Eakin RE, Mckinley WA, Williams RJ. Egg-white injury in chicks and its relationship to a deficiency of vitamin H (biotin). Science (80−). 1940;92:224–5. https://doi.org/10.1126/science.92.2384.224.
Article
CAS
Google Scholar
Green NM. Avidin. 4. Stability at extremes of Ph and dissociation into sub-units by guanidine hydrochloride. Biochem J. 1963;89:609–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Laitinen OH, Nordlund HR, Hytönen VP, Kulomaa MS. Brave new (strept)avidins in biotechnology. Trends Biotechnol. 2007. https://doi.org/10.1016/j.tibtech.2007.04.001.
Article
PubMed
Google Scholar
Laitinen OH, Airenne KJ, Räty JK, Wirth T, Ylä-Herttuala S. Avidin fusion protein strategies in targeted drug and gene delivery. Lett Drug Des Discov. 2005;2:124. https://doi.org/10.2174/1570180053175197.
Article
CAS
Google Scholar
Tausig F, Wolf FJ. Streptavidin—a substance with avidin-like properties produced by microorganisms. Biochem Biophys Res Commun. 1964;14:205–9. https://doi.org/10.1016/0006-291x(64)90436-x.
Article
CAS
PubMed
Google Scholar
Niskanen EA, Hytönen VP, Grapputo A, Nordlund HR, Kulomaa MS, Laitinen OH. Chicken genome analysis reveals novel genes encoding biotin-binding proteins related to avidin family. BMC Genomics. 2005. https://doi.org/10.1186/1471-2164-6-41.
Article
PubMed
PubMed Central
Google Scholar
Ahlroth MK, Grapputo A, Laitinen OH, Kulomaa MS. Sequence features and evolutionary mechanisms in the chicken avidin gene family. Biochem Biophys Res Commun. 2001;285:734–41. https://doi.org/10.1006/bbrc.2001.5163.
Article
CAS
PubMed
Google Scholar
Laitinen OH, Hytönen VP, Ahlroth MK, Pentikäinen OT, Gallagher C, Nordlund HR, et al. Chicken avidin-related proteins show altered biotin-binding and physico-chemical properties as compared with avidin. Biochem J. 2002;363:609. https://doi.org/10.1042/0264-6021:3630609.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hytönen VP, Määttä JAE, Niskanen EA, Huuskonen J, Helttunen KJ, Halling KK, et al. Structure and characterization of a novel chicken biotin-binding protein A (BBP-A). BMC Struct Biol. 2007;7:8. https://doi.org/10.1186/1472-6807-7-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hertz R, Sebrell WH. Occurrence of avidin in the oviduct and secretions of the genital tract of several species. Science. 1942;96:257. https://doi.org/10.1126/science.96.2489.257.
Article
CAS
PubMed
Google Scholar
Botte V, Granata G. Induction of avidin synthesis by RNA obtained from lizard oviducts. J Endocrinol. 1977;73:535–6. https://doi.org/10.1677/joe.0.0730535.
Article
CAS
PubMed
Google Scholar
Hytönen VP, Laitinen OH, Grapputo A, Kettunen A, Savolainen J, Kalkkinen N, et al. Characterization of poultry egg-white avidins and their potential as a tool in pretargeting cancer treatment. Biochem J. 2003;372:519–225. https://doi.org/10.1042/BJ20021531.
Article
Google Scholar
Bayer EA, Kulik T, Adar R, Wilchek M. Close similarity among streptavidin-like, biotin-binding proteins from Streptomyces. Biochim Biophys Acta. 1995;1263:60–6. https://doi.org/10.1016/0167-4781(95)00077-t.
Article
PubMed
Google Scholar
Tuohimaa P, Joensuu T, Isola J, Keinänen R, Kunnas T, Niemelä A, et al. Development of progestin-specific response in the chicken oviduct. Int J Dev Biol. 1989;33:125–34.
CAS
PubMed
Google Scholar
Korpela JK, Elo HA, Tuohimaa PJ. Avidin induction by estrogen and progesterone in the immature oviduct of chicken, Japanese quail, duck, and gull. Gen Comp Endocrinol. 1981;44:230–2. https://doi.org/10.1016/0016-6480(81)90253-7.
Article
CAS
PubMed
Google Scholar
Korpela J, Kulomaa M, Tuohimaa P, Vaheri A. Induction of avidin in chickens infected with the acute leukemia virus OK 10. Int J Cancer. 1982;30:461–4. https://doi.org/10.1002/ijc.2910300412.
Article
CAS
PubMed
Google Scholar
Kunnas TA, Wallén MJ, Kulomaa MS. Induction of chicken avidin and related mRNAs after bacterial infection. Biochim Biophys Acta. 1993;1216:441–5. https://doi.org/10.1016/0167-4781(93)90012-3.
Article
CAS
PubMed
Google Scholar
Shira EB, Friedman A. Innate immune functions of avian intestinal epithelial cells: response to bacterial stimuli and localization of responding cells in the developing avian digestive tract. PLoS ONE. 2018;13:e0200393. https://doi.org/10.1371/journal.pone.0200393.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo X, Xin J, Wang P, Du X, Ji G, Gao Z, et al. Functional characterization of avidins in amphioxus Branchiostoma japonicum: evidence for a dual role in biotin-binding and immune response. Dev Comp Immunol. 2017;70:106–18. https://doi.org/10.1016/j.dci.2017.01.006.
Article
CAS
PubMed
Google Scholar
Yoza K-I, Imamura T, Kramer KJ, Morgan TD, Nakamura S, Akiyama K, et al. Avidin expressed in transgenic rice confers resistance to the stored-product insect pests Tribolium confusum and Sitotroga cerealella. Biosci Biotechnol Biochem. 2005;69:966–71. https://doi.org/10.1271/bbb.69.966.
Article
CAS
PubMed
Google Scholar
Christeller JT, Malone LA, Todd JH, Marshall RM, Burgess EPJ, Philip BA. Distribution and residual activity of two insecticidal proteins, avidin and aprotinin, expressed in transgenic tobacco plants, in the bodies and frass of Spodoptera litura larvae following feeding. J Insect Physiol. 2005;51:1117–26. https://doi.org/10.1016/j.jinsphys.2005.05.009.
Article
CAS
PubMed
Google Scholar
Sinkkonen A, Laitinen OH, Leppiniemi J, Vauramo S, Hytönen VP, Setälä H. Positive association between biotin and the abundance of root-feeding nematodes. Soil Biol Biochem. 2014;73:93–5. https://doi.org/10.1016/j.soilbio.2014.02.002.
Article
CAS
Google Scholar
Takakura Y, Tsunashima M, Suzuki J, Usami S, Kakuta Y, Okino N, et al. Tamavidins—novel avidin-like biotin-binding proteins from the Tamogitake mushroom. FEBS J. 2009;276:1383–97. https://doi.org/10.1111/j.1742-4658.2009.06879.x.
Article
CAS
PubMed
Google Scholar
Mock DM, Mock NI, Stewart CW, LaBorde JB, Hansen DK. Marginal biotin deficiency is teratogenic in ICR mice. J Nutr. 2003;133:2519–25. https://doi.org/10.1093/jn/133.8.2519.
Article
CAS
PubMed
Google Scholar
Taskinen B, Zmurko J, Ojanen M, Kukkurainen S, Parthiban M, Määttä JAE, et al. Zebavidin—an avidin-like protein from zebrafish. PLoS ONE. 2013;8:e77207. https://doi.org/10.1371/journal.pone.0077207.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bowien B, Schlegel HG. Physiology and biochemistry of aerobic hydrogen-oxidizing bacteria. Annu Rev Microbiol. 1981;35:405–52. https://doi.org/10.1146/annurev.mi.35.100181.002201.
Article
CAS
PubMed
Google Scholar
Helppolainen SH, Nurminen KP, Määttä JAE, Halling KK, Slotte JP, Huhtala T, et al. Rhizavidin from Rhizobium etli: the first natural dimer in the avidin protein family. Biochem J. 2007;405:397–405. https://doi.org/10.1042/BJ20070076.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leppiniemi J, Meir A, Kahkonen N, Kukkurainen S, Maatta JA, Ojanen M, et al. The highly dynamic oligomeric structure of bradavidin II is unique among avidin proteins. Protein Sci. 2013;22:980–94. https://doi.org/10.1002/pro.2281.
Article
CAS
PubMed
PubMed Central
Google Scholar
Laitinen OH, Hytönen VP, Nordlund HR, Kulomaa MS. Genetically engineered avidins and streptavidins. Cell Mol Life Sci. 2006;63:2992–3017. https://doi.org/10.1007/s00018-006-6288-z.
Article
CAS
PubMed
Google Scholar
Chilkoti A, Tan PH, Stayton PS. Site-directed mutagenesis studies of the high-affinity streptavidin-biotin complex: contributions of tryptophan residues 79, 108, and 120. Proc Natl Acad Sci USA. 1995;92:1754–8. https://doi.org/10.1073/pnas.92.5.1754.
Article
CAS
PubMed
PubMed Central
Google Scholar
Laitinen OH, Airenne KJ, Marttila AT, Kulik T, Porkka E, Bayer EA, et al. Mutation of a critical tryptophan to lysine in avidin or streptavidin may explain why sea urchin fibropellin adopts an avidin-like domain. FEBS Lett. 1999;461:52–8. https://doi.org/10.1016/S0014-5793(99)01423-4.
Article
CAS
PubMed
Google Scholar
Freitag S, Le Trong I, Chilkoti A, Klumb LA, Stayton PS, Stenkamp RE. Structural studies of binding site tryptophan mutants in the high-affinity streptavidin-biotin complex. J Mol Biol. 1998;279:211–21. https://doi.org/10.1006/jmbi.1998.1735.
Article
CAS
PubMed
Google Scholar
Marttila AT, Hytönen VP, Laitinen OH, Bayer EA, Wilchek M, Kulomaa MS. Mutation of the important Tyr-33 residue of chicken avidin: functional and structural consequences. Biochem J. 2003;369:249–54. https://doi.org/10.1042/BJ20020886.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hunter S, Apweiler R, Attwood TK, Bairoch A, Bateman A, Binns D, et al. InterPro: the integrative protein signature database. Nucleic Acids Res. 2009;37:D211–5. https://doi.org/10.1093/nar/gkn785.
Article
CAS
PubMed
Google Scholar
Hill J, Phylip LH. Bacterial aspartic proteinases. FEBS Lett. 1997;409:357–60. https://doi.org/10.1016/S0014-5793(97)00547-4.
Article
CAS
PubMed
Google Scholar
Wu WJ, Zhao JX, Chen GJ, Du ZJ. Description of Ancylomarinasubtilis gen. nov., sp. nov., isolated from coastal sediment, proposal of Marinilabiliales ord. nov. and transfer of Marinilabiliaceae, Prolixibacteraceae and Marinifilaceae to the order Marinilabiliales. Int J Syst Evol Microbiol. 2016;66:4243–9. https://doi.org/10.1099/ijsem.0.001342.
Article
CAS
PubMed
Google Scholar
Vandieken V, Marshall IPG, Niemann H, Engelen B, Cypionka H. Labilibaculum manganireducens gen. nov., sp. nov. and Labilibaculumfiliforme sp. nov., novel bacteroidetes isolated from subsurface sediments of the Baltic sea. Front Microbiol. 2018. https://doi.org/10.3389/fmicb.2017.02614.
Article
PubMed
PubMed Central
Google Scholar
Ji-Min P, Jung-Hoon Y. Ancylomarinasalipaludis sp. nov., isolated from a salt marsh. Int J Syst Evol Microbiol. 2019;69:2750–4. https://doi.org/10.1099/ijsem.0.003553.
Article
CAS
Google Scholar
Watanabe M, Kojima H, Fukui M. Labilibaculum antarcticum sp. nov., a novel facultative anaerobic, psychrotorelant bacterium isolated from marine sediment of Antarctica. Antonie van Leeuwenhoek Int J Gen Mol Microbiol. 2020;113:349–55. https://doi.org/10.1007/s10482-019-01345-w.
Article
CAS
Google Scholar
Yadav S, Villanueva L, Bale N, Koenen M, Hopmans EC, Damsté JSS. Physiological, chemotaxonomic and genomic characterization of two novel piezotolerant bacteria of the family Marinifilaceae isolated from sulfidic waters of the Black Sea. Syst Appl Microbiol. 2020;43:126122. https://doi.org/10.1016/j.syapm.2020.126122.
Article
CAS
PubMed
Google Scholar
Nedashkovskaya OI, Kim SB, Lysenko AM, Frolova GM, Mikhailov VV, Lee KH, et al. Description of Aquimarina muelleri gen. nov., sp. nov., and proposal of the reclassification of [Cytophaga] latercula Lewin 1969 as Stanierellalatercula gen. nov., comb. nov. Int J Syst Evol Microbiol. 2005;55:225–9. https://doi.org/10.1099/ijs.0.63349-0.
Article
CAS
PubMed
Google Scholar
Bae SS, Kwon KK, Yang SH, Lee HS, Kim SJ, Lee JH. Flagellimonaseckloniae gen. nov., sp. nov., a mesophilic marine bacterium of the family Flavobacteriaceae, isolated from the rhizosphere of Ecklonia kurome. Int J Syst Evol Microbiol. 2007;57:1050–4. https://doi.org/10.1099/ijs.0.64565-0.
Article
CAS
PubMed
Google Scholar
Hahnke RL, Meier-Kolthoff JP, García-López M, Mukherjee S, Huntemann M, Ivanova NN, et al. Genome-based taxonomic classification of Bacteroidetes. Front Microbiol. 2016. https://doi.org/10.3389/fmicb.2016.02003.
Article
PubMed
PubMed Central
Google Scholar
Alain K, Tindall BJ, Catala P, Intertaglia L, Lebaron P. Ekhidnalutea gen. nov., sp. nov., a member of the phylum Bacteroidetes isolated from the South East Pacific Ocean. Int J Syst Evol Microbiol. 2010;60:2972–8. https://doi.org/10.1099/ijs.0.018804-0.
Article
CAS
PubMed
Google Scholar
Choi A, Oh HM, Yang SJ, Cho JC. Kordia periserrulae sp. nov., isolated from a marine polychaete periserrula leucophryna, and emended description of the genus Kordia. Int J Syst Evol Microbiol. 2011;61:864–9. https://doi.org/10.1099/ijs.0.022764-0.
Article
CAS
PubMed
Google Scholar
Ruvira MA, Lucena T, Pujalte MJ, Arahal DR, Macián MC. Marinifilumflexuosum sp. nov., a new Bacteroidetes isolated from coastal Mediterranean Sea water and emended description of the genus Marinifilum Na et al., 2009. Syst Appl Microbiol. 2013;36:155–9. https://doi.org/10.1016/j.syapm.2012.12.003.
Article
PubMed
Google Scholar
Lau SCK, Tsoi MMY, Li X, Plakhotnikova I, Dobretsov S, Wu M, et al. Description of Fabibacter halotolerans gen. nov., sp. nov. and Roseivirgaspongicola sp. nov., and reclassification of [Marinicola] seohaensis as Roseivirgaseohaensis comb. nov. Int J Syst Evol Microbiol. 2006;56:1059–65. https://doi.org/10.1099/ijs.0.64104-0.
Article
CAS
PubMed
Google Scholar
Lee DW, Lee JE, Lee SD. Chitinophaga rupis sp. nov., isolated from soil. Int J Syst Evol Microbiol. 2009;59:2830–3. https://doi.org/10.1099/ijs.0.011163-0.
Article
CAS
PubMed
Google Scholar
Yanai I. An avidin-like domain that does not bind biotin is adopted for oligomerization by the extracellular mosaic protein fibropellin. Protein Sci. 2005;14:417–23. https://doi.org/10.1110/ps.04898705.
Article
CAS
PubMed
PubMed Central
Google Scholar
Howarth M, Chinnapen DF, Gerrow K, Dorrestein PC, Grandy MR, Kelleher NL, et al. A monovalent streptavidin with a single femtomolar biotin binding site. Nat Methods. 2006;3:267–73. https://doi.org/10.1038/nmeth861.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nordlund HR, Hytönen VP, Laitinen OH, Uotila STH, Niskanen EA, Savolainen J, et al. Introduction of histidine residues into avidin subunit interfaces allows pH-dependent regulation of quaternary structure and biotin binding. FEBS Lett. 2003;555:449–54. https://doi.org/10.1016/S0014-5793(03)01302-4.
Article
CAS
PubMed
Google Scholar
Laitinen OH, Nordlund HR, Hytönen VP, Uotila STH, Marttila AT, Savolainen J, et al. Rational design of an active avidin monomer. J Biol Chem. 2003;278:4010–4. https://doi.org/10.1074/jbc.M205844200.
Article
CAS
PubMed
Google Scholar
Meir A, Helppolainen SH, Podoly E, Nordlund HR, Hytönen VP, Määttä JA, et al. Crystal structure of rhizavidin: insights into the enigmatic high-affinity interaction of an innate biotin-binding protein dimer. J Mol Biol. 2009;386:379–90. https://doi.org/10.1016/j.jmb.2008.11.061.
Article
CAS
PubMed
Google Scholar
Avraham O, Meir A, Fish A, Bayer EA, Livnah O. Hoefavidin: a dimeric bacterial avidin with a C-terminal binding tail. J Struct Biol. 2015;191:139–48. https://doi.org/10.1016/j.jsb.2015.06.020.
Article
CAS
PubMed
Google Scholar
Agrawal N, Määttä JAE, Kulomaa MS, Hytönen VP, Johnson MS, Airenne TT. Structural characterization of core-bradavidin in complex with biotin. PLoS ONE. 2017. https://doi.org/10.1371/journal.pone.0176086.
Article
PubMed
PubMed Central
Google Scholar
Stȩpkowski T, Moulin L, Krzyzańska A, McInnes A, Law IJ, Howieson J. European origin of bradyrhizobium populations infecting lupins and serradella in soils of Western Australia and South Africa. Appl Environ Microbiol. 2005;71:7041–52. https://doi.org/10.1128/AEM.71.11.7041-7052.2005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Holmes PM, Cowling RM. The effects of invasion by Acacia saligna on the guild structure and regeneration capabilities of South African Fynbos Shrublands. J Appl Ecol. 1997;34:317. https://doi.org/10.2307/2404879.
Article
Google Scholar
Luque GM, Bellard C, Bertelsmeier C, Bonnaud E, Genovesi P, Simberloff D, et al. The 100th of the world’s worst invasive alien species. Biol Invasions. 2014;16:981–5. https://doi.org/10.1007/s10530-013-0561-5.
Article
Google Scholar
Lafay B, Burdon JJ. Molecular diversity of rhizobia nodulating the invasive legume Cytisus scoparius in Australia. J Appl Microbiol. 2006;100:1228–38. https://doi.org/10.1111/j.1365-2672.2006.02902.x.
Article
CAS
PubMed
Google Scholar
Mumba M, Thompson JR. Hydrological and ecological impacts of dams on the Kafue Flats floodplain system, southern Zambia. Phys Chem Earth. 2005;30:442–7. https://doi.org/10.1016/j.pce.2005.06.009.
Article
Google Scholar
Barrett CF, Parker MA. Coexistence of Burkholderia, Cupriavidus, and Rhizobium sp. nodule bacteria on two Mimosa spp. in Costa Rica. Appl Environ Microbiol. 2006;72:1198–206. https://doi.org/10.1128/AEM.72.2.1198-1206.2006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stȩpkowski T, Hughes CE, Law IJ, Markiewicz Ł, Gurda D, Chlebicka A, et al. Diversification of lupine Bradyrhizobium strains: evidence from nodulation gene trees. Appl Environ Microbiol. 2007;73:3254–64. https://doi.org/10.1128/AEM.02125-06.
Article
CAS
PubMed
PubMed Central
Google Scholar
Parker MA, Wurtz AK, Paynter Q. Nodule symbiosis of invasive Mimosa pigra in Australia and in ancestral habitats: a comparative analysis. Biol Invasions. 2007;9:127–38. https://doi.org/10.1007/s10530-006-0009-2.
Article
Google Scholar
Weir BS, Turner SJ, Silvester WB, Park D-C, Young JM. Unexpectedly diverse Mesorhizobium strains and Rhizobiumleguminosarum nodulate native legume genera of New Zealand, while introduced legume weeds are nodulated by Bradyrhizobium species. Appl Environ Microbiol. 2004;70:5980–7. https://doi.org/10.1128/AEM.70.10.5980-5987.2004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bateman A, Martin MJ, O’Donovan C, Magrane M, Alpi E, Antunes R, et al. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2017;45:D158–69. https://doi.org/10.1093/nar/gkw1099.
Article
CAS
Google Scholar
Przybylski D, Rost B. Powerful fusion: PSI-BLAST and consensus sequences. Bioinformatics. 2008;24:1987–93. https://doi.org/10.1093/bioinformatics/btn384.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mashima J, Kodama Y, Fujisawa T, Katayama T, Okuda Y, Kaminuma E, et al. DNA Data Bank of Japan. Nucleic Acids Res. 2017;45:D25-31. https://doi.org/10.1093/nar/gkw1001.
Article
CAS
PubMed
Google Scholar
Benson DA, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. GenBank. Nucleic Acids Res. 2014;42:D32–7. https://doi.org/10.1093/nar/gkt1030.
Article
CAS
PubMed
Google Scholar
Kanz C, Aldebert P, Althorpe N, Baker W, Baldwin A, Bates K, et al. The EMBL nucleotide sequence database. Nucleic Acids Res. 2005;33:D29–33. https://doi.org/10.1093/nar/gki098.
Article
CAS
PubMed
Google Scholar
Notredame C, Higgins DG, Heringa J. T-coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol. 2000;302:205–17. https://doi.org/10.1006/jmbi.2000.4042.
Article
CAS
PubMed
Google Scholar
Larsson A. AliView: a fast and lightweight alignment viewer and editor for large datasets. Bioinformatics. 2014;30:3276–8. https://doi.org/10.1093/bioinformatics/btu531.
Article
CAS
PubMed
PubMed Central
Google Scholar
Edgar RC. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7. https://doi.org/10.1093/nar/gkh340.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30:2725–9. https://doi.org/10.1093/molbev/mst197.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993;234:779–815. https://doi.org/10.1006/jmbi.1993.1626.
Article
CAS
PubMed
Google Scholar
Sielecki AR, Fedorov AA, Boodhoo A, Andreeva NS, James MN. Molecular and crystal structures of monoclinic porcine pepsin refined at 1.8 A resolution. J Mol Biol. 1990;214:143–70. https://doi.org/10.1016/0022-2836(90)90153-D.
Article
CAS
PubMed
Google Scholar
Le Trong I, Wang Z, Hyre DE, Lybrand TP, Stayton PS, Stenkamp RE. Streptavidin and its biotin complex at atomic resolution. Acta Crystallogr D Biol Crystallogr. 2011;67:813–21. https://doi.org/10.1107/S0907444911027806.
Article
CAS
PubMed
PubMed Central
Google Scholar
Campanella JJ, Bitincka L, Smalley J. MatGAT: an application that generates similarity/identity matrices using protein or DNA sequences. BMC Bioinform. 2003;4:29. https://doi.org/10.1186/1471-2105-4-29.
Article
Google Scholar
Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 2011;8:785–6. https://doi.org/10.1038/nmeth.1701.
Article
CAS
PubMed
Google Scholar
Wagih O. ggseqlogo: a versatile R package for drawing sequence logos. Bioinformatics. 2017;33:3645–7. https://doi.org/10.1093/bioinformatics/btx469.
Article
CAS
PubMed
Google Scholar
Armougom F, Moretti S, Poirot O, Audic S, Dumas P, Schaeli B, Keduas V, Notredame C. Expresso: automatic incorporation of structural information in multiple sequence alignments using 3D-Coffee. Nucleic Acids Res. 2006;34(Web Server issue):W604–8. https://doi.org/10.1093/nar/gkl092.
Article
CAS
PubMed
PubMed Central
Google Scholar
Di Tommaso P, Moretti S, Xenarios I, Orobitg M, Montanyola A, Chang JM, Taly JF, Notredame C. T-Coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension. Nucleic Acids Res. 2011;39(Web Server issue):W13–7. https://doi.org/10.1093/nar/gkr245.
Article
CAS
PubMed
PubMed Central
Google Scholar
Langholm Jensen J, Mølgaard A, Navarro Poulsen JC, Harboe MK, Simonsen JB, Lorentzen AM, Hjernø K, van den Brink JM, Qvist KB, Larsen S. Camel and bovine chymosin: the relationship between their structures and cheese-making properties. Acta Crystallogr D Biol Crystallogr. 2013;69:901–13. https://doi.org/10.1107/S0907444913003260.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hánová I, Brynda J, Houštecká R, Alam N, Sojka D, Kopáček P, Marešová L, Vondrášek J, Horn M, Schueler-Furman O, Mareš M. Novel structural mechanism of allosteric regulation of aspartic peptidases via an evolutionarily conserved exosite. Cell Chem Biol. 2018;25:318–29. https://doi.org/10.1016/j.chembiol.2018.01.001.
Article
CAS
PubMed
Google Scholar
Suguna K, Padlan EA, Smith CW, Carlson WD, Davies DR. Binding of a reduced peptide inhibitor to the aspartic proteinase from Rhizopuschinensis: implications for a mechanism of action. Proc Natl Acad Sci USA. 1987;84:7009–13. https://doi.org/10.1073/pnas.84.20.7009.
Article
CAS
PubMed
PubMed Central
Google Scholar
Repo S, Paldanius TA, Hytönen VP, Nyholm TK, Halling KK, Huuskonen J, Pentikäinen OT, Rissanen K, Slotte JP, Airenne TT, Salminen TA, Kulomaa MS, Johnson MS. Binding properties of HABA-type azo derivatives to avidin and avidin-related protein 4. Chem Biol. 2006;13:1029–39. https://doi.org/10.1016/j.chembiol.2006.08.006.
Article
CAS
PubMed
Google Scholar