Harvey BP, Gwynn-Jones D, Moore PJ. Meta-analysis reveals complex marine biological responses to the interactive effects of ocean acidification and warming. Ecol Evol. 2013;3(4):1016–30.
PubMed
PubMed Central
Google Scholar
Pecl GT, Ward TM, Doubleday ZA, Clarke S, Day J, Dixon C, et al. Rapid assessment of fisheries species sensitivity to climate change. Clim Chang. 2014;127(3–4):505–20.
Google Scholar
Glavovic B, Limburg K, Liu K-K, Emeis K-C, Thomas H, Kremer H, et al. Living on the margin in the Anthropocene: engagement arenas for sustainability research and action at the ocean–land interface. Curr Opin Environ Sust. 2015;14:232–8.
Google Scholar
Helmuth B, Mieszkowska N, Moore P, Hawkins SJ. Living on the edge of two changing worlds: forecasting the responses of rocky intertidal ecosystems to climate change. Annu Rev Ecol Evol Syst. 2006;37(1):373–404.
Google Scholar
Riginos C, Crandall ED, Liggins L, Bongaerts P, Treml EA. Navigating the currents of seascape genomics: how spatial analyses can augment population genomic studies. Curr Zool. 2016;62(6):581–601.
PubMed
PubMed Central
Google Scholar
Ravinet M, Westram A, Johannesson K, Butlin R, André C, Panova M. Shared and nonshared genomic divergence in parallel ecotypes of Littorina saxatilis at a local scale. Mol Ecol. 2016;25(1):287–305.
PubMed
Google Scholar
Tisthammer KH, Forsman ZH, Toonen RJ, Richmond RH. Genetic structure is stronger across human-impacted habitats than among islands in the coral Porites lobata. PeerJ. 2020;8:e8550.
PubMed
PubMed Central
Google Scholar
Selkoe KA, Gaggiotti OE, Bowen BW, Toonen RJ. Emergent patterns of population genetic structure for a coral reef community. Mol Ecol. 2014;23(12):3064–79.
PubMed
Google Scholar
Stanley RRE, DiBacco C, Lowen B, Beiko RG, Jeffery NW, Wyngaarden MV, et al. A climate-associated multispecies cryptic cline in the northwest Atlantic. Sci Adv. 2018;4(3):eaaq0929.
PubMed
PubMed Central
Google Scholar
De Wit P, Jonsson PR, Pereyra RT, Panova M, André C, Johannesson K. Spatial genetic structure in a crustacean herbivore highlights the need for local considerations in Baltic Sea biodiversity management. Evol Appl. 2020;13(5):974–90.
PubMed
PubMed Central
Google Scholar
Benestan L, Quinn BK, Maaroufi H, Laporte M, Clark FK, Greenwood SJ, et al. Seascape genomics provides evidence for thermal adaptation and current-mediated population structure in American lobster (Homarus americanus). Mol Ecol. 2016;25(20):5073–92.
PubMed
Google Scholar
Bernatchez S, Xuereb A, Laporte M, Benestan L, Steeves R, Laflamme M, et al. Seascape genomics of eastern oyster (Crassostrea virginica) along the Atlantic coast of Canada. Evol Appl. 2019;12(3):587–609.
PubMed
CAS
Google Scholar
Saenz-Agudelo P, Dibattista JD, Piatek MJ, Gaither MR, Harrison HB, Nanninga GB, et al. Seascape genetics along environmental gradients in the Arabian peninsula: insights from ddRAD sequencing of anemonefishes. Mol Ecol. 2015;24(24):6241–55.
PubMed
Google Scholar
Sandoval-Castillo J, Robinson NA, Hart AM, Strain LW, Beheregaray LB. Seascape genomics reveals adaptive divergence in a connected and commercially important mollusc, the greenlip abalone (Haliotis laevigata), along a longitudinal environmental gradient. Mol Ecol. 2018;27(7):1603–20.
PubMed
Google Scholar
Barshis DJ, Birkeland C, Toonen RJ, Gates RD, Stillman JH. High-frequency temperature variability mirrors fixed differences in thermal limits of the massive coral Porites lobata. J Exp Biol. 2018;221(24):jeb188581.
PubMed
Google Scholar
Narum SR, Buerkle CA, Davey JW, Miller MR, Hohenlohe PA. Genotyping-by-sequencing in ecological and conservation genomics. Mol Ecol. 2013;22(11):2841–7.
PubMed
PubMed Central
CAS
Google Scholar
Razgour O, Taggart JB, Manel S, Juste J, Ibáñez C, Rebelo H, et al. An integrated framework to identify wildlife populations under threat from climate change. Mol Ecol Res. 2018;18(1):18–31.
Google Scholar
von der Heyden S. Making evolutionary history count: biodiversity planning for coral reef fishes and the conservation of evolutionary processes. Coral Reefs. 2017;36(1):183–94.
Google Scholar
Aldrich DP, Meyer MA. Social capital and community resilience. Am Behav Sci. 2015;59(2):254–69.
Google Scholar
Stapley J, Reger J, Feulner PGD, Smadja C, Galindo J, Ekblom R, et al. Adaptation genomics: the next generation. Trends Ecol Evol. 2010;25(12):705–12.
PubMed
Google Scholar
Balkenhol N, Dudaniec RY, Krutovsky KV, Johnson JS, Cairns DM, Segelbacher G, et al. Landscape Genomics: Understanding Relationships Between Environmental Heterogeneity and Genomic Characteristics of Populations. Population Genomics: Concepts, Approaches and Applications: Springer International Publishing; 2019. p. 261–322.
Joost S, Bonin A, Bruford MW, Després L, Conord C, Erhardt G, et al. A spatial analysis method (SAM) to detect candidate loci for selection: towards a landscape genomics approach to adaptation. Mol Ecol. 2007;16(18):3955–69.
PubMed
CAS
Google Scholar
Forester BR, Lasky JR, Wagner HH, Urban DL. Comparing methods for detecting multilocus adaptation with multivariate genotype-environment associations. Mol Ecol. 2018;27(9):2215–33.
PubMed
CAS
Google Scholar
Rellstab C, Gugerli F, Eckert AJ, Hancock AM, Holderegger R. A practical guide to environmental association analysis in landscape genomics. Mol Ecol. 2015;24(17):4348–70.
PubMed
Google Scholar
Selkoe K, D’Aloia C, Crandall E, Iacchei M, Liggins L, Puritz J, et al. A decade of seascape genetics: contributions to basic and applied marine connectivity. Mar Ecol Prog Ser. 2016;554:1–19.
Google Scholar
Wei K, Wood A, Gardner J. Seascape genetics of the New Zealand greenshell mussel: sea surface temperature explains macrogeographic scale genetic variation. Mar Ecol Prog Ser. 2013;477:107–21.
Google Scholar
Takeuchi T, Masaoka T, Aoki H, Koyanagi R, Fujie M, Satoh N. Divergent northern and southern populations and demographic history of the pearl oyster in the western Pacific revealed with genomic SNPs. Evol Appl. 2020;13:837–53.
PubMed
PubMed Central
CAS
Google Scholar
Xuereb A, Kimber CM, Curtis JMR, Bernatchez L, Fortin M. Putatively adaptive genetic variation in the giant California Sea cucumber (Parastichopus californicus ) as revealed by environmental association analysis of restriction-site associated DNA sequencing data. Mol Ecol. 2018;27(24):5035–48.
PubMed
CAS
Google Scholar
Hanson JO, Rhodes JR, Riginos C, Fuller RA. Environmental and geographic variables are effective surrogates for genetic variation in conservation planning. Proc Natl Acad Sci. 2017;114(48):12755–60.
PubMed
CAS
PubMed Central
Google Scholar
Dalongeville A, Benestan L, Mouillot D, Lobreaux S, Manel S. Combining six genome scan methods to detect candidate genes to salinity in the Mediterranean striped red mullet (Mullus surmuletus). BMC Genomics. 2018;19(1):217.
PubMed
PubMed Central
Google Scholar
Lotterhos KE, Whitlock MC. The relative power of genome scans to detect local adaptation depends on sampling design and statistical method. Mol Ecol. 2015;24(5):1031–46.
PubMed
Google Scholar
Smit AJ, Roberts M, Anderson RJ, Dufois F, Dudley SFJ, Bornman TG, et al. A coastal seawater temperature dataset for biogeographical studies: large biases between in situ and remotely-sensed data sets around the coast of South Africa. PLoS One. 2013;8(12):e81944.
PubMed
PubMed Central
Google Scholar
Mmonwa K, Teske P, McQuaid C, Barker N. Historical demography of southern African patellid limpets: congruence of population expansions, but not phylogeography. Afr J Mar Sci. 2015;37(1):11–20.
Google Scholar
Muller C, von der Heyden S, Bowie R, Matthee C. Oceanic circulation, local upwelling and palaeoclimatic changes linked to the phylogeography of the Cape Sea urchin Parechinus angulosus. Mar Ecol Prog Ser. 2012;468:203–15.
Google Scholar
Wright D, Bishop JM, Matthee CA, von der Heyden S. Genetic isolation by distance reveals restricted dispersal across a range of life histories: implications for biodiversity conservation planning across highly variable marine environments. Divers Distrib. 2015;21(6):698–710.
Google Scholar
Phair NL, Toonen RJ, Knapp I, von der Heyden S. Shared genomic outliers across two divergent population clusters of a highly threatened seagrass. PeerJ. 2019;7:e6806.
PubMed
PubMed Central
Google Scholar
Toonen RJ, Puritz JB, Forsman ZH, Whitney JL, Fernandez-Silva I, Andrews KR, et al. ezRAD: a simplified method for genomic genotyping in non-model organisms. PeerJ. 2013;1:e203.
PubMed
PubMed Central
Google Scholar
Forsman ZH, Knapp ISS, Tisthammer K, Eaton DAR, Belcaid M, Toonen RJ. Coral hybridization or phenotypic variation? Genomic data reveal gene flow between Porites lobata and P. Compressa. Mol Phylogenet Evol. 2017;111:132–48.
PubMed
CAS
Google Scholar
Kofler R, Nolte V, Schlötterer C. The impact of library preparation protocols on the consistency of allele frequency estimates in Pool-Seq data. Mol Ecol Res. 2016;16(1):118–22.
CAS
Google Scholar
Kofler R, Langmüller AM, Nouhaud P, Otte KA, Schlötterer C. Data from: Suitability of different mapping algorithms for genome-wide polymorphism scans with Pool-Seq data. G3: Genes Genom Genet. 2016;6(11):3507–15.
CAS
Google Scholar
Schlötterer C, Tobler R, Kofler R, Nolte V. Sequencing pools of individuals — mining genome-wide polymorphism data without big funding. Nat Rev Genet. 2014;15(11):749–63.
PubMed
Google Scholar
Morin PA, Luikart G, Wayne RK. The SNP workshop group. SNPs in ecology, evolution and conservation. Trends Ecol Evol. 2004;19(4):208–16.
Google Scholar
Narzisi G, Mishra B. Comparing De novo genome assembly: the long and short of it. PLoS One. 2011;6(4):e19175.
PubMed
PubMed Central
CAS
Google Scholar
Moreton J, Izquierdo A, Emes RD. Assembly, assessment, and availability of De novo generated eukaryotic Transcriptomes. Front Genet. 2016;6:361.
PubMed
PubMed Central
Google Scholar
Gautier M. Genome-wide scan for adaptive divergence and association with population-specific covariates. Genetics. 2015;4:1555–79.
Google Scholar
Rellstab C, Zoller S, Tedder A, Gugerli F, Fischer MC. Validation of SNP Allele Frequencies Determined by Pooled Next-Generation Sequencing in Natural Populations of a Non-Model Plant Species. PLOS ONE. 2013;8(11):e80422.
PubMed
PubMed Central
CAS
Google Scholar
Hivert V, Leblois R, Petit EJ, Gautier M, Vitalis R. Measuring genetic differentiation from Pool-seq data. Genetics. 2018;210:315–30.
PubMed
PubMed Central
CAS
Google Scholar
Epps CW, Keyghobadi N. Landscape genetics in a changing world: disentangling historical and contemporary influences and inferring change. Mol Ecol. 2015;24:6021–40.
PubMed
Google Scholar
de Lafontaine G, Ducousso A, Lefèvre S, Magnanou E, Petit RJ. Stronger spatial genetic structure in recolonized areas than in refugia in the European beech. Mol Ecol. 2013;22(17):4397–412.
PubMed
Google Scholar
Nadeau S, Meirmans PG, Aitken SN, Ritland K, Isabel N. The challenge of separating signatures of local adaptation from those of isolation by distance and colonization history: the case of two white pines. Ecol Evol. 2016;6(24):8649–64.
PubMed
PubMed Central
Google Scholar
Blamey LK, Branch GM. Habitat diversity relative to wave action on rocky shores: implications for the selection of marine protected areas. Aquatic Conserv: Mar Freshw Ecosyst. 2009;19(6):645–57.
Google Scholar
Kankondi SL, McQuaid CD, Tagliarolo M. Influence of respiratory mode on the thermal tolerance of intertidal limpets. PLoS One. 2018;13(9):e0203555.
PubMed
PubMed Central
Google Scholar
Sink K, van der Bank MG, Majiedt PA, Harris LR, Atkinson LP, Kirkman SP, et al. South African National Biodiversity Assessment 2018 technical report volume 4: marine realm. Pretoria: South African National Biodiversity Institute; 2018.
Google Scholar
Teske PR, Sandoval-Castillo J, Golla TR, Emami-Khoyi A, Tine M, von der Heyden S, et al. Thermal selection as a driver of marine ecological speciation. Proc R Soc B. 2019;286(1896):20182023.
PubMed
CAS
PubMed Central
Google Scholar
Diopere E, Vandamme SG, Hablützel PI, Cariani A, Van Houdt J, Rijnsdorp A, et al. Seascape genetics of a flatfish reveals local selection under high levels of gene flow. ICES J Mar Sci. 2018;75(2):675–89.
Google Scholar
Pujolar JM, Jacobsen MW, Als TD, Frydenberg J, Munch K, Jónsson B, et al. Genome-wide single-generation signatures of local selection in the panmictic European eel. Mol Ecol. 2014;23(10):2514–28.
PubMed
CAS
Google Scholar
Eckert CG, Samis KE, Lougheed SC. Genetic variation across species’ geographical ranges: the central–marginal hypothesis and beyond. Mol Ecol. 2008;17(5):1170–88.
PubMed
CAS
Google Scholar
Peluso L, Tascheri V, Nunes FLD, Castro CB, Pires DO, Zilberberg C. Contemporary and historical oceanographic processes explain genetic connectivity in a southwestern Atlantic coral. Sci Rep. 2018;8(1):2684.
PubMed
PubMed Central
CAS
Google Scholar
Johannesson K, André C. INVITED REVIEW: Life on the margin: genetic isolation and diversity loss in a peripheral marine ecosystem, the Baltic Sea. Mol Ecol. 2006;15(8):2013–29.
PubMed
CAS
Google Scholar
Branch G. Two oceans: a guide to the marine life of southern Africa. South Africa: Penguin Random House; 2017.
Google Scholar
Branch G, Branch M. The Living Shores of Southern Africa. Cape Town: Penguin Random House; 2018.
Google Scholar
Ayre DJ, Minchinton TE, Perrin C. Does life history predict past and current connectivity for rocky intertidal invertebrates across a marine biogeographic barrier? Mol Ecol. 2009;18(9):1887–903.
PubMed
CAS
Google Scholar
O’Connor MI, Bruno JF, Gaines SD, Halpern BS, Lester SE, Kinlan BP, et al. Temperature control of larval dispersal and the implications for marine ecology, evolution, and conservation. Proceed Nat Acad Sci. 2007;104(4):1266–71.
Google Scholar
Reitzel A, Miner B, McEdward L. Relationships between spawning date and larval development time for benthic marine invertebrates: a modeling approach. Mar Ecol Prog Ser. 2004;280:13–23.
Google Scholar
Galindo HM, Pfeiffer-Herbert AS, McManus MA, Chao Y, Chai F, Palumbi SR. Seascape genetics along a steep cline: using genetic patterns to test predictions of marine larval dispersal. Mol Ecol. 2010;19(17):3692–707.
PubMed
Google Scholar
Storfer A, Patton A, Fraik AK. Navigating the Interface between landscape genetics and landscape genomics. Front Genet. 2018;9:68.
PubMed
PubMed Central
Google Scholar
Coscia I, Wilmes SB, Ironside JE, Goward-Brown A, O’Dea E, Malham SK, et al. Fine-scale seascape genomics of an exploited marine species, the common cockle Cerastoderma edule, using a multi-modelling approach. Evol Appl. 2020;00:1–14.
CAS
Google Scholar
Winch JJWW, Hodgson AN. The effect of temperature and salinity on oxygen consumption in the brachyuran crab Cyclograpsus punctatus (Crustacea: Decapoda: Grapsidae). Afr Zoo. 2007;42(1):118–23.
Google Scholar
Anger K. Salinity as a key parameter in the larval biology of decapod crustaceans. Invert Rep Develop. 2003;43(1):29–45.
Google Scholar
Pespeni MH, Palumbi SR. Signals of selection in outlier loci in a widely dispersing species across an environmental mosaic. Mol Ecol. 2013;22(13):3580–97.
PubMed
CAS
Google Scholar
Suarez-Ulloa V, Gonzalez-Romero R, Eirin-Lopez JM. Environmental epigenetics: a promising venue for developing next-generation pollution biomonitoring tools in marine invertebrates. Mar Poll Bull. 2015;98(1–2):5–13.
CAS
Google Scholar
Prates I, Penna A, Rodrigues MT, Carnaval AC. Local adaptation in mainland anole lizards: integrating population history and genome–environment associations. Ecol Evol. 2018;8(23):11932–44.
PubMed
PubMed Central
Google Scholar
Foo SA, Byrne M. Chapter Two - Acclimatization and Adaptive Capacity of Marine Species in a Changing Ocean. Advances in Marine Biology. Academic Press; 2016. p. 69–116.
Osores SJA, Ruz GA, Opitz T, Lardies MA. Discovering divergence in the thermal physiology of intertidal crabs along latitudinal gradients using an integrated approach with machine learning. J Therm Biol. 2018;78:140–50.
PubMed
Google Scholar
Andrade SCS, Solferini VN. Fine-scale genetic structure overrides macro-scale structure in a marine snail: nonrandom recruitment, demographic events or selection? Biol J Linn Soc. 2007;91(1):23–36.
Google Scholar
Gamboa M, Watanabe K. Genome-wide signatures of local adaptation among seven stoneflies species along a nationwide latitudinal gradient in Japan. BMC Genomics. 2019;20(1):84.
PubMed
PubMed Central
Google Scholar
The Global Invertebrate Genomics Alliance (GIGA). Developing Community Resources to Study Diverse Invertebrate Genomes. J Hered. 2014;105(1):1–18.
Google Scholar
Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet. 2016;17(6):333–51.
PubMed
CAS
Google Scholar
Lowry DB, Hoban S, Kelley JL, Lotterhos KE, Reed LK, Antolin MF, et al. Responsible RAD: striving for best practices in population genomic studies of adaptation. Mol Ecol Resour. 2017;17(3):366–9.
PubMed
Google Scholar
Tiffin P, Ross-Ibarra J. Advances and limits of using population genetics to understand local adaptation. Trends Ecol Evol. 2014;12:673–80.
Google Scholar
Dorant Y, Benestan L, Rougemont Q, Normandeau E, Boyle B, Rochette R, et al. Comparing Pool-seq, rapture, and GBS genotyping for inferring weak population structure: the American lobster (Homarus americanus) as a case study. Ecol Evol. 2019;9(11):6606–23.
PubMed
PubMed Central
Google Scholar
Fischer MC, Rellstab C, Tedder A, Zoller S, Gugerli F, Shimizu KK, et al. Population genomic footprints of selection and associations with climate in natural populations of Arabidopsis halleri from the Alps. Mol Ecol. 2013;22(22):5594–607.
PubMed
PubMed Central
CAS
Google Scholar
Griffiths CL, Robinson TB, Lange L, Mead A. Marine biodiversity in South Africa: an evaluation of current states of knowledge. PLoS One. 2010;5(8):e12008.
PubMed
PubMed Central
Google Scholar
Hobday AJ, Pecl GT. Identification of global marine hotspots: sentinels for change and vanguards for adaptation action. Rev Fish Biol Fisheries. 2014;24(2):415–25.
Google Scholar
Mertens LEA, Treml EA, von der Heyden S. Genetic and biophysical models help define marine conservation focus areas. Front Mar Sci. 2018;5:268.
Google Scholar
Kurland S, Wheat CW, de la PC MM, Kutschera VE, Hill J, Andersson A, et al. Exploring a Pool-seq-only approach for gaining population genomic insights in nonmodel species. Ecol Evol. 2019;9(19):11448–63.
PubMed
PubMed Central
Google Scholar
Nielsen ES, Henriques R, Toonen RJ, Guo B, von der Heyden S. Complex signatures of genomic variation of two non-model marine species in a homogeneous environment. BMC Genomics. 2018;19:347.
PubMed
PubMed Central
Google Scholar
Knapp I, Puritz J, Bird C, Whitney M, Sudek M, Forsman Z, et al. ezRAD—an accessible next-generation RAD sequencing protocol suitable for non-model organisms_v3. Protocols. io Life Sciences Protocol Repository; 2016.
Google Scholar
Andrews S. FastQC: a quality control tool for high throughput sequence data. 2010. http://www.bioinformatics.babraham.ac.uk/projects/fastqc.
Google Scholar
Krueger F. Trim galore!: a wrapper tool around Cutadapt and FastQC to consistently apply quality and adapter trimming to FastQ files. Cambridge: Babraham. Bioinformatics. 2015.
Teske PR, Golla TR, Sandoval-Castillo J, Emami-Khoyi A, van der Lingen CD, von der Heyden S, et al. Mitochondrial DNA is unsuitable to test for isolation by distance. Sci Rep. 2018;8(1):1–9.
CAS
Google Scholar
Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv:13033997. 2013; http://arxiv.org/abs/1303.3997.
Google Scholar
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):2078–9.
PubMed
PubMed Central
Google Scholar
Barnett DW, Garrison EK, Quinlan AR, Stromberg MP, Marth GT. BamTools: a C++ API and toolkit for analyzing and managing BAM files. Bioinformatics. 2011;27(12):1691–2.
PubMed
PubMed Central
CAS
Google Scholar
Bushnell B. BBMap short-read aligner, and other bioinformatics tools. Berkeley: University of California; 2015.
Google Scholar
Chikhi R, Medvedev P. Informed and automated k-mer size selection for genome assembly. Bioinformatics. 2014;30(1):31–7.
PubMed
CAS
Google Scholar
Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM, Birol I. ABySS: a parallel assembler for short read sequence data. Genome Res. 2009;19(6):1117–23.
PubMed
PubMed Central
CAS
Google Scholar
Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31(10):1674–6.
PubMed
CAS
Google Scholar
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):455–77.
PubMed
PubMed Central
CAS
Google Scholar
Mayela Soto-Jimenez L, Estrada K, Sanchez-Flores A. GARM: genome assembly, reconciliation and merging pipeline. Curr Top Medl Chem. 2014;14(3):418–24.
Google Scholar
Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome assemblies. Bioinformatics. 2013;29(8):1072–5.
PubMed
PubMed Central
CAS
Google Scholar
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10(1):421.
PubMed
PubMed Central
Google Scholar
Tripp EA, Tsai Y-HE, Zhuang Y, Dexter KG. RADseq dataset with 90% missing data fully resolves recent radiation of Petalidium (Acanthaceae) in the ultra-arid deserts of Namibia. Ecol Evol. 2017;7(19):7920–36.
PubMed
PubMed Central
Google Scholar
Kofler R, Pandey RV, Schlotterer C. PoPoolation2: identifying differentiation between populations using sequencing of pooled DNA samples (Pool-Seq). Bioinformatics. 2011;27(24):3435–6.
PubMed
PubMed Central
CAS
Google Scholar
Graham CF, Boreham DR, Manzon RG, Stott W, Wilson JY, Somers CM. How “simple” methodological decisions affect interpretation of population structure based on reduced representation library DNA sequencing: a case study using the lake whitefish. PLoS One. 2020;15(1):e0226608.
PubMed
PubMed Central
CAS
Google Scholar
Leblois R, Gautier M, Rohfritsch A, Foucaud J, Burban C, Galan M, et al. Deciphering the demographic history of allochronic differentiation in the pine processionary moth Thaumetopoea pityocampa. Mol Ecol. 2018;27(1):264–78.
PubMed
CAS
Google Scholar
Goslee SC, Urban DL. The ecodist Package for Dissimilarity-based Analysis of Ecological Data. J Stat Soft. 2007;22(7):1–19.
Google Scholar
Fick SE, Hijmans RJ. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol. 2017;37(12):4302–15.
Google Scholar
Sbrocco EJ, Barber PH. MARSPEC: ocean climate layers for marine spatial ecology. Ecology. 2013;94(4):979.
Google Scholar
Tyberghein L, Verbruggen H, Pauly K, Troupin C, Mineur F, Clerck OD. Paper. Glob Ecol Biogeogr. 2012;21(2):272–81.
Google Scholar
Bosch S, Tyberghein L, De Clerck O. Sdmpredictors: an R package for species distribution modelling predictor datasets. Marine Species Distributions: From data to predictive models; 2017.
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B. 1995;57(1):289–300.
Google Scholar
Diniz-Filho JAF, Soares TN, Lima JS, Dobrovolski R, Landeiro VL, Telles MP de C, et al. Mantel test in population genetics. Gen Mol Biol. 2013;36(4):475–85.
Google Scholar
Slatkin M. A measure of population subdivision based on microsatellite allele frequencies. Genetics. 1995;139:457–62.
PubMed
PubMed Central
CAS
Google Scholar
Team QD. QGIS geographic information system. Open Source Geospatial Foundation; 2009.
Google Scholar
Dabney A, Storey JD, Warnes GR. qvalue: Q-value estimation for false discovery rate control. R package version. 1(0); 2010.
Google Scholar
Jefferys H. Theory of probability (3rd edition). New York: Oxford university press; 1961.
Google Scholar
Frichot E, Schoville SD, Bouchard G, François O. Testing for associations between loci and environmental gradients using latent factor mixed models. Mol Biol Evol. 2013;30(7):1687–99.
PubMed
PubMed Central
CAS
Google Scholar
Frichot E, François O. LEA: an R package for landscape and ecological association studies. Methods Ecol Evol. 2015;6(8):925–9.
Google Scholar
Wagner HH, Chávez-Pesqueira M, Forester BR. Spatial detection of outlier loci with Moran eigenvector maps. Mol Ecol Resour. 2017;17(6):1122–35.
PubMed
CAS
Google Scholar
Bivand R, Anselin L, Berke O, Bernat A, Carvalho M, Chun Y, et al. spdep: Spatial dependence: weighting schemes, statistics and models. 2011.
Google Scholar
Legendre P, Gallagher ED. Ecologically meaningful transformations for ordination of species data. Oecologia. 2001;129(2):271–80.
PubMed
Google Scholar
Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara RB, et al. Package ‘vegan.’ Community ecology package, version 2. 2013;9:1–295.
Dray S, Legendre P, Peres-Neto PR. Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecol Model. 2006;196(3–4):483–93.
Google Scholar
Dray S, Blanchet G, Borcard D, Guenard G, Jombart T, Larocque G, et al. Adespatial: multivariate multiscale spatial analysis. R package version. 2017;0:0–9.
Google Scholar
Blanchet FG, Legendre P, Borcard D. Forward selection of explanatory variables. Ecology. 2008;89(9):2623–32.
PubMed
Google Scholar
Wickham H. ggplot2: elegant graphics for data analysis. J Stat Soft. 2016;77.
Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21(18):3674–6.
PubMed
CAS
Google Scholar