil occurrence of these and the gecko Hoplodactylus duvaucelii in the North Island, New Zealand. New Zeal J Zool. 1987;14(2):219–29. https://doi.org/10.1080/03014223.1987.10422992.
Article
Google Scholar
Worthy TH. A review of the fossil record of New Zealand lizards. In: New Zealand Lizards. Berlin: Springer; 2016. p. 65–86. doi: https://doi.org/10.1007/978-3-319-41674-8_3.
Worthy TH. Fossil skink bones from Northland, New Zealand, and description of a new species of Cyclodina Scincidae. J R Soc New Zeal. 1991;21(4):329–48. https://doi.org/10.1080/03036758.1991.10420831.
Article
Google Scholar
Morgan-Richards M, Hinlo AR, Smuts-Kennedy C, Innes J, Ji W, Barry M, et al. Identification of a rare gecko from North Island New Zealand, and genetic assessment of its probable origin: a novel mainland conservation priority? J Herpetol. 2016;50(1):77–86. https://doi.org/10.1670/13-128.
Article
Google Scholar
Wilmshurst JM, Anderson AJ, Higham TFG, Worthy TH. Dating the late prehistoric dispersal of Polynesians to New Zealand using the commensal Pacific rat. Proc Natl Acad Sci USA. 2008;105(22):7676–80. https://doi.org/10.1073/pnas.0801507105.
Article
PubMed
Google Scholar
Worthy TH, Holdaway RN. Quaternary fossil faunas, overlapping taphonomies, and palaeofaunal reconstruction in North Canterbury, South Island, New Zealand. J R Soc New Zeal. 1996;26(3):275–361. https://doi.org/10.1080/03014223.1996.9517514.
Article
Google Scholar
Worthy TH. Quaternary fossil fauna of South Canterbury, South Island, New Zealand. J R Soc New Zeal. 1997;27(1):67–162. https://doi.org/10.1080/03014223.1997.9517528.
Article
Google Scholar
Worthy TH. Quaternary fossil faunas of Otago, South Island, New Zealand. J R Soc New Zeal. 1998;28(3):421–521. https://doi.org/10.1080/03014223.1998.9517573.
Article
Google Scholar
Worthy TH, Holdaway RN. Quaternary fossil faunas from caves in Takaka Valley and on Takaka Hill, northwest Nelson, South Island, New Zealand. J R Soc New Zeal. 1994;24(3):297–391. https://doi.org/10.1080/03014223.1994.9517474.
Article
Google Scholar
Christmas E. Interactions between Duvaucel’s gecko (Hoplodactylus duvaucelii) and kiore (Rattus exulans). Dunedin: University of Otago; 1995.
Google Scholar
Wallis GP, Trewick SA. New Zealand phylogeography: evolution on a small continent. Mol Ecol. 2009;18(17):3548–80. https://doi.org/10.1111/j.1365-294X.2009.04294.x.
Article
PubMed
Google Scholar
Bookstein FL. Morphometric tools for landmark data: geometry and biology. Cambridge: Cambridge University Press; 1991.
Google Scholar
Rohlf J, Marcus LF. A revolution morphometrics. Trends in Ecology and Evolution, vol. 8. New York: Elsevier; 1993. p. 129–32.
Google Scholar
Adams DC, Rohlf FJ, Slice DE. A field comes of age: geometric morphometrics in the 21st century. Hystrix Ital J Mammal. 2013;24(1):7–14. https://doi.org/10.4404/hystrix-24.1-6283.
Article
Google Scholar
Mangiacotti M, Limongi L, Sannolo M, Sacchi R, Zuffi M, Scali S. Head shape variation in eastern and western Montpellier snakes. Acta Herpetol. 2014;9(2):167–77.
Google Scholar
Ivanović A, Aljančič G, Arntzen JW. Skull shape differentiation of black and white olms (Proteus anguinus anguinus and Proteus a. parkelj): an exploratory analysis with micro-CT scanning. Contrib Zool. 2019;82(2):107–14. https://doi.org/10.1163/18759866-08202004.
Article
Google Scholar
Gabelaia M, Tarkhnishvili D, Adriaens D. Use of three-dimensional geometric morphometrics for the identification of closely related species of Caucasian rock lizards (Lacertidae: Darevskia). Biol J Linn Soc. 2018;125(4):709–17. https://doi.org/10.1093/biolinnean/bly143.
Article
Google Scholar
Dollion AY, Cornette R, Tolley KA, Boistel R, Euriat A, Boller E, et al. Morphometric analysis of chameleon fossil fragments from the Early Pliocene of South Africa: a new piece of the chamaeleonid history. Sci Nat. 2015;102(1–2):1–14. https://doi.org/10.1007/s00114-014-1254-3.
Article
CAS
Google Scholar
Gray JA, McDowell MC, Hutchinson MN, Jones MEH. Geometric morphometrics provides an alternative approach for interpreting the affinity of fossil lizard jaws. J Herpetol. 2017;51(3):375–82. https://doi.org/10.1670/16-145.
Article
Google Scholar
Easton LJ, Rawlence NJ, Worthy TH, Tennyson AJD, Scofield RP, Easton CJ, et al. Testing species limits of New Zealand’s leiopelmatid frogs through morphometric analyses. Zool J Linn Soc. 2018;183(2):431–44. https://doi.org/10.1093/zoolinnean/zlx080.
Article
Google Scholar
Tingley R, Hitchmough RA, Chapple DG. Life-history traits and extrinsic threats determine extinction risk in New Zealand lizards. Biol Conserv. 2013;165:62–8.
Article
Google Scholar
Hare KM, Chapple DG, Towns DR, van Winkel D. The ecology of New Zealand’s lizards. In: New Zealand Lizards. Berlin: Springer; 2016. p. 133–68. doi: https://doi.org/10.1007/978-3-319-41674-8_6.
Tingley R, Hitchmough RA, Chapple DG. Life-history traits and extrinsic threats determine extinction risk in New Zealand lizards. Biol Conserv. 2013;165:62–8.
Article
Google Scholar
Gray JA, Sherratt E, Hutchinson MN, Jones MEH. Evolution of cranial shape in a continental-scale evolutionary radiation of Australian lizards. Evolution. 2019;73(11):2216–29. https://doi.org/10.1111/evo.13851.
Article
PubMed
Google Scholar
Revell LJ, Johnson MA, Schulte JA, Kolbe JJ, Losos JB. A phylogenetic test for adaptive convergence in rock-dwelling lizards. Evolution. 2007;61(12):2898–912. https://doi.org/10.1111/j.1558-5646.2007.00225.x.
Article
PubMed
Google Scholar
Grismer LL, Grismer JL. A re-evaluation of the phylogenetic relationships of the Cyrtodactylus condorensis group (Squamata; Gekkonidae) and a suggested protocol for the characterization of rock-dwelling ecomorphology in Cyrtodactylus. Zootaxa. 2017;4300(4):486–504. https://doi.org/10.11646/zootaxa.4300.4.2.
Article
Google Scholar
Rieppel O. The structure of the skull and jaw adductor musculature in the Gekkota, with comments on the phylogenetic relationships of the Xantusiidae (Reptilia: Lacertilia). Zool J Linn Soc. 1984;82(3):291–318. https://doi.org/10.1111/j.1096-3642.1984.tb00645.x.
Article
Google Scholar
Watanabe A, Fabre AC, Felice RN, Maisano JA, Müller J, Herrel A, et al. Ecomorphological diversification in squamates from conserved pattern of cranial integration. Proc Natl Acad Sci USA. 2019;116(29):14688–97. https://doi.org/10.1073/pnas.1820967116.
Article
CAS
PubMed
Google Scholar
Herrel A, Aerts P, De Vree F. Ecomorphology of the lizard feeding apparatus: a modelling approach. Netherlands J Zool. 1998;48(1):1–25. https://doi.org/10.1163/156854298x00183.
Article
Google Scholar
Metzger KA, Herrel A. Correlations between lizard cranial shape and diet: a quantitative, phylogenetically informed analysis. Biol J Linn Soc. 2005;86(4):433–66. https://doi.org/10.1111/j.1095-8312.2005.00546.x.
Article
Google Scholar
Stayton CT. Testing hypotheses of convergence with multivariate data: morphological and functional convergence among herbivorous lizards. Evolution. 2006;60(4):824–41. https://doi.org/10.1111/j.0014-3820.2006.tb01160.x.
Article
PubMed
Google Scholar
Daza JD, Herrera A, Thomas R, Claudio HJ. Are you what you eat? A geometric morphometric analysis of gekkotan skull shape. Biol J Linn Soc. 2009;97(3):677–707. https://doi.org/10.1111/j.1095-8312.2009.01242.x.
Article
Google Scholar
Bell CJ, Mead JI. Not enough skeletons in the closet: collections-based anatomical research in an age of conservation conscience. Anat Rec. 2014;297(3):344–8. https://doi.org/10.1002/ar.22852.
Article
Google Scholar
Bochaton C, Kemp ME. Reconstructing the body sizes of Quaternary lizards using Pholidoscelis Fitzinger, 1843, and Anolis Daudin, 1802, as case studies. J Vertebr Paleontol. 2017;37(1):e1239626. https://doi.org/10.1080/02724634.2017.1239626.
Article
Google Scholar
Bochaton C, Bailon S, Herrel A, Grouard S, Ineich I, Tresset A, et al. Human impacts reduce morphological diversity in an insular species of lizard. Proc R Soc B Biol Sci. 1857;2017(284):20170921. https://doi.org/10.1098/rspb.2017.0921.
Article
Google Scholar
Bochaton C. Describing archaeological Iguana laurenti, 1768 (Squamata: Iguanidae) populations: Size and skeletal maturity. Int J Osteoarchaeol. 2016;26(4):716–24. https://doi.org/10.1002/oa.2463.
Article
Google Scholar
van Winkel D, Baling M, Hitchmough R. Reptiles and amphibians of New Zealand. NZ: Auckland University Press; 2018.
Google Scholar
Robb J, Hitchmough RA. Review of the genus Naultinus Gray (Reptilia: Gekkonidae). Rec Auckl Inst Museum. 1979;16:189–200.
Google Scholar
Parrish GR, Gill BJ. Natural history of the lizards of the three kings Islands, New Zealand. New Zeal J Zool. 2003;30(3):205–20. https://doi.org/10.1080/03014223.2003.9518339.
Article
Google Scholar
Walther M, Hume J. Extinct birds of Hawaii. Honolulu, HI: Mutual Publishing; 2016.
Google Scholar
Tennyson A, Martinson P. Extinct Birds of New Zealand. Wellington: Te Papa Press; 2006.
Google Scholar
Bauer A, Russell A. Osteological evidence for the prior occurrence of a giant gecko in Otago. New Zealand Cryptozool. 1988;7:22–37.
Google Scholar
Kemp ME, Hadly EA. Extinction biases in Quaternary Caribbean lizards. Glob Ecol Biogeogr. 2015;24(11):1281–9. https://doi.org/10.1111/geb.12366.
Article
Google Scholar
Bailon S, Bochaton C, Lenoble A. New data on Pleistocene and Holocene herpetofauna of Marie Galante (Blanchard Cave, Guadeloupe Islands, French West Indies): Insular faunal turnover and human impact. Quat Sci Rev. 2015;128:127–37.
Article
Google Scholar
Bochaton C, Grouard S, Cornette R, Ineich I, Lenoble A, Tresset A, et al. Fossil and subfossil herpetofauna from Cadet 2 Cave (Marie-Galante, Guadeloupe Islands, F. W. I.): Evolution of an insular herpetofauna since the Late Pleistocene. Comptes Rendus Palevol. 2015;14(2):101–10.
Article
Google Scholar
Gill BJ. Subfossil bones of a large skink (Reptilia: Lacertilia) from Motutapu Island. New Zealand Rec Auckl Inst Museum. 1985;22:69–76.
Google Scholar
Whitaker AH. Lizard populations on islands with and without Polynesian rats Rattus exulans. Proc New Zeal Ecol Soc. 1973;20:121–30.
Google Scholar
Towns DR, Daugherty CH. Patterns of range contractions and extinctions in the New Zealand herpetofauna following human colonisation. New Zeal J Zool. 1994;21(4):325–39. https://doi.org/10.1080/03014223.1994.9518003.
Article
Google Scholar
Towns DR. Response of lizard assemblages in the Mercury Islands, New Zealand, to removal of an introduced rodent: the kiore (Rattus exulans). J R Soc New Zeal. 1991;21(2):119–36. https://doi.org/10.1080/03036758.1991.10431400.
Article
Google Scholar
Hoare JM. Novel predators and naïve prey: how introduced mammals shape behaviours and populations of New Zealand lizards. Victoria University of Wellington; 2006.
Cree A. Low annual reproductive output in female reptiles from New Zealand. New Zeal J Zool. 1994;21(4):351–72. https://doi.org/10.1080/03014223.1994.9518005.
Article
Google Scholar
Ashton KG, Feldman CR. Bergmann’s rule in nonavian reptiles: Turtles follow it, lizards and snakes reverse it. Evolution. 2003;57(5):1151–63. https://doi.org/10.1111/j.0014-3820.2003.tb00324.x.
Article
PubMed
Google Scholar
Pincheira-Donoso D, Hodgson DJ, Tregenza T. The evolution of body size under environmental gradients in ectotherms: why should Bergmann’s rule apply to lizards? BMC Evol Biol. 2008;8:68.
Article
Google Scholar
Barry M, Shanas U, Brunton DH. Year-round mixed-age shelter aggregations in Duvaucel’s geckos (Hoplodactylus duvaucelii). Herpetologica. 2014;70(4):395–406.
Article
Google Scholar
Whitaker AH. The lizards of the Poor Knights Islands. New Zealand New Zeal J Sci. 1968;11:623–51.
Google Scholar
Cardini A. Lost in the other half: Improving accuracy in geometric morphometric analyses of one side of bilaterally symmetric structures. Syst Biol. 2016;65(6):1096–106. https://doi.org/10.1093/sysbio/syw043.
Article
PubMed
Google Scholar
Paluh DJ, Olgun K, Bauer AM. Ontogeny, but not sexual dimorphism, drives the intraspecific variation of quadrate morphology in Hemidactylus turcicus (Squamata: Gekkonidae). Herpetologica. 2018;74(1):22–8. https://doi.org/10.1655/herpetologica-d-17-00037.1.
Article
Google Scholar
Paluh DJ, Bauer AM. Phylogenetic history, allometry and disparate functional pressures influence the morphological diversification of the gekkotan quadrate, a keystone cranial element. Biol J Linn Soc. 2018;125(4):693–708. https://doi.org/10.1093/BIOLINNEAN/BLY147.
Article
Google Scholar
Rohlf FJ, Slice D. Extensions of the procrustes method for the optimal superimposition of landmarks. Syst Zool. 1990;39(1):40. https://doi.org/10.2307/2992207.
Article
Google Scholar
Adams DC. A method for assessing phylogenetic least squares models for shape and other high-dimensional multivariate data. Evolution. 2014;68(9):2675–88. https://doi.org/10.1111/evo.12463.
Article
PubMed
Google Scholar
Albrecht GH. Multivariate analysis and the study of form, with special reference to canonical variate analysis. Am Zool. 1980;20:679–93. https://doi.org/10.1093/icb/20.4.679.
Article
Google Scholar
Strauss R. Discriminating groups of organisms. In: Elewa A, editor. Morphometrics for non morphometricians. Berlin: Springer; 2010. p. 73–91.
Chapter
Google Scholar
Mitteroecker P, Bookstein F. Linear discrimination, ordination, and the visualization of selection gradients in modern morphometrics. Evol Biol. 2011;38(1):100–14. https://doi.org/10.1007/s11692-011-9109-8.
Article
Google Scholar
Drake AG, Klingenberg CP. Large-scale diversification of skull shape in domestic dogs: Disparity and modularity. Am Nat. 2010;175(3):289–301.
Article
Google Scholar
Bookstein FL. Principal warps: thin-plate splines and the decomposition of deformations. IEEE Trans Pattern Anal Mach Intell. 1989;11(6):567–85.
Article
Google Scholar
Adams D. A generalized K statistic for estimating phylogenetic signal from shape and other high-dimensional multivariate data. Syst Biol. 2014;63(5):685–97. https://doi.org/10.1093/sysbio/syu030.
Article
PubMed
Google Scholar
Blomberg SP, Garland T, Ives AR. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution. 2003;57(4):717–45. https://doi.org/10.1111/j.0014-3820.2003.tb00285.x.
Article
PubMed
Google Scholar
Adams DC, Collyer M, Kaliontzopoulou A. geomorph: Software for geometric morphometric analyses. https://cran.r-project.org/web/packages/geomorph/index.html. 2020
Dickson BV, Sherratt E, Losos JB, Pierce SE. Semicircular canals in Anolis lizards: ecomorphological convergence and ecomorph affinities of fossil species. R Soc Open Sci. 2017;4(10):170058. https://doi.org/10.1098/rsos.170058.
Article
PubMed
PubMed Central
Google Scholar
Klecka W. Discriminant analysis. Newbury Park: Sage Publications; 1980.
Book
Google Scholar
Wilson SR. On comparing fossil specimens with population samples. J Hum Evol. 1981;10(3):207–14.
Article
Google Scholar
Albrecht GH. Assessing the affinities of fossils using canonical variates and generalized distances. Hum Evol. 1992;7(4):49–69. https://doi.org/10.1007/BF02436412.
Article
Google Scholar
Copenhaver M, Holland B. Computation of the distribution of the maximum studentized range statistic with application to multiple significance testing of simple effects. J Stat Comput Simul. 1988;30(1):1–15. https://doi.org/10.1080/00949658808811082.
Article
Google Scholar
R Development Core Team. R: a language and environment for statistical computing. Vienna; 2019.
Schlager S. Morpho: calculations and visualizations related to geometric morphometrics. 2016