Haines H, Hackel DB, Schmidt-Nielsen K. Experimental diabetes mellitus induced by diet in the sand rat. Am J Physiol Content. 1965;208(2):297–300.
CAS
Google Scholar
Leibowitz G, Ferber S, Apelqvist A, Edlund H, Gross DJ, Cerasi E, et al. IPF1/PDX1 deficiency and beta-cell dysfunction in Psammomys obesus, an animal with type 2 diabetes. Diabetes. 2001;50(8):1799–806.
Hargreaves AD, Zhou L, Christensen J, Marlétaz F, Liu S, Li F, et al. Genome sequence of a diabetes-prone rodent reveals a mutation hotspot around the ParaHox gene cluster. Proc Natl Acad Sci. 2017;114(29):7677–82.
CAS
Google Scholar
Dai Y, Holland PWH. The interaction of natural selection and GC skew may drive the fast evolution of a sand rat Homeobox gene. Mol Biol Evol. 2019;36(7):1473–80.
CAS
Google Scholar
Pracana R, Hargreaves AD, Mulley JF, Holland PWH. Runaway GC evolution in gerbil genomes. Mol Biol Evol. 2020;37(8):2197–210.
Google Scholar
Oliver JL, Carpena P, Román-Roldán R, Mata-Balaguer T, Mejías-Romero A, Hackenberg M, et al. Isochore chromosome maps of the human genome. Gene. 2002;300(1–2):117–27.
CAS
Google Scholar
Romiguier J, Ranwez V, Douzery EJP, Galtier N. Contrasting GC-content dynamics across 33 mammalian genomes: relationship with life-history traits and chromosome sizes. Genome Res. 2010;20(8):1001–9.
CAS
Google Scholar
Duret L, Galtier N. Biased gene conversion and the evolution of mammalian genomic landscapes. Annu Rev Genomics Hum Genet. 2009;10(1):285–311.
CAS
Google Scholar
Mancera E, Bourgon R, Brozzi A, Huber W, Steinmetz LM. High-resolution mapping of meiotic crossovers and non-crossovers in yeast. Nature. 2008;454(7203):479–85.
CAS
Google Scholar
Galtier N, Piganeau G, Mouchiroud D, Duret L. GC-content evolution in mammalian genomes: the biased gene conversion hypothesis. Genetics. 2001;159:907–11.
CAS
Google Scholar
Bolívar P, Mugal CF, Nater A, Ellegren H. Recombination rate variation modulates gene sequence evolution mainly via GC-biased gene conversion, not hill–Robertson interference, in an avian system. Mol Biol Evol. 2016;33(1):216–27.
Google Scholar
Capra JA, Hubisz MJ, Kostka D, Pollard KS, Siepel A. A model-based analysis of GC-biased gene conversion in the human and chimpanzee genomes. PLoS Genet. 2013;9(8):1.
Google Scholar
Figuet E, Ballenghien M, Romiguier J, Galtier N. Biased gene conversion and GC-content evolution in the coding sequences of reptiles and vertebrates. Genome Biol Evol. 2015;7(1):240–50.
Google Scholar
Montoya-Burgos JI, Boursot P, Galtier N. Recombination explains isochores in mammalian genomes. Trends Genet. 2003;19(3):128–30.
CAS
Google Scholar
Jonsson J, Carlsson L, Edlund T, Edlund H. Insulin-promoter-factor 1 is required for pancreas development in mice. Nature. 1994;371(6498):606–9.
CAS
Google Scholar
Offield MF, Jetton TL, Labosky PA, Ray M, Stein RW, Magnuson MA, et al. PDX-1 is required for pancreatic outgrowth and differentiation of the rostral duodenum. Development. 1996;122:983–95.
CAS
Google Scholar
Ahlgren U, Jonsson J, Jonsson L, Simu K, Edlund H. Beta-cell-specific inactivation of the mouse Ipf1/Pdx1 gene results in loss of the beta-cell phenotype and maturity onset diabetes. Genes Dev. 1998;12(12):1763–8.
CAS
Google Scholar
Brooke NM, Garcia-Fernàndez J, Holland PWH. The ParaHox gene cluster is an evolutionary sister of the Hox gene cluster. Nature. 1998;392(6679):920–2.
CAS
Google Scholar
Schwitzgebel VM, Mamin A, Brun T, Ritz-Laser B, Zaiko M, Maret A, et al. Agenesis of human pancreas due to decreased half-life of insulin promoter factor 1. J Clin Endocrinol Metab. 2003;88(9):4398–406.
CAS
Google Scholar
Macfarlane WM, Frayling TM, Ellard S, Evans JC, Allen LIS, Bulman MP, et al. Missense mutations in the insulin promoter factor-1 gene predispose to type 2 diabetes. J Clin Invest. 1999;104(9):R33–9.
CAS
Google Scholar
Leibowitz G, Yuli M, Donath MY, Nesher R, Melloul D, Cerasi E, et al. Beta-cell glucotoxicity in the Psammomys obesus model of type 2 diabetes. Diabetes. 2001;50(Supplement 1):S113–7.
CAS
Google Scholar
Gadot M, Leibowitz G, Shafrir E, Cerasi E, Gross D, Kaiser N. Hyperproinsulinemia and insulin deficiency in the diabetic Psammomys obesus. Endocrinology. 1994;135(2):610–6.
Schmidt-Nielsen K, Haines HB, Hackel DB. Diabetes mellitus in the sand rat induced by standard laboratory diets. Science. 1964;143(3607):689–90.
CAS
Google Scholar
Shafrir E, Ziv E, Mosthaf L. Nutritionally induced insulin resistance and receptor defect leading to β-cell failure in animal models. Ann N Y Acad Sci. 1999;892:223–46.
CAS
Google Scholar
Boquist L. Obesity and pancreatic islet hyperplasia in the Mongolian gerbil. Diabetologia. 1972;8(4):274–82.
CAS
Google Scholar
Li X, Lu J, Wang Y, Huo X, Li Z, Zhang S, et al. Establishment and characterization of a newly established diabetic gerbil line. PLoS One. 2016;11(7):e0159420.
Google Scholar
Fuchsberger C, Flannick J, Teslovich TM, Mahajan A, Agarwala V, Gaulton KJ, et al. The genetic architecture of type 2 diabetes. Nature. 2016;536(7614):41–7.
CAS
Google Scholar
Gaulton KJ. Mechanisms of type 2 diabetes risk loci. Curr Diab Rep. 2017;17(9):1.
CAS
Google Scholar
Gloyn AL, Ellard S. Defining the genetic aetiology of monogenic diabetes can improve treatment. Expert Opin Pharmacother. 2006;7(13):1759–67.
CAS
Google Scholar
Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372(6505):425–32.
CAS
Google Scholar
Taylor SI. Lilly lecture: molecular mechanisms of insulin resistance: lessons from patients with mutations in the insulin-receptor gene. Diabetes. 1992;41(11):1473–90.
CAS
Google Scholar
Wu J, Yonezawa T, Kishino H. Rates of molecular evolution suggest natural history of life history traits and a post-K-Pg nocturnal bottleneck of Placentals. Curr Biol. 2017;27(19):3025–3033.e5.
CAS
Google Scholar
Sneath PHA. Relations between chemical structure and biological activity in peptides. J Theor Biol. 1966;12(2):157–95.
CAS
Google Scholar
Epstein CJ. Non-randomness of amino-acid changes in the evolution of homologous proteins. Nature. 1967;215(5099):355–9.
Yang Z. PAML: a program package for phylogenetic analysis by maximum likelihood. Bioinformatics. 1997;13(5):555–6.
CAS
Google Scholar
Zhang J, Nielsen R, Yang Z. Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. Mol Biol Evol. 2005;22(12):2472–9.
CAS
Google Scholar
Davydov II, Salamin N, Robinson-Rechavi M. Large-scale comparative analysis of codon models accounting for protein and nucleotide selection. Mol Biol Evol. 2019;36(6):1316–32.
CAS
Google Scholar
Khan M, Jabeen N, Khan T, Hussain HMJ, Ali A, Khan R, et al. The evolutionarily conserved genes: Tex37, Ccdc73, Prss55 and Nxt2 are dispensable for fertility in mice. Sci Rep. 2018;8(1):4975.
Google Scholar
Zhou J, Stein P, Leu NA, Chmátal L, Xue J, Ma J, et al. Accelerated reproductive aging in females lacking a novel centromere protein SYCP2L. Hum Mol Genet. 2015;24(22):6505–14.
CAS
Google Scholar
Jha P, McDevitt MT, Halilbasic E, Williams EG, Quiros PM, Gariani K, et al. Genetic regulation of plasma lipid species and their association with metabolic phenotypes. Cell Syst. 2018;6(6):709–721.e6.
CAS
Google Scholar
Tintle NL, Pottala JV, Lacey S, Ramachandran V, Westra J, Rogers A, et al. A genome-wide association study of saturated, mono- and polyunsaturated red blood cell fatty acids in the Framingham heart offspring study. Prostaglandins Leukot Essent Fat Acids. 2015;94:65–72.
CAS
Google Scholar
Anderson DM, Johnson L, Glaccum MB, Copeland NG, Gilbert DJ, Jenkins NA, et al. Chromosomal assignment and genomic structure of Il15. Genomics. 1995;25(3):701–6.
CAS
Google Scholar
Chen J, Feigenbaum L, Awasthi P, Butcher DO, Anver MR, Golubeva YG, et al. Insulin-dependent diabetes induced by pancreatic beta cell expression of IL-15 and IL-15R. Proc Natl Acad Sci. 2013;110(33):13534–9.
CAS
Google Scholar
Vallender EJ. Positive selection on the human genome. Hum Mol Genet. 2004;13(Supplement 2):R245–54.
Torgerson DG, Kulathinal RJ, Singh RS. Mammalian sperm proteins are rapidly evolving: evidence of positive selection in functionally diverse genes. Mol Biol Evol. 2002;19(11):1973–80.
CAS
Google Scholar
Rousselle M, Laverré A, Figuet E, Nabholz B, Galtier N. Influence of recombination and GC-biased gene conversion on the adaptive and nonadaptive substitution rate in mammals versus birds. Mol Biol Evol. 2019;36(3):458–71.
CAS
Google Scholar
Arbeithuber B, Betancourt AJ, Ebner T, Tiemann-Boege I. Crossovers are associated with mutation and biased gene conversion at recombination hotspots. Proc Natl Acad Sci. 2015;112(7):2109–14.
CAS
Google Scholar
Ehrlich M, Wang RY-H. 5-Methylcytosine in eukaryotic DNA. Science. 1981;212:1350.
CAS
Google Scholar
Sahraoui A, Dewachter C, Vegh G, Mc Entee K, Naeije R, Bouguerra SA, et al. High fat diet altered cardiac metabolic gene profile in Psammomys obesus gerbils. Lipids Health Dis. 2020;19(1):123.
Sahraoui A, Dewachter C, de Medina G, Naeije R, Aouichat Bouguerra S, Dewachter L. Myocardial structural and biological anomalies induced by high fat diet in Psammomys obesus gerbils. PLoS One. 2016;11(2):e0148117.
Gross DJ, Leibowitz G, Cerasi E, Kaiser N. Increased susceptibility of islets from diabetes-prone Psammomys obesus to the deleterious effects of chronic glucose exposure. Endocrinology. 1996;137(12):5610–5.
Shafrir E, Ziv E, Saha AK, Ruderman NB. Regulation of muscle malonyl-CoA levels in the nutritionally insulin-resistant desert gerbil, Psammomys obesus. Diabetes Metab Res Rev. 2002;18(3):217–23.
CAS
Google Scholar
Petersen MC, Shulman GI. Mechanisms of insulin action and insulin resistance. Physiol Rev. 2018;98(4):2133–223.
CAS
Google Scholar
Riddle MR, Aspiras AC, Gaudenz K, Peuß R, Sung JY, Martineau B, et al. Insulin resistance in cavefish as an adaptation to a nutrient-limited environment. Nature. 2018;555(7698):647–51.
CAS
Google Scholar
Zhang H, Chen X, Sairam MR. Novel genes of visceral adiposity: identification of mouse and human mesenteric estrogen-dependent adipose (MEDA)-4 gene and its Adipogenic function. Endocrinology. 2012;153(6):2665–76.
CAS
Google Scholar
Li L, Pan Z, Yang S, Shan W, Yang Y. Identification of key gene pathways and coexpression networks of islets in human type 2 diabetes. Diabetes Metab Syndr Obes. 2018;11:553–63.
CAS
Google Scholar
D’Angelo CS, Varela MC, de Castro CIE, Otto PA, Perez ABA, Lourenço CM, et al. Chromosomal microarray analysis in the genetic evaluation of 279 patients with syndromic obesity. Mol Cytogenet. 2018;11(1):14.
Google Scholar
Kahles F, Findeisen HM, Bruemmer D. Osteopontin: a novel regulator at the cross roads of inflammation, obesity and diabetes. Mol Metab. 2014;3(4):384–93.
CAS
Google Scholar
Kiefer FW, Zeyda M, Todoric J, Huber J, Geyeregger R, Weichhart T, et al. Osteopontin expression in human and murine obesity: extensive local up-regulation in adipose tissue but minimal systemic alterations. Endocrinology. 2008;149(3):1350–7.
CAS
Google Scholar
Nomiyama T, Perez-Tilve D, Ogawa D, Gizard F, Zhao Y, Heywood EB, et al. Osteopontin mediates obesity-induced adipose tissue macrophage infiltration and insulin resistance in mice. J Clin Invest. 2007;117(10):2877–88.
CAS
Google Scholar
Chapman J, Miles PD, Ofrecio JM, Neels JG, Yu JG, Resnik JL, et al. Osteopontin is required for the early onset of high fat diet-induced insulin resistance in mice. PLoS One. 2010;5(11):e13959.
Google Scholar
Gómez-Ambrosi J, Catalán V, Ramírez B, Rodríguez A, Colina I, Silva C, et al. Plasma osteopontin levels and expression in adipose tissue are increased in obesity. J Clin Endocrinol Metab. 2007;92(9):3719–27.
Google Scholar
Emms DM, Kelly S. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. 2015;16(1):157.
Google Scholar
Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20(1):238.
Google Scholar
Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12(1):59–60.
CAS
Google Scholar
Ranwez V, Douzery EJP, Cambon C, Chantret N, Delsuc F. MACSE v2: toolkit for the alignment of coding sequences accounting for Frameshifts and stop codons. Mol Biol Evol. 2018;35(10):2582–4.
CAS
Google Scholar
Di Franco A. HmmCleaner.Pl - removing low similarity segments from your MSA; 2018. [Cited 2020 Mar 19]. Available from: https://metacpan.org/pod/HmmCleaner.pl.
Google Scholar
Guéguen L, Gaillard S, Boussau B, Gouy M, Groussin M, Rochette NC, et al. Bio++: efficient extensible libraries and tools for computational molecular evolution. Mol Biol Evol. 2013;30(8):1745–50.
Google Scholar
Yang Z, Nielsen R. Synonymous and nonsynonymous rate variation in nuclear genes of mammals. J Mol Evol. 1998;46(4):409–18.
CAS
Google Scholar
Pracana R, Hargreaves A. Analyses of GC evolution in gerbil genomes: Oxford University Research Archive; 2019. [Cited 2020 Jun 15]. Available from: https://ora.ox.ac.uk/objects/uuid:54a81d9b-c493-48ba-bda1-23e14ec3ae7a.
Romiguier J, Figuet E, Galtier N, Douzery EJP, Boussau B, Dutheil JY, et al. Fast and robust characterization of time-heterogeneous sequence evolutionary processes using substitution mapping. PLoS One. 2012;7(3):e33852.
CAS
Google Scholar
Storey JD, Bass AJ, Dabney A, Robinson D. qvalue: Q-value estimation for false discovery rate control: R package version 2.14.0; 2018. Available from: http://github.com/jdstorey/qvalue.
Komsta L, Novomestky F. Moments: moments, cumulants, skewness, kurtosis and related tests; 2015. Available from: https://cran.r-project.org/web/packages/moments/index.html.
Pounds S, Cheng C. Robust estimation of the false discovery rate. Bioinformatics. 2006;22(16):1979–87.
CAS
Google Scholar
Thomas PD. PANTHER: a library of protein families and subfamilies indexed by function. Genome Res. 2003;13(9):2129–41.
CAS
Google Scholar
Mi H, Muruganujan A, Thomas PD. PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Res. 2012;41(D1):D377–86.
Google Scholar
Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10(1):1523.
Google Scholar
Pracana R, Dai Y, Holland PWH. Divergent gerbil genes: scripts. Zenodo; 2020. Available from: https://doi.org/10.5281/zenodo.4049905.