Olson E, Miller R. Morphological integration. Chicago: University of Chicago Press; 1958.
Google Scholar
Mayr E. The growth of biological thought: diversity, evolution, and inheritance. Cambridge: Harvard University Press; 1982.
Google Scholar
Wagner GP. Homologues, natural kinds and the evolution of modularity. Am J Zool. 1996;36:36–43.
Article
Google Scholar
Pigliucci M, Preston K. Phenotypic integration: studying the ecology and evolution of complex phenotypes. New York: Oxford University Press; 2004.
Google Scholar
Wagner GP, Pavlicev M, Cheverud JM. The road to modularity. Nat Rev Genet. 2007;8:921–31.
Article
CAS
PubMed
Google Scholar
Klingenberg CP. Morphological integration and developmental modularity. Annu Rev Ecol Evol Syst. 2008;39:115–32.
Article
Google Scholar
Klingenberg CP. Studying morphological integration and modularity at multiple levels: concepts and analysis. Philos Trans R Soc B Biol Sci. 2014;369:20130249–20130249. https://doi.org/10.1098/rstb.2013.0249.
Article
Google Scholar
Melo D, Porto A, Cheverud JM, Marroig G. Modularity: Genes, Development, and Evolution. Annu Rev Ecol Evol Syst. 2016;47:463–86. https://doi.org/10.1146/annurev-ecolsys-121415-032409.
Article
PubMed
PubMed Central
Google Scholar
Klingenberg CP. Evolution and development of shape: integrating quantitative approaches. Nat Rev Genet. 2010;11:623–35. https://doi.org/10.1038/nrg2829.
Article
CAS
PubMed
Google Scholar
King M, Wilson AC. Evolution at two levels in humans and chimpanzees. Science. 1975;188:107–16.
Article
CAS
PubMed
Google Scholar
Brawand D, Soumillon M, Necsulea A, Julien P, Csárdi G, Harrigan P, et al. The evolution of gene expression levels in mammalian organs. Nature. 2011;478:343–8.
Article
CAS
PubMed
Google Scholar
Somogyi R, Fuhrman S, Anderson G, Madill C, Greller L, Chang B. Systematic exploration and mining of gene expression data provides evidence for higher-order, modular regulation. In: Schlosser G, Wagner G, editors. Modularity in development and evolution. Chicago, IL: University of Chicago Press; 2004. p. 203–21.
Google Scholar
Raff RA, Sly BJ. Modularity and dissociation in the evolution of gene expression territories in development. Evol Dev. 2000;2:102–13.
Article
CAS
PubMed
Google Scholar
Lorenz DM, Jeng A, Deem MW. The emergence of modularity in biological systems. Phys Life Rev. 2011;8:129–60. https://doi.org/10.1016/j.plrev.2011.02.003.
Article
PubMed
PubMed Central
Google Scholar
Jiménez A, Cotterell J, Munteanu A, Sharpe J. A spectrum of modularity in multi-functional gene circuits. Mol Syst Biol. 2017;13:925. https://doi.org/10.15252/msb.20167347.
Article
PubMed
PubMed Central
Google Scholar
Albertson RC, Streelman JT, Kocher TD, Yelick PC. Integration and evolution of the cichlid mandible: the molecular basis of alternate feeding strategies. PNAS. 2005;102:16287–92. https://doi.org/10.1073/pnas.0506649102.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liem K. Modulatory multiplicity in the functional repertoire of the feeding mechanism in cichlid fishes. J Morphol. 1978;158:323–60.
Article
PubMed
Google Scholar
Meyer A. Phenotypic plasticity and heterochrony in Cichlasoma managuense (Pisces, Cichlidae) and their implication for speciation in cichlid fishes. Evolution (N Y). 1987;41:1357–69.
Google Scholar
Hulsey CD, de García León FJ, Rodiles-Hernández R. Micro- and macroevolutionary decoupling of cichlid jaws: a test of Liem’s key innovation hypothesis. Evolution. 2006;60:2096–109.
Article
CAS
PubMed
Google Scholar
Cooper WJ, Wernle J, Mann K, Albertson RC. Functional and genetic integration in the skulls of Lake Malawi cichlids. Evol Biol. 2011;38:316–34.
Article
Google Scholar
Parsons KJ, Ma E, Albertson RC. Constraint and opportunity: the genetic basis and evolution of modularity in the cichlid madible. Am Nat. 2012;179:64–78.
Article
PubMed
Google Scholar
Le Pabic P, Cooper WJ, Schilling TF. Developmental basis of phenotypic integration in two Lake Malawi cichlids. EvoDevo. 2016;7:1–26.
Article
Google Scholar
Parsons KJ, Cooper WJ, Albertson RC. Modularity of the oral jaws is linked to repeated changes in the craniofacial shape of African cichlids. Int J Evol Biol. 2011. https://doi.org/10.4061/2011/641501.
Article
PubMed
PubMed Central
Google Scholar
Liem KF. Evolutionary strategies and morphological innovations: cichlid pharyngeal jaws. Syst Zool. 1973;22:425–41. https://doi.org/10.2307/2412950.
Article
Google Scholar
Hu Y, Parsons KJ, Albertson RC. Evolvability of the cichlid jaw: new tools provide insights into the genetic basis of phenotypic integration. Evol Biol. 2014;41:145–53.
Article
Google Scholar
Albertson RC, Streelman JT, Kocher TD. Directional selection has shaped the oral jaws of Lake Malawi cichlid fishes. PNAS. 2003;100:5252–7. https://doi.org/10.1073/pnas.0930235100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Peter IS, Davidson EH. Evolution of gene regulatory networks controlling body plan development. Cell. 2011;144:970–85. https://doi.org/10.1016/j.cell.2011.02.017.
Article
CAS
PubMed
PubMed Central
Google Scholar
Erwin DH, Davidson EH. The evolution of hierarchical gene regulatory networks. Nat Rev Genet. 2009;10:141–8.
Article
CAS
PubMed
Google Scholar
Fraser GJ, Hulsey CD, Bloomquist RF, Uyesugi K, Manley NR, Streelman JT. An ancient gene network is co-opted for teeth on old and new jaws. PLoS Biol. 2009;7:e31. https://doi.org/10.1371/journal.pbio.1000031.
Article
CAS
PubMed
Google Scholar
Ahi EP. Signalling pathways in trophic skeletal development and morphogenesis: insights from studies on teleost fish. Dev Biol. 2016;420:11–31. https://doi.org/10.1016/j.ydbio.2016.10.003.
Article
CAS
PubMed
Google Scholar
Schneider RF, Li Y, Meyer A, Gunter HM. Regulatory gene networks that shape the development of adaptive phenotypic plasticity in a cichlid fish. Mol Ecol. 2014;23:4511–26. https://doi.org/10.1111/mec.12851.
Article
PubMed
Google Scholar
Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:1–13. https://doi.org/10.1186/1471-2105-9-559.
Article
CAS
Google Scholar
Weirauch MT. Gene coexpression networks for the analysis of DNA microarray data. In: Dehmer M, Emmert-Streib F, Graber A, Salvador A, editors. Applied statistics for network biology: methods in systems biology. Weinheim: Wiley; 2011. p. 215–50.
Chapter
Google Scholar
Roy S, Bhattacharyya DK, Kalita JK. Reconstruction of gene co-expression network from microarray data using local expression patterns. BMC Bioinformatics. 2014;15(Suppl 7):1–14. https://doi.org/10.1186/1471-2105-15-S7-S10.
Article
Google Scholar
Oldham MC, Horvath S, Geschwind DH. Conservation and evolution of gene coexpression networks in human and chimpanzee brains. PNAS. 2006;103:17973–8. https://doi.org/10.1073/pnas.0605938103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Filteau M, Pavey SA, St-Cyr J, Bernatchez L. Gene coexpression networks reveal key drivers of phenotypic divergence in lake whitefish. Mol Biol Evol. 2013;30:1384–96.
Article
CAS
PubMed
Google Scholar
Johnston RA, Paxton KL, Moore FR, Wayne RK. Seasonal gene expression in a migratory songbird. Mol Ecol. 2016;25:5680–91.
Article
CAS
PubMed
Google Scholar
Fruciano C, Meyer A, Franchini P. Divergent allometric trajectories in gene expression and coexpression produce species differences in sympatrically speciating Midas cichlid fish. Genome Biol Evol. 2019;11:1644–57.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tian F, Liu S, Shi J, Qi H, Zhao K, Xie B. Transcriptomic profiling reveals molecular regulation of seasonal reproduction in Tibetan highland fish. Gymnocypris przewalskii BMC Genomics. 2019;20:1–13.
Article
Google Scholar
Konings A. Tanganyika cichlids in their natural habitat. 4th ed. El Paso: Cichlid Press; 2019.
Google Scholar
Fujimura K, Okada N. Development of the embryo, larva and early juvenile of Nile tilapia Oreochromis niloticus (Pisces: Cichlidae) Developmental staging system. Dev Growth Differ. 2007;49:301–24.
Article
PubMed
Google Scholar
Singh P, Börger C, More H, Sturmbauer C. The role of alternative splicing and differential gene expression in cichlid adaptive radiation. Genome Biol Evol. 2017;9:2764–81. https://doi.org/10.1093/gbe/evx204.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brawand D, Wagner CE, Li YI, Malinsky M, Keller I, Fan S, et al. The genomic substrate for adaptive radiation in African cichlid fish. Nature. 2014;513:375–81. https://doi.org/10.1038/nature13726.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013;14:R36. https://doi.org/10.1186/gb-2013-14-4-r36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Anders S, Pyl PT, Huber W. HTSeq-A Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166–9.
Article
CAS
PubMed
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. https://doi.org/10.1186/s13059-014-0550-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langfelder P, Luo R, Oldham MC, Horvath S. Is my network module preserved and reproducible? PLoS Comput Biol. 2011. https://doi.org/10.1371/journal.pcbi.1001057.
Article
PubMed
PubMed Central
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. https://doi.org/10.1186/s13059-014-0550-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B. 1995;57:289–300. https://doi.org/10.2307/2346101.
Article
Google Scholar
Wang J, Duncan D, Shi Z, Zhang B. WEB-based GEne SeT analysis toolkit (WebGestalt): update 2013. Nucleic Acids Res. 2013;41:W77-83.
Article
PubMed
PubMed Central
Google Scholar
Schmitt T, Ogris C, Sonnhammer ELL. FunCoup 3.0: database of genome-wide functional coupling networks. Nucleic Acids Res. 2014. https://doi.org/10.1093/nar/gkt984.
Article
PubMed
Google Scholar
Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015. https://doi.org/10.1093/nar/gku1003.
Article
PubMed
PubMed Central
Google Scholar
Bradford Y, Conlin T, Dunn N, Fashena D, Frazer K, Howe DG, et al. ZFIN: enhancements and updates to the Zebrafish Model Organism Database. Nucleic Acids Res. 2011. https://doi.org/10.1093/nar/gkq1077.
Article
PubMed
Google Scholar
Smedley D, Haider S, Ballester B, Holland R, London D, Thorisson G, et al. BioMart – biological queries made easy. BMC Genomics. 2009;10:22.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ahi EP, Singh P, Duenser A, Gessl W, Sturmbauer C. Divergence in larval jaw gene expression reflects differential trophic adaptation in haplochromine cichlids prior to foraging. BMC Evol Biol. 2019;19:150.
Article
PubMed
PubMed Central
CAS
Google Scholar
Medina M. Genomes, phylogeny, and evolutionary systems biology. PNAS. 2005;102:6630–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Loewe L. A framework for evolutionary systems biology. BMC Syst Biol. 2009;3:27.
Article
PubMed
PubMed Central
Google Scholar
Irisarri I, Singh P, Koblmüller S, Torres-Dowdall J, Henning F, Franchini P, et al. Phylogenomics uncovers early hybridization and adaptive loci shaping the radiation of Lake Tanganyika cichlid fishes. Nat Commun. 2018. https://doi.org/10.1038/s41467-018-05479-9.
Article
PubMed
PubMed Central
Google Scholar
Merkin J, Russell C, Chen P, Burge CB. Evolutionary dynamics of gene and isoform regulation in mammalian tissues. Science. 2012;338:1593–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wanek AK, Sturmbauer C. Form, function and phylogeny: comparative morphometrics of Lake Tanganyika’s cichlid tribe Tropheini. Zool Scr. 2015;44:362–73.
Article
PubMed
PubMed Central
Google Scholar
Cerny R, Lwigale P, Ericsson R, Meulemans D, Epperlein HH, Bronner-Fraser M. Developmental origins and evolution of jaws: New interpretation of “maxillary” and “mandibular.” Dev Biol. 2004;276:225–36.
Article
CAS
PubMed
Google Scholar
Kuratani S. Evolution of the vertebrate jaw from developmental perspectives. Evol Dev. 2012;14:76–92.
Article
PubMed
Google Scholar
Gillis JA, Modrell MS, Baker CVH. Developmental evidence for serial homology of the vertebrate jaw and gill arch skeleton. Nat Commun. 2013;4:1–16.
Article
CAS
Google Scholar
Le Pabic P, Stellwag EJ, Scemama J, Carolina N. Embryonic development and skeletogenesis of the pharyngeal jaw apparatus in the cichlid Nile tilapia (Oreochromis niloticus). Anat Rec. 2009;292:1780–800.
Article
CAS
Google Scholar
Wainwright PC, Smith WL, Price SA, Tang KL, Sparks JS, Ferry LA, et al. The evolution of pharyngognathy: a phylogenetic and functional appraisal of the pharyngeal jaw key innovation in labroid fishes and beyond. Syst Biol. 2012;61:1001–27. https://doi.org/10.1093/sysbio/sys060.
Article
PubMed
Google Scholar
Renz AJ, Gunter HM, Fischer J, Qiu H, Meyer A, Kuraku S. Ancestral and derived attributes of the dlx gene repertoires, cluster structure and expression patterns in an African cichlid fish. Science. 2009;308:2009–2009.
Google Scholar
Gibert Y, Bernard L, Debiais-Thibaud M, Bourrat F, Joly J-S, Pottin K, et al. Formation of oral and pharyngeal dentition in teleosts depends on differential recruitment of retinoic acid signaling. FASEB J. 2010;24:3298–309. https://doi.org/10.1096/fj.09-147488.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hulsey CD, Fraser GJ, Meyer A. Biting into the genome to phenome map: developmental genetic modularity of cichlid fish dentitions. Integr Comp Biol. 2016;56:373–88. https://doi.org/10.1093/icb/icw059.
Article
CAS
PubMed
Google Scholar
Wray GA. The evolutionary significance of cis-regulatory mutations. Nat Rev Genet. 2007;8:206–16. https://doi.org/10.1038/nrg2063.
Article
CAS
PubMed
Google Scholar
Meireles-Filho AC, Stark A. Comparative genomics of gene regulation-conservation and divergence of cis-regulatory information. Curr Opin Genet Dev. 2009;19:565–70.
Article
CAS
PubMed
Google Scholar
Halfon MS. Perspectives on gene regulatory network evolution. Trends Genet. 2017;33:436–47. https://doi.org/10.1016/j.tig.2017.04.005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Auman T, Chipman AD. The evolution of gene regulatory networks that define arthropod body plans. Integr Comp Biol. 2017;57:1–10.
Article
Google Scholar
Gao F, Davidson EH. Transfer of a large gene regulatory apparatus to a new developmental address in echinoid evolution. PNAS. 2008;105:6091–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arduini BL, Bosse KM, Henion PD. Genetic ablation of neural crest cell diversification. Development. 2009;136:1987–94.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jin Y-R, Han XH, Taketo MM, Yoon JK. Wnt9b-dependent FGF signaling is crucial for outgrowth of the nasal and maxillary processes during upper jaw and lip development. Development. 2012;139:1821–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiong KM, Peterson RE, Heideman W. Aryl hydrocarbon receptor-mediated down-regulation of sox9b causes jaw malformation in zebrafish embryos. Mol Pharmacol. 2008;74:1544–53.
Article
CAS
PubMed
Google Scholar
Mathew LK, Simonich MT, Tanguay RL. AHR-dependent misregulation of Wnt signaling disrupts tissue regeneration. Biochem Pharmacol. 2009;77:498–507.
Article
CAS
PubMed
Google Scholar
Procházková J, Kabátková M, Bryja V, Umannová L, Bernatík O, Kozubík A, et al. The interplay of the aryl hydrocarbon receptor and β-catenin alters both AhR-dependent transcription and wnt/β-catenin signaling in liver progenitors. Toxicol Sci. 2011;122:349–60.
Article
PubMed
CAS
Google Scholar
Zhang H, Yao Y, Chen Y, Yue C, Chen J, Tong J, et al. Crosstalk between AhR and wnt/β-catenin signal pathways in the cardiac developmental toxicity of PM2.5 in zebrafish embryos. Toxicology. 2016;355–356:31–8.
Article
PubMed
CAS
Google Scholar
Planchart A, Mattingly CJ. 2,3,7,8-Tetrachlorodibenzo-p-dioxin upregulates FoxQ1b in zebrafish jaw primordium. Chem Res Toxicol. 2010;23:480–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin C-Y, Chen W-T, Lee H-C, Yang P-H, Yang H-J, Tsai H-J. The transcription factor Six1a plays an essential role in the craniofacial myogenesis of zebrafish. Dev Biol. 2009;331:152–66.
Article
CAS
PubMed
Google Scholar
Nord H, Nygard Skalman L, von Hofsten J. Six1 regulates proliferation of Pax7-positive muscle progenitors in zebrafish. J Cell Sci. 2013;126:1868–80.
Article
CAS
PubMed
Google Scholar
Yao Z, Farr GH, Tapscott SJ, Maves L, Maves L. Pbx and Prdm1a transcription factors differentially regulate subsets of the fast skeletal muscle program in zebrafish. Biol Open. 2013;2:546–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Birkholz DA, Olesnicky Killian EC, George KM, Artinger KB. Prdm1a is necessary for posterior pharyngeal arch development in zebrafish. Dev Dyn. 2009;238:2575–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jackman WR, Draper BW, Stock DW. Fgf signaling is required for zebrafish tooth development. Dev Biol. 2004;274:139–57.
Article
CAS
PubMed
Google Scholar
Barske L, Rataud P, Behizad K, Del Rio L, Cox SG, Crump JG. Essential role of Nr2f nuclear receptors in patterning the vertebrate upper jaw. Dev Cell. 2018;44(337–347):e5.
Google Scholar
Britanova O, Depew MJ, Schwark M, Thomas BL, Miletich I, Sharpe P, et al. Satb2 haploinsufficiency phenocopies 2q32-q33 deletions, whereas loss suggests a fundamental role in the coordination of jaw development. Am J Hum Genet. 2006;79:668–78.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sheehan-Rooney K, Pálinkášová B, Eberhart JK, Dixon MJ. A cross-species analysis of Satb2 expression suggests deep conservation across vertebrate lineages. Dev Dyn. 2010;239:3481–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fish JL, Villmoare B, Köbernick K, Compagnucci C, Britanova O, Tarabykin V, et al. Satb2, modularity, and the evolvability of the vertebrate jaw. Evol Dev. 2011;13:549–64.
Article
CAS
PubMed
Google Scholar
Bonnelye E, Aubin JE. Estrogen receptor-related receptor α: a mediator of estrogen response in bone. J Clin Endocrinol Metab. 2005;90:3115–21.
Article
CAS
PubMed
Google Scholar
Kim Y-I, No Lee J, Bhandari S, Nam I-K, Yoo K-W, Kim S-J, et al. Cartilage development requires the function of Estrogen-related receptor alpha that directly regulates sox9 expression in zebrafish. Sci Rep. 2016;5:18011.
Article
CAS
Google Scholar
Ahi EP, Walker BS, Lassiter CS, Jónsson ZO. Investigation of the effects of estrogen on skeletal gene expression during zebrafish larval head development. PeerJ. 2016;4:e1878.
Article
CAS
Google Scholar
Fang X, Corrales J, Thornton C, Clerk T, Scheffler BE, Willett KL. Transcriptomic changes in zebrafish embryos and larvae following benzo[a]pyrene exposure. Toxicol Sci. 2015;146:395–411.
Article
CAS
PubMed
PubMed Central
Google Scholar
Auld KL, Berasi SP, Liu Y, Cain M, Zhang Y, Huard C, et al. Estrogen-related receptor α regulates osteoblast differentiation via Wnt/β-catenin signaling. J Mol Endocrinol. 2012;48:177–91.
Article
CAS
PubMed
Google Scholar
Moens LN, van der Ven K, Van Remortel P, Del-Favero J, De Coen WM. Gene expression analysis of estrogenic compounds in the liver of common carp (Cyprinus carpio) using a custom cDNA microarray. J Biochem Mol Toxicol. 2007;21:299–311.
Article
CAS
PubMed
Google Scholar
De WM, Keil D, van der Ven K, Vandamme S, Witters E, De CW. An integrated transcriptomic and proteomic approach characterizing estrogenic and metabolic effects of 17 α-ethinylestradiol in zebrafish (Danio rerio). Gen Comp Endocrinol. 2010;167:190–201.
Article
CAS
Google Scholar
Naya FJ, Olson E. MEF2: a transcriptional target for signaling pathways controlling skeletal muscle growth and differentiation. Curr Opin Cell Biol. 1999;11:683–8.
Article
CAS
PubMed
Google Scholar
Youn H-D, Chatila TA, Liu JO, Nielsen S, Pines J, Kouzarides T, et al. Integration of calcineurin and MEF2 signals by the coactivator p300 during T-cell apoptosis. EMBO J. 2000;19:4323–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wu H, Naya FJ, McKinsey TA, Mercer B, Shelton JM, Chin ER, et al. MEF2 responds to multiple calcium-regulated signals in the control of skeletal muscle fiber type. EMBO J. 2000;19:1963–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abzhanov A, Kuo WP, Hartmann C, Grant BR, Grant PR, Tabin CJ. The calmodulin pathway and evolution of elongated beak morphology in Darwin’s finches. Nature. 2006;442:563–7.
Article
CAS
PubMed
Google Scholar
Parsons KJ, Albertson RC. Roles for Bmp4 and CaM1 in shaping the jaw: evo-devo and beyond. Annu Rev Genet. 2009;43:369–88.
Article
CAS
PubMed
Google Scholar
Gunter HM, Meyer A. Molecular investigation of mechanical strain-induced phenotypic plasticity in the ecologically important pharyngeal jaws of cichlid fish. J Appl Ichthyol. 2014;30:630–5. https://doi.org/10.1111/jai.12521.
Article
Google Scholar
Slusarski DC, Pelegri F. Calcium signaling in vertebrate embryonic patterning and morphogenesis. Dev Biol. 2007;307:1–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Monteiro P, Gilot D, Le Ferrec E, Rauch C, Lagadic-Gossmann D, Fardel O. Dioxin-mediated up-regulation of aryl hydrocarbon receptor target genes is dependent on the calcium/calmodulin/CaMKIalpha pathway. Mol Pharmacol. 2008;73:769–77.
Article
CAS
PubMed
Google Scholar
Han EH, Kim HG, Im JH, Jeong TC, Jeong HG. Up-regulation of CYP1A1 by rutaecarpine is dependent on aryl hydrocarbon receptor and calcium. Toxicology. 2009;266:38–47.
Article
CAS
PubMed
Google Scholar
Baumgarten L, Machado-Schiaffino G, Henning F, Meyer A. What big lips are good for: on the adaptive function of repeatedly evolved hypertrophied lips of cichlid fishes. Biol J Linn Soc. 2015;115:448–55. https://doi.org/10.1111/bij.12502.
Article
Google Scholar
Lecaudey LA, Sturmbauer C, Singh P, Ahi EP. Molecular mechanisms underlying nuchal hump formation in dolphin cichlid Cyrtocara moorii. Sci Rep. 2019;9:1–13.
Article
CAS
Google Scholar
Laugel-Haushalter V, Paschaki M, Marangoni P, Pilgram C, Langer A, Kuntz T, et al. RSK2 is a modulator of craniofacial development. PLoS ONE. 2014;9:e84343.
Article
PubMed
PubMed Central
CAS
Google Scholar
Langer HT, Afzal S, Kempa S, Spuler S. Nerve damage induced skeletal muscle atrophy is associated with increased accumulation of intramuscular glucose and polyol pathway intermediates. Sci Rep. 2020;10:1908. https://doi.org/10.1038/s41598-020-58213-1.
Article
CAS
PubMed
PubMed Central
Google Scholar
Moreno-Reyes R, Egrise D, Nève J, Pasteels J-L, Schoutens A. Selenium deficiency-induced growth retardation is associated with an impaired bone metabolism and osteopenia. J Bone Miner Res. 2001;16:1556–63. https://doi.org/10.1359/jbmr.2001.16.8.1556.
Article
CAS
PubMed
Google Scholar
Parsons KJ, Wang J, Anderson G, Albertson RC. Nested levels of adaptive divergence: the genetic basis of craniofacial divergence and ecological sexual dimorphism. G3. 2015;5:1613–24. https://doi.org/10.1534/g3.115.018226.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pakvasa M, Haravu P, Boachie-Mensah M, Jones A, Coalson E, Liao J, et al. Notch signaling: Its essential roles in bone and craniofacial development. Genes Dis. 2021;8:8–24. https://doi.org/10.1016/j.gendis.2020.04.006.
Article
PubMed
Google Scholar
Ahi E, Kapralova K, Pálsson A, Maier V, Gudbrandsson J, Snorrason SS, et al. Transcriptional dynamics of a conserved gene expression network associated with craniofacial divergence in Arctic charr. EvoDevo. 2014;5:1–19. https://doi.org/10.1186/2041-9139-5-40.
Article
CAS
Google Scholar
Gunter HM, Schneider RF, Karner I, Sturmbauer C, Meyer A. Molecular investigation of genetic assimilation during the rapid adaptive radiations of East African cichlid fishes. Mol Ecol. 2017;26:6634–53.
Article
CAS
PubMed
Google Scholar
Monroe DG, McGee-Lawrence ME, Oursler MJ, Westendorf JJ. Update on Wnt signaling in bone cell biology and bone disease. Gene. 2012;492:1–18.
Article
CAS
PubMed
Google Scholar
Ahi EP, Steinhäuser SS, Pálsson A, Franzdóttir SR, Snorrason SS, Maier VH, et al. Differential expression of the Aryl hydrocarbon receptor pathway associates with craniofacial polymorphism in sympatric Arctic charr. EvoDevo. 2015;6:27.
Article
PubMed
PubMed Central
CAS
Google Scholar
Deregowski V, Gazzerro E, Priest L, Rydziel S, Canalis E. Notch 1 overexpression inhibits osteoblastogenesis by suppressing Wnt/beta-catenin but not bone morphogenetic protein signaling. J Biol Cchemistry. 2006;281:6203–10.
Article
CAS
Google Scholar
Stevens EA, Mezrich JD, Bradfield CA. The aryl hydrocarbon receptor: a perspective on potential roles in the immune system. Immunology. 2009;127:299–311.
Article
CAS
PubMed
PubMed Central
Google Scholar
Selleri L, Depew MJ, Jacobs Y, Chanda SK, Tsang KY, Cheah KS, et al. Requirement for Pbx1 in skeletal patterning and programming chondrocyte proliferation and differentiation. Development. 2001;128:3543–57.
CAS
PubMed
Google Scholar
Larbuisson A, Dalcq J, Martial JA, Muller M. Fgf receptors Fgfr1a and Fgfr2 control the function of pharyngeal endoderm in late cranial cartilage development. Differentiation. 2013;86:192–206.
Article
CAS
PubMed
Google Scholar
Gunter HM, Fan S, Xiong F, Franchini P, Fruciano C, Meyer A. Shaping development through mechanical strain: the transcriptional basis of diet-induced phenotypic plasticity in a cichlid fish. Mol Ecol. 2013;22:4516–31. https://doi.org/10.1111/mec.12417.
Article
PubMed
Google Scholar
Knight RD, Nair S, Nelson SS, Afshar A, Javidan Y, Geisler R, et al. lockjaw encodes a zebrafish tfap2a required for early neural crest development. Development. 2003;130:5755–68.
Article
CAS
PubMed
Google Scholar
Liu W, Liu Y, Guo T, Hu C, Luo H, Zhang L, et al. TCF3, a novel positive regulator of osteogenesis, plays a crucial role in miR-17 modulating the diverse effect of canonical Wnt signaling in different microenvironments. Cell Death Dis. 2013;4:e539–e539.
Article
CAS
PubMed
PubMed Central
Google Scholar
Denison MS, Nagy SR. Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annu Rev Pharmacol Toxicol. 2003;43:309–34.
Article
CAS
PubMed
Google Scholar
Stegeman JJ, Goldstone JV, Hahn ME. Perspectives on zebrafish as a model in environmental toxicology. Fish Physiol. 2010;29:367–439.
Article
Google Scholar
Pfennig DW, Ehrenreich IM. Towards a gene regulatory network perspective on phenotypic plasticity, genetic accommodation and genetic assimilation. Mol Ecol. 2014;23:4438–40.
Article
PubMed
PubMed Central
Google Scholar
Raff RA. The shape of life: genes, development and the evolution of animal form. Chicago: University of Chicago Press; 1996.
Book
Google Scholar
Raff RA. Larval homologies and radical evolutionary changes in early development. In: Bock GK, Cardew G, editors. Novartis foundation symposium 222–homology: homology: novartis foundation symposium 222. Chichester: Wiley; 1999. p. 110–21.
Google Scholar