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Abstract

Background: As global change and anthropogenic pressures continue to increase, conservation and management
increasingly needs to consider species’ potential to adapt to novel environmental conditions. Therefore, it is
imperative to characterise the main selective forces acting on ecosystems, and how these may influence the
evolutionary potential of populations and species. Using a multi-model seascape genomics approach, we compare
putative environmental drivers of selection in three sympatric southern African marine invertebrates with
contrasting ecology and life histories: Cape urchin (Parechinus angulosus), Common shore crab (Cyclograpsus
punctatus), and Granular limpet (Scutellastra granularis).

Results: Using pooled (Pool-seq), restriction-site associated DNA sequencing (RAD-seq), and seven outlier detection
methods, we characterise genomic variation between populations along a strong biogeographical gradient. Of the
three species, only S. granularis showed significant isolation-by-distance, and isolation-by-environment driven by sea
surface temperatures (SST). In contrast, sea surface salinity (SSS) and range in air temperature correlated more
strongly with genomic variation in C. punctatus and P. angulosus. Differences were also found in genomic
structuring between the three species, with outlier loci contributing to two clusters in the East and West Coasts for
S. granularis and P. angulosus, but not for C. punctatus.

Conclusion: The findings illustrate distinct evolutionary potential across species, suggesting that species-specific
habitat requirements and responses to environmental stresses may be better predictors of evolutionary patterns
than the strong environmental gradients within the region. We also found large discrepancies between outlier
detection methodologies, and thus offer a novel multi-model approach to identifying the principal environmental
selection forces acting on species. Overall, this work highlights how adding a comparative approach to seascape
genomics (both with multiple models and species) can elucidate the intricate evolutionary responses of ecosystems
to global change.

Keywords: Pool-seq, RAD-seq, Seascape genomics, Environmental association, Comparative phylogeography,
Marine invertebrates
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Background
Anthropogenic climate change is altering the physical
and chemical properties of coastal ecosystems at an un-
precedented rate, ultimately threatening the persistence
of biological communities [1, 2]. Nearshore environ-
ments are especially at risk from anthropogenic change
as they are exposed to threats from both the terrestrial
and marine realms [3]. Coastal systems experience
strong environmental gradients, caused by complex in-
teractions among features such as wind and wave action,
ocean currents and upwelling cells, and exposure to sun-
light and precipitation [4]. Environmental heterogeneity
in coastal systems should therefore impose differential
selection pressures, facilitating local adaptation and gen-
etic differentiation [5, 6]. While many marine species are
thought to exhibit low genetic differentiation due to
large population sizes and high dispersal potential, there
is growing evidence suggesting that many coastal organ-
isms display surprisingly fine-scale population structur-
ing and local adaptation [7–10]. Along with
oceanographic patterns and coastal topography, the sup-
port for climatic environmental gradients acting as bar-
riers to gene flow is steadily increasing [11–14].
Uncovering patterns of genetic differentiation and pos-
sible local adaptation, and distinguishing which environ-
mental conditions shape such patterns, is critical for
effective conservation management in the face of global
change [15–18].
Quantifying genomic differentiation and putative adap-

tive variation of marine species, and the resultant field of
seascape genomics, relies on recent advances in Next
Generation Sequencing (NGS [19, 20]). One of the main
goals of seascape genomics is to use NGS to identify loci
that differ significantly over environmental gradients,
using gene-environment association analyses (GEAAs
[21, 22]). GEAAs are powerful tools to detect putative
adaptive loci (commonly termed ‘outlier loci’) by directly
associating allele frequencies with environmental vari-
ables [5, 23, 24]. Sea surface temperature (SST) is the
most common environmental structuring force identi-
fied among seascape studies to date [25], and has been
shown to strongly correlate with genomic variation in
abalone [14], mussels [26], oysters [12, 27], sea cucum-
bers [28], and lobsters [11]. As SST is consistently iden-
tified as one of the prominent drivers of genomic
variation in marine invertebrates, it has promise as a
proxy for evolutionary processes, such as local selection,
in conservation [29]. However, previous studies have
solely investigated single-species GEAAs, which means
that the effects of SST and other environmental variables
on coastal species with similar distributions, but differ-
ent micro-environmental niches, are still largely unex-
plored [1]. Furthermore, there are a multitude of GEA
methods available, which differ in their statistical

analyses and assumptions of demographic histories,
often leading to diverse outputs [30, 31]. Even though
many studies use two or three outlier detection methods
to account for false positives [23], there has yet to be a
comprehensive comparison of various methods in their
ability to identify the dominant selection forces acting
on wild marine populations.
This study focusses on the environmental drivers of

genomic differentiation in three rocky shore inverte-
brates: Cape urchin (Parechinus angulosus), Granular
limpet (Scutellastra granularis), and Common shore
crab (Cyclograpsus punctatus), that are widely distrib-
uted along the southern African coastline, which is
known for its strong biogeographic gradients of
temperature, productivity and other environmental vari-
ables (Fig. 1 [32]). Previous studies, consisting of mito-
chondrial DNA (mtDNA) data, have detected multiple
lineages for each species, broadly differentiated into West
and East Coast clades [33–35], with evidence of isolation-
by-distance (IBD; e.g. [35]). However, a recent study using
NGS data from the estuarine-restricted seagrass Z. capen-
sis suggested that isolation-by-environment (IBE) plays a
significant role in shaping the genomic differentiation
[36], although the extent that IBD and IBE characterise
the genomic variation of other marine species in the re-
gion currently remains unknown.
Broadly, the objectives of this study are to characterise

phylogeographic patterns of three ecologically important
rocky shore species, and to identify the dominant envir-
onmental drivers of putative adaptive variation within
southern African rocky shore communities. A pooled
(Pool-seq), restriction-site associated DNA sequencing
(RAD-seq) approach was used to characterise genomic
variation across at least 13 sites per species, and describe
population diversity within and differentiation amongst
these species. Seven outlier detection methods were used
to distinguish the principal environmental drivers of se-
lection in each species. We hypothesized that: 1) each
species will be structured into West and East Coast pop-
ulations in accordance with mtDNA population struc-
ture, 2) each species will show significant isolation-by-
distance and isolation-by-environment, 3) SST will be
the dominant driver of putative selection for all three
species.

Results
Sequencing and bioinformatic processing
DNA samples were collected from three species, includ-
ing 13 or 14 sites each, per species (Fig. 1; Tables S1-S3,
Additional file 1). A pooled ezRAD sequencing and de
novo assembly approach was used, as this allowed for
larger contig lengths (e.g. > 1000 base pairs; bp) com-
pared to other RAD-seq approaches [37]. Further, the
ezRAD approach does not rely on a PCR step to amplify
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sequences during library preparation, which removes
potential biases from PCR duplicates, and is a
unique RAD-seq method which allows for high
coverage at specific RAD loci in combination with
low coverage of across the entire genome [38]. Add-
itionally, the effectiveness of ezRAD has been veri-
fied with Pool-seq, which is a cost-effective method
of sequencing multiple individuals, and is increas-
ingly being used to characterize population level dif-
ferentiation [39, 40]. To avoid any potential
sequencing biases, we followed best practices by in-
cluding a large number of individuals per pool (~
40), as well as using a stringent coverage cut-off of
> 20X per pool [41]. Filtering was also conducted to
obtain high-quality allele frequencies, such as only
retaining reads with mapping quality > 20, and only
keeping properly mapped, and properly paired
mapped reads (Table S4, Additional file 1). Add-
itional bioinformatic steps (see Methods section for
further details) were used to obtain single nucleotide
polymorphisms (SNPs), from which various compara-
tive phylogeography analyses were performed.
To assure retained SNPs best reflect nuclear genome-

wide variation, we first removed possible mtDNA reads,
as well as compared the performance of three de novo
assemblers. The average number of reads per pool that
mapped onto the reference mitogenomes was 12,363 for
C. punctatus, 20,342 for P. angulosus, and 234 for S.
granularis (Table S5, Additional file 1). These mitochon-
drial reads were subsequently removed from the raw

reads during the mapping stage, as they reflect distinct
evolutionary processes compared to nuclear loci [42]. As
there are no reference genomes for these or closely-
related species, de novo assemblies were compared be-
tween three programs, SPAdes, AbySS, and MEGAHIT,
for each species. There are multiple measures to asses
de novo assemblies, and here we followed common
practice of choosing the assembly with higher N50 and
L50 values, and those with fewer but longer contig
lengths [43]. De novo assemblies were also BLASTed to
the NCBI database, but less weight was put on this ana-
lysis as it can be biased toward model genomes [44].
SPAdes resulted in the more robust assembly, with the
longest contig length, N50, and L50, as well as a higher
number of NCBI hits on average for all three species
(Table S6, Additional file 1), and thus was used for all
downstream analyses.
The number of raw reads per species ranged from ~

29 million for C. punctatus to ~ 47 million for P. angulo-
sus (Table S7, Additional file 1). The average number of
raw reads per pool was ~ 2.2 million for C. punctatus, ~
2.5 million for S. granularis, and ~ 3.5 million for P.
angulosus (Tables S8–10, Additional file 1). A total of
17,309, 3946, and 10,416 SNPs were identified for each
species, respectively (Table S7, Additional file 1). After
filtering for biallelic SNPS and pruning the SNP datasets
to one SNP per 1000 bp (to account for linkage disequi-
librium; LD), C. punctatus, P. angulosus, and S. granu-
laris had 1190, 822, and 1658 SNPs, respectively (Table
S7, Additional file 1).

Fig. 1 The Sea Surface Temperatures (from the MARSPEC database) within the study region (a), the species-specific sampling regimes (b), and
the names of the 20 total sample sites included in the study (c)
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Genomic structuring
To assess population structuring, all filtered and LD-
pruned SNPs were used to calculate pairwise Weir and
Cockerham’s FST values and Nei’s genetic distances. We
further investigated population structure with scaled co-
variance (Ω) matrices produced by the BayPass v.2.1
core model, which explicitly accounts for Pool-seq data
[45]. The scaled covariance matrix characterises the co-
variation of allele frequencies both within and between
pools, and can be interpreted as pairwise relatedness es-
timates of population structure. Isolation-by-distance
(IBD) patterns were assessed by comparing genomic and
geographic distance per species.
Pairwise FST values varied between species, with ranges

of: C. punctatus FST = 0–0.021, P. angulosus FST = 0–
0.127, and S. granularis FST = 0 - FST = 0.059 (Add-
itional file 2). The PCoAs from Nei’s genetic distance
and the Ω heatmap matrices show no clear spatial clus-
tering for C. punctatus and P. angulosus, but slight dif-
ferentiation between West and East Coast sites for S.
granularis (Fig. 2). Mantel tests suggest that of the three
species, only S. granularis populations are characterised
by IBD (r = 0.48, p < 0.01; Table 1).
The results also show that altering coverage cut-off

parameters has little influence on patterns of popula-
tion structure, as the two-dimensional visualizations
of genomic differentiation (derived from Ω matrices),
show similar genomic clustering across three coverage
scenarios per species (Fig. S2-S4, Additional file 1),
confirming other studies which found that Pool-seq
population differentiation patterns are robust to
coverage variances [46, 47].

Potential environmental drivers of genomic structuring
To assess possible environmental drivers of genomic
structuring, we ran isolation-by-environment (IBE) tests,
which compare genomic and environmental distance, ac-
counting for geographic distance. To identify environ-
mental variables for the IBE and GEA analyses, a total of
20 environmental variables were originally included, and
subsequently filtered based on Spearman’s correlation
coefficients < 0.65 and variance inflation factors < 10.
There were multiple correlations between the 20 en-
vironmental predictor variables (Additional file 3).
After filtering for collinearity, five final environmental
predictor variables remained: mean sea surface salinity
(SSSmean), sea surface salinity range (SSSrange),
mean sea surface temperature (SSTmean), sea surface
temperature range (SSTrange) and air temperature
range (Trange; Additional file 3).
Partial Mantel tests showed significant IBE by

SSTmean for C. punctatus (r = 0.43, p < 0.05), but this
did not remain significant after correcting for multiple
testing (q = 0.19; Table 1). SSTmean was also found to

significantly correlate with genomic differentiation in
S. granularis (r = 0.40, p < 0.01), which remained sig-
nificant after multiple testing correction (q = 0.001;
Table 1). The partial Mantel tests did not find a sig-
nificant correlation between any of the three environ-
mental predictor variables and genomic differentiation
in P. angulosus (Table 1).

Characterising possible selection signals via outlier loci
identification
As GEAA methods have been shown to vary in the type
and number of outliers detected [23, 30], seven different
outlier-detection methods were compared, including six
GEAAs to investigate possible associations between
SNPs and environmental variables. The analyses in-
cluded BayPass Bayesian hierarchical models (both core
and auxiliary models), Latent factor mixed models
(LFMM), Moran spectral outlier detection (MSOD) and
Moran spectral randomization outlier detection (MSR),
and Redundancy analyses (RDA) and Distance-based re-
dundancy analyses (dbRDA).
Overall, there was a large range in the number of out-

liers detected, with little overlap between models
(Table 2). LFMM detected the most outliers and had the
highest number of unique outliers, followed by MSOD
(Table 2). Generally, S. granularis had the highest num-
ber of outliers detected for each model, with the excep-
tion of LFMM (Table 2). The model type with the
lowest number of outliers selected was dbRDA (Table
2). For the dbRDA analyses, a forward selection process
retained zero dbMEMs for C. punctatus and P. angulo-
sus, and one dbMEM for S. granularis. The dbRDA for
S. granularis had an adjusted R2 value of 0.02 (p = 0.33),
with one outlier locus selected. The standard RDAs had
adjusted R2 values of 0.021 (p = 0.31), 0.021 (p = 0.65),
and 0.084 (p = 0.01) for C. punctatus, P. angulosus, and
S. granularis, respectively. The single population-
differentiation based outlier detection method, BayPass
core model (BPC), identified nine outliers for C. puncta-
tus, five outliers in P. angulosus, and 19 in S. granularis,
with two, two, and eight outliers unique to that method,
respectively (Table 2).
The environmental variable that most strongly cor-

relates with genomic variation differed between out-
lier detection methods and across species. The
majority of methods for C. punctatus identified the
most outlier loci in association with SSSmean, with
the exception of LFMM that identified the most out-
liers with Trange (Fig. 3). Trange and SSTmean were
the two variables that identified outliers in at least
three models for P. angulosus (Fig. 3). SSTmean iden-
tified the most outlier loci in all methods except
LFMM for S. granularis (Fig. 3).
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Genomic structure of putatively neutral vs. outlier SNPs
Loci that were selected by two or more outlier detection
methods (2X outliers) were used to create an ‘outlier data-
set’, and these loci were removed from the total SNP data-
set to create a ‘putatively neutral dataset’. We compared
the genomic structuring between putative neutral and out-
lier SNPs via Principal Components Analysis (PCA) ordi-
nations of allele frequencies from each dataset.

The number of SNPs used to create ‘outlier’ datasets
was 13, 12, and 26 for C. punctatus, P. angulosus, and S.
granularis, respectively. The PCAs of allele frequencies
differed between the putatively neutral and outlier SNP
datasets for all three species (Fig. 4). For C. punctatus,
the putatively neutral SNPs show most of the sites
within one main cluster, with the YZ and MG sample
sites each forming individual clusters. In contrast, the

Fig. 2 Population differentiation is shown by PCoAs of Nei’s genetic distance from all quality-filtered SNPs (a, c, e) and covariance (Ω) matrices
represented as heatmaps (b, d, f), shown for C. punctatus (a, b), P. angulosus (c, d), and S. granularis (e, f). Letters in the PCoAs (a, c, e) correspond
to the sample sites shown in Fig. 1, with darker shaded letters corresponding to western sites, and lighter shaded letters corresponding to
eastern sites
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outliers show more differentiation between sites, with
MG and YZ as most divergent. The putatively neutral
SNPs of P. angulosus do not separate sites following any
geographical pattern, however the outlier SNPs clearly
distinguish between the East and West Coast sites (Fig.
4). In S. granularis, the putatively neutral dataset sepa-
rates East Coasts and West Coast sites, a pattern even
more pronounced when examining the outlier dataset,
where sampling sites are clearly differentiated according
to geography (Fig. 4).

Potential functionality of outlier SNPs
We investigated the potential functional roles of the out-
lier SNPs selected by two or more detection methods
(2X outliers), by BLASTing them to the NCBI non-
redundant protein sequence database, and assessing gene
ontology (GO) with Blast2GO.
Of the 2X outliers, seven contigs from C. punctatus,

six contigs from P. angulosus, and 11 contigs from S.
granularis resulted in BLAST results passing quality fil-
ters (Additional file 4). Several contigs from P. angulo-
sus, and S. granularis matched to histone complexes,
with GO terms relating to DNA-binding, protein hetero-
dimerization activity, and regulation of DNA

recombination and chromatin silencing (Additional File
4). The remaining contigs with BLAST hits for S. granu-
laris had GO terms relating to regulation of transcrip-
tion, GTPase activity, and cell adhesion (Additional file
4). The GO terms relating to the BLAST hits for C.
punctatus include protein and ion transport, carbohy-
drate metabolism, DNA binding and synthesis, and the
anaphase-promoting complex (Additional file 4).

Discussion
This study builds on single-marker genetic analyses, by
utilising high-throughput genomic data to elucidate phy-
logeographic patterns of three southern African coastal
marine invertebrates. We hypothesized that the study
species would each demonstrate West and East Coast
genomic structuring as well as isolation-by-distance
(IBD) and isolation-by-environment (IBE). However,
these hypotheses were only confirmed in the limpet, S.
granularis. We also used a multispecies approach to ex-
plore putative environmental drivers of genomic vari-
ation within this unique marine biogeographical
gradient. Here we hypothesized that sea-surface
temperature (SST) would be the dominant driver of gen-
omic variation, and yet again this hypothesis was

Table 1 Mantel and partial Mantel test results for C. punctatus, P. angulosus, and S. granularis

C. punctatus P. angulosus S. granularis

Test r p q r p q r p q

FST ~ D 0.18 0.20 0.39 0.13 0.18 0.54 0.48 0.00 0.01

FST ~ SSSmean|D 0.18 0.45 0.67 −0.02 0.87 0.87 −0.23 0.27 0.34

FST ~ SSSrange|D −0.50 0.06 0.19 −0.02 0.77 0.87 −0.23 0.03 0.06

FST ~ SSTmean|D 0.43 0.03 0.19 −0.20 0.14 0.54 0.40 0.00 0.01

FST ~ SSTrange|D 0.04 0.79 0.79 −0.08 0.46 0.87 −0.14 0.39 0.39

FST ~ Trange|D 0.08 0.61 0.73 −0.06 0.71 0.87 −0.19 0.28 0.34

Correlation coefficients (r), p-values (p), and q-values (q) are given for tests between genetic distance (FST) and geographic distance (D), and distance matrices
between each of the five environmental variables: mean sea surface salinity (SSSmean), sea surface salinity range (SSSrange), mean sea surface temperature
(SSTmean), sea surface temperature range (SSTrange), and surface air temperature range (Trange). Significant values are denoted in bold

Table 2 Comparisons in number of outlier SNPs detected between seven outlier detection methods

Method (Abbreviation) Model type Correction for spatial
or population structure

C. punctatus
# outliers
(# unique)

P. angulosus
# outliers
(# unique)

S. granularis
# outliers
(# unique)

BayPass core model (BPC) Bayesian Yes, population 9 (2) 5 (0) 19 (5)

BayPass auxiliary model (BPA) Bayesian Yes, population 0 0 4 (0)

Latent factor mixed model (LFMM) Mixed model Yes, population 134 (121) 72 (60) 125 (101)

Moran spectral outlier detection (MSOD) Multivariate model Yes, spatial 15 (14) 9 (7) 20 (18)

Moran spectral randomization outlier
detection (MSR)

Multivariate model Yes, spatial 3 (NA) 3 (NA) 8 (NA)

Redundancy analysis (RDA) Multivariate model No 9 (3) 9 (1) 16 (2)

Distance-based redundancy
analysis (dbRDA)

Multivariate model Yes, spatial 0 0 1 (1)

Descriptions of outlier detection methods, and the number of total and unique outliers (restricted to that method) detected by each method for each species.
Note that MSR could not have unique outliers as it uses those identified by MSOD
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rejected in all species except for S. granularis. These
findings display how high-throughput sequencing can
elucidate distinctive population structuring and gene-
environment associations, and offer exciting avenues for
future research which investigate these evolutionary pro-
cesses at even finer scales. Overall, the results reveal
species-specific evolutionary patterns, highlighting the
complexity of interacting factors shaping natural gen-
omic variation, which is discussed in detail in the follow-
ing sections.

Genomic markers elucidate distinct patterns of
population structuring
Our first hypothesis was that each species would reflect
previously described mtDNA patterns, with two clusters
separated into West and East Coast individuals, reflect-
ing the biogeographic breakpoint around the Southwest-
ern Cape. However, only the limpet S. granularis follows
this pattern, with C. punctatus showing high connectiv-
ity between populations, and P. angulosus showing no
clear population structuring (Fig. 2; Additional file 2).
The discordance in genomic differentiation found be-
tween mtDNA datasets in previous studies and the SNPs
datasets here could be owing to the differences between
the two marker types, as mtDNA markers are comprised
of a single maternally inherited locus, while SNP
markers represent a broad range of loci across the nu-
clear genome [42]. Additionally, mtDNA markers are ex-
pected to reflect relatively historical evolutionary events

compared to the more contemporary processes captured
by microsatellite and SNP markers [48].
Scutellastra granularis was also the only species which

supported our hypothesis of IBD and IBE influencing
genomic structure. This pattern of IBD and IBE in S.
granularis could also result from repeated founder ef-
fects and allele surfing, caused by colonization generat-
ing an allele frequency gradient which co-varies with the
environmental gradient [49, 50]. However, S. granularis
and P. angulosus were shown to have similar evolution-
ary histories [33, 34], and thus it seems more likely that
contemporary environmental, rather than historical
demographic, processes are leading to the distinct pat-
terns found in S. granularis. The distinct IBD and IBE
patterns found in S. granularis could be owing to this
species having the shortest pelagic larval duration of the
three study species, or due to it being a habitat specialist,
preferring sheltered boulder shores [51]. Additionally, S.
granularis was found to have the lowest thermal toler-
ance of four co-occurring mid-shore limpets [52], indi-
cating that it may be highly sensitive to the temperature
gradient within the region.
Even though S. granularis is the only species to show

distinct West/East Coast structuring in all SNPs, both P.
angulosus and S. granularis show strong West and East
Coast clustering when using only outlier SNPs (Fig. 4).
The West and East Coast bioregions exhibit profound
differences in not only temperature, but other environ-
mental variables such as primary productivity [53],

Fig. 3 The number of outlier SNPs detected per method for C. punctatus (a), P. angulosus (b), and S. granularis (c). See Table 2 for
method abbreviations
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which can potentially lead to local selection despite high
levels of connectivity [54]. This finding builds on mul-
tiple other studies which have found outlier SNPs show-
ing fine-scale genomic structuring in populations
characterised by high genetic connectivity, yet situated
within strong environmental gradients [14, 55, 56], and
suggests that environmental variation along coastal
South Africa plays an important role in the evolutionary
dynamics of species in the region.
In contrast to the other two species, the crab C. punc-

tatus, did not show a strong separation between the
West and East Coast sites. Instead, two range-edge sam-
pling locations (YZ and MG) are highly differentiated in
both the putatively neutral and outlier SNP datasets (Fig.
4). It could be that this species is less affected by large-
scale environmental gradients of the coastline, but rather
that an edge effect driven by demographic processes ex-
plains this pattern [57]. Populations on the edge of a
species’ distribution are generally more likely to

experience historical distributional range shifts, which in
combination with contemporary gene flow patterns, can
explain the differentiation of these two populations in
the putatively neutral SNPs [56, 57]. In addition, these
sites are also on the edges of the species’ ecological
niche, and may experience unique environmental vari-
ation, potentially leading to the increased differentiation
seen in the outlier SNPs [58, 59]. There may also be se-
lection forces specific to these two populations which
were not included in the GEAAs, but which explain evo-
lutionary dynamics of this species [25]. Ultimately, more
comprehensive genomic data, such as whole-genome se-
quencing, and increased fine-scale ecological and envir-
onmental assessments are needed to confidently assess
the unique population variation seen in C. punctatus.
The distinct distribution of genomic variation of C.

punctatus could also result from it being the most gen-
eralist of the three species, inhabiting both estuarine and
marine environments [60, 61]. A previous study by [62]

Fig. 4 Genomic differentiation as shown by PCAs of allele frequencies in either the putatively neutral (a-c) or outlier (d-f) datasets for C. punctatus
(a, d), P. angulosus (b, e), and S. granularis (c, f). Letters correspond to the sample sites shown in Fig. 1, with darker shaded letters corresponding
to western sites, and lighter shaded letters corresponding to eastern sites
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found that among 10 rocky intertidal invertebrates, the
ability to utilize sheltered habitat was the strongest pre-
dictor of genetic structure. Of the three species here, S.
granularis is the most restricted in its habitat, compared
to P. angulosus and C. punctatus which are able to shel-
ter under rocks and macroaglae, rather than remain ex-
posed on rocky surfaces [61]. While dispersal abilities
could also potentially be driving intraspecific differences
in population structure, it is unlikely that Pelagic Larval
Duration (PLD) is driving this pattern, as S. granularis
and C. punctatus have similar PLDs (~ 5–15 days) com-
pared to P. angulosus (~ 50 days [35]), yet the patterns of
genomic differentiation do not reflect the PLD similar-
ities between species. However, additional ecological
characteristics pertaining to the larval stages of each spe-
cies, such as the effect of temperature on larval develop-
ment [63, 64], in combination with the spatial and
temporal variation in near-shore currents affecting larval
dispersal [65], could be influencing population structure.
Broadly, while the results show that each species exhibits
weak levels of genomic variation, possibly owing to high
levels of gene flow, there are fine-scale interspecific dif-
ferences in genomic variation, which appear to vary
based on the ecology of the species.

Identifying drivers of selection using a multi-model
approach
The number of outlier loci, as well as the environmental
variable most strongly associated with outlier loci, varied
across GEAA methodologies (Table 2; Fig. 3), which
mirrors previous studies describing differences in outlier
detection methods (e.g., [22, 30, 31]). Each GEAA ac-
counts for demographic histories differently, leading to
differences in outliers detected [31, 66], and thus it has
been suggested to use multiple models in combination
when the principal environmental variables are unknown
[23]. At present, most studies use one or two outlier de-
tection methods, and identify the most important envir-
onmental drivers of selection based on which variable
identifies the most outlier SNPs [23]. However, our re-
sults, as well as those from [30], indicate that the num-
ber of SNPs identified as outliers varies greatly among
detection methods. We argue that the importance of en-
vironmental variables should not be measured by the
total number of outliers it detects, but rather by the
number of GEAA approaches in which the variable iden-
tifies outliers. For example, even though Trange identi-
fied the most outliers for C. punctatus, we argue that the
most important environmental driver of genetic differen-
tiation for C. punctatus is SSS, because it identified out-
liers by three detection methods rather than only one
for Trange (Fig. 3). Given that outlier detection methods
are highly variable and subject to false positives [31], we
believe that using multi-model approaches will increase

the robustness of GEAAs, especially in studies identify-
ing potential drivers of selection across species with
varying evolutionary histories. Hence, in the following
section, we discuss the dominant environmental drivers
identified for each species based on the number of
GEAA models in which outliers were identified.

Different environmental drivers of selection across
species
Of the three species, only S. granularis supported our
hypothesis of SST being the most important environ-
mental predictor of genomic variation (Fig. 3). Previous
seascape genomic studies in temperate regions have fre-
quently identified some measure of SST as the best pre-
dictor of genomic variation of marine invertebrates [9,
11, 12, 25, 28, 67], which is most likely due to SST af-
fecting both cellular processes, and life-history events
such as spawning and larval development [63]. However,
for P. angulosus, Trange and SSTmean best explained
genomic variation, whereas SSSmean best explained the
structure of C. punctatus. Salinity emerging as a major
selective force on C. punctatus is understandable, as this
species is an osmoconformer that inhabits estuarine en-
vironments [68], and because the larval development of
decapods is influenced by changes in salinity [69]. The
lack of clear correlations with any environmental vari-
ables is unexpected for the urchin P. angulosus, given
that previous studies have shown genomic variation cor-
responding to SST gradients in other echinoderms [28,
70]. Additionally, the paucity of annotated genomes for
marine invertebrates makes it difficult to identify the
functionality of outlier loci, which likely led to the lim-
ited number of BLAST hits for the 2X outliers in each
species (Additional file 4). Despite this limitation, out-
liers from all species indicated a relation to DNA pro-
cessing, which has previously been highlighted as a
response to environmental pressures in marine inverte-
brates [71]. However, other than DNA synthesis and
binding, the outliers BLASTed to a variety of proteins,
involved in biological processes such as metabolism, cell
adhesion, and protein transport (Additional file 4). Over-
all, the Gene Ontology results suggest that the biological
pathways influenced in gene-environment interactions
are species-specific, yet further work including more
complete genomic information is needed to uncover the
environmental footprints on the biology of these species.
Previous terrestrial comparative GEAA studies have

found distinct results in co-occurring species, which the
authors attribute to either differences in ecological niche
ranges [72] or phenotypic plasticity [50]. A multitude of
factors could be driving the interspecific differences ob-
served here, as the study species not only inhabit differ-
ent ecological niches, but also exhibit differential
behaviours to remain within their physiological niches
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[61]. It is also likely that the study species exhibit pheno-
typic plasticity in response to environmental pressures,
as plasticity and epigenetic effects have been noted in re-
sponse to temperature and salinity at multiple life stages
in marine invertebrates [73]. Additionally, the rocky
shore is a highly variable environment, and it is likely
that species within different zonations are under differ-
ential selection pressures at fine spatial scales [74, 75],
which might interact with large-scale environmental gra-
dients to create complex patterns of genomic variation.

Conclusions
The results of our comparative genomic study suggest
that environmental drivers, and the impacts from their
future change, may be highly species-specific, even
among co-occurring species living within regions of
strong environmental gradients. Further, the results con-
trast many single-species marine GEAA studies by show-
ing that SST does not consistently emerge as an
important environmental force structuring the distribu-
tion of genomic variation in marine organisms. This
finding brings into question the use of SST clines as
simple surrogates for selection in marine conservation
spatial planning with regards to global change. Yet the
results here provide exciting opportunities to investigate
the relationships between ecological or behavioural traits
and environmental drivers of selection across species,
which can be further assessed with common garden or
physiological experiments.
This is one of the first comparative seascape genomic

studies to date, and it is imperative that future seascape
genomic studies aim to understand how climatic change
will impact not just individual species, but communities
[76]. Multispecies GEAA studies remain a challenge due
to costs associated with high-throughput sequencing and
the lack of annotated genomes in non-model species,
particularly marine invertebrates [77, 78]. Here we used
a pooled RAD-seq approach, which allowed us to con-
duct a multispecies comparative GEAA study with rela-
tively low costs, albeit with some limitations such as low
coverage alleles being lost due to filtering sequencing er-
rors, and the identification of individuals and polygenic
scores being unavailable [79, 80]. Additionally, using a
reduced representation sequencing approach such as
RAD-seq means that portions of the genome remain un-
known, and many adaptive loci may not be captured
[79]. However, for our research question, a pooled RAD-
seq approach is beneficial as it allowed us to maximize
the number of individuals per location to obtain accur-
ate population allele frequency estimates [41, 81], as well
as maximize the number of sample sites, both of which
are essential for GEAAs [66, 82], without the full cost of
sequencing every individual. As this study is a first step
in elucidating the putative adaptive potential of coastal

invertebrate species in this unique marine realm, further
studies using more complete genomic sequencing strat-
egies are needed to characterize the full breadth of selec-
tion processes. Finally, we also provide a novel approach
to identify drivers of selection across a diverse array of
species, by using multiple GEAA methods and inferring
the importance of each variable across methods. Ultim-
ately, we argue that future seascape genomics studies
can benefit from widening their scope with species and
model comparisons, to more robustly identify environ-
mental drivers of selection.

Methods
Study region and species
The study domain lies along the South African coastline,
which is one of the most biodiverse marine systems in
the world [83]. This region has also been identified as
hotspot for ocean warming as it is experiencing environ-
mental change at a faster rate than predicted [84]. In
South Africa, the coastline is characterised by SST in-
creasing with longitude, from the cool-temperate Ben-
guela region on the West Coast to the sup-tropical
Dalgoa region on the East Coast (Fig. 1).
The study species were selected as their distributions

span several bioregions and the natural environmental
gradients of southern Africa (Fig. S1, Additional file 1),
and can represent the high- (C. punctatus), mid- (S.
granularis), and low- (P. angulosus) rocky shore ecotypes
[62]. They also differ in life history traits with C. puncta-
tus being a brooder, and S. granularis and P. angulosus
being broadcast spawners, with PLDs varying from ~ 5–
15 days (S. granularis and C. punctatus) to potentially up
to 50 days (P. angulosus [34, 35, 85]). These species are
each ecologically important; either as dominant grazers
or scavengers, as substrates for other species to either
live on, or as shelter for juvenile abalone [61].
A total of 14 sites, spanning ~ 2200 km of the South

African coastline, were sampled for S. granularis and P.
angulosus, and 13 sites spanning ~ 1800 km were sam-
pled for C. punctatus (Fig. 1). These sites incorporate
the natural environmental (e.g. SST, salinity, air
temperature) gradients in the region, as well as the dis-
tributional range per study species [60].

Laboratory protocols and bioinformatics
Genomic data consisted of pooled ezRAD-seq samples,
as it is a cost-effective approach to obtain precise allele
frequency data [41]. Dorant et al. (2019 [81]) found that
Pool-seq inflated FST values relative to individual-based
sequencing approaches, but still gave highly similar allele
frequency outputs and patterns of population structure.
Thus, while the absolute magnitude of FST values may
be upwardly biased relative to sequencing individuals,
for a fraction of the cost Pool-seq data still allow us to
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infer relative patterns of population structure with confi-
dence [86].
Genomic RAD-seq data was previously obtained for

the study species from 11 of the 20 sample sites ([87]; L.
Mertens pers. comm.). Additional sampling was con-
ducted at the remaining sites during July 2018, with 30–
40 individuals collected from each site (Tables S1-S3,
Additional file 1). Individuals were preserved in 100%
ethanol, from which < 25 mg tissue (gonad from P. angu-
losus, foot from S. granularis, and muscle from C. punc-
tatus) was taken for DNA extractions. Extractions were
performed with the Qiagen DNeasy Blood & Tissue kit
following the manufacturer’s protocols. The quality of
the DNA extractions was assessed on 1% agarose gels
and quantity was determined using the Qubit Quant iT
dsDNA HS Assay system at the Central Analytical Facil-
ity at Stellenbosch University (CAF-SU). All extractions
passing quality and quantity checks were stored at
-20 °C. For each species, equimolar amounts of DNA
from each individual were pooled per sample site, flash
frozen and sent to the Hawaii Institute of Marine Biol-
ogy (HIMB) for library preparation following [88] (fur-
ther outlined in [89]). Equimolar pooled ezRAD libraries
[37] were sequenced (V3, 2x300PE) on the Illumina Mi-
Seq platform at University of California, Riverside.
The quality of raw FASTA reads were viewed with

FastQC [89], and then uploaded onto the CAF-SU high
performance cluster (HPC) for further analyses (see
Table S4, Additional file 1 for outline of analyses). Bases
with low quality scores (Q < 20), overrepresented se-
quences and adapter sequences were removed using
TrimGalore! [90].
As mitochondrial DNA (mtDNA) markers have differ-

ent evolutionary characteristics than nuclear markers [48,
91], we chose to filter mtDNA-mapped reads from the
datasets [56]. In order to separate mtDNA from nuclear
sequences, the quality-trimmed reads were first mapped
onto mitogenome references of closely related species
(Purple mottled shore crab, Cyclograpsus granulosus, NC_
025571.1; Rea sea urchin, Loxechinus albus, JX888466.1;
Fingered limpet, Lottia digitalis, DQ238599.1) using
BWA-MEM ([92]; Table S5, Additional file 1). The
mapped reads were converted to BAM files, sorted and fil-
tered using SAMtools v.1.3 [93], and then merged using
BAMtools [94]. The merged BAM files were converted
back to SAM and used to filter the quality-trimmed reads,
removing putative mtDNA markers before mapping, using
the ‘filterbyname’ command in BBMap [95].
Given that there are no reference genomes for these or

closely-related species, de novo assemblies were created,
using quality-trimmed reads that were normalized to a
coverage of 100X with BBMap ‘bbnorm’, and using k-
mer value ranges identified with K-mer Genie [96]. The
reads were assembled with three different programs:

ABySS [97], MEGAHIT [98] and SPAdes [99]. Because
SPAdes can only handle nine input samples at a time,
we assembled half of each species’ samples at a time,
and then merged the two SPAdes assemblies using
GARM [100]. The outputs of the three assemblers were
compared using QUAST v.4.1.1 [101] and the NCBI
BLASTN v.2.4.0+ algorithm [102]. Metrics such as N50
and L50 values, and number of BLAST hits, were used
to select a de novo assembly for further analysis.
We also mapped mtDNA-filtered reads to available

reference genomes of the Purple urchin (GCA_
000002235.4; 990.915Mb), Owl limpet (GCA_
000327385.1; 359.506Mb), and Chinese mitten crab
(GCA_003336515.1; 258.8 Gb) for comparison. Because
these species are distantly related to our focal taxa, we
had to relax SNP calling parameters (mapping quality
> 10, minimum pool coverage = 10), but found that
overall patterns of population structure were consistent
between both approaches, mirroring the findings of [46].
As de novo assemblies have been shown to lead to more
robust inferences than mapping onto loosely related ge-
nomes [103], we present only the more stringent de novo
assembly approach here.
The mtDNA-free, but not normalized, reads were

mapped onto the de novo assemblies with BWA-MEM.
The subsequent SAM files were converted into BAM
files, sorted, indexed and filtered with SAMtools. To
control for sequencing biases, we down-sampled SAM
files to the median number of reads across all pools with
SAMtools. A synchronized multiple pileup file was cre-
ated for each species with SAMtools ‘mpileup’, followed
by the Popoolation2 ‘mpileup2sync.jar’ commands [104].
Final SNP calling was performed with the ‘popsync2-
pooldata’ function of the poolfstat v.0.0.1 R package [47].
To avoid potential biases associated with unequal sequen-
cing of individuals within the pool, and since fewer SNPs
at higher coverage has been shown to be more effective
than a greater number of SNPs at lower coverage [105],
we chose stringent SNP calling parameters of: minimum
coverage >20X, minimum read count > 4, maximum read
count <400X, and a minor allele frequency (MAF) > 0.01
in each pool [47, 81, 106]. To account for the possibility of
loci being physically linked (linkage disequilibrium: LD)
we further used custom R scripts to randomly select one
SNP per 1000 bp per contig.

Assessing gene flow and potential drivers of population
structuring

Characterising genomic differentiation To assess gen-
omic population structuring, pairwise Weir and Cocker-
ham’s FST values from the LD-pruned SNP dataset were
calculated using the ‘computeFST’ function of poolfstat,
the confidence interval (CI) values of which were
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computed with a custom bash script from [81] using
1000 bootstrap iterations. Nei’s genetic distances matri-
ces were generated with the ‘stamppNeisD’ function of
the R package StAMPP, and visualized in Principal Coor-
dinates Analyses (PCoAs) generated with the ‘pco’ func-
tion in the ecodist R package [107].
Additionally, the allele frequencies of all SNPs per spe-

cies were input into the core model of BayPass v.2.1 [45]
to estimate scaled covariance (Ω) matrices. BayPass is
specifically designed to handle Pool-seq data, and uses
allele-frequencies to create an Ω matrix, which can be
interpreted as pairwise estimates of differentiation and
population structure. BayPass was run under default
conditions to create the Ω matrices, which were then
converted into a correlation matrices using the ‘cov2cor’
function in R stats package, and visualized as similarity
matrix heatmaps.
We also ran additional population structuring analyses

to test if altering coverage cut-off parameters influences
genomic differentiation patterns. To do so, we used sub-
sets the LD-filtered SNP dataset described above, which
underwent additional coverage filters of either: 1) max-
imum coverage < 200, or 2) minimum coverage > 40. We
subsequently assessed how the different coverage scenar-
ios influenced population structure by performing a singu-
lar value decomposition of the Ω matrices (from the core
BayPass model) per scenario per species [81, 106].

Seascape features The various seascape genomic ana-
lyses included a standard set of environmental features
as predictor variables. A total of 20 environmental fea-
tures were considered (Additional file 3), including air
temperature and precipitation of the coldest month,
warmest month, the range between coldest and warmest
months, as well as annual mean between 1970 and 2000,
which were downloaded from the WorldClim database
at a resolution of ~ 1 km [108]. Annual mean, coldest
ice-free month, and warmest ice-free month, and the
range in SST between 2002 and 2010 and annual mean,
monthly minimum and maximum, and range in sea sur-
face salinity between 1955 and 2006 were downloaded
from the MARSPEC database at a resolution of ~ 1 km
[109]. Mean surface dissolved oxygen, diffuse attenu-
ation coefficient, pH, and chlorophyll concentration be-
tween 2000 and 2014 were downloaded from the BIO-
ORACLE database at a resolution of ~ 9.2 km [110]. En-
vironmental features were downloaded for each sample
site with the ‘load_layers’ function of the sdmpredictors
R package [111]. We tested collinearity between pre-
dictor variables using pairwise Spearman’s correlation
coefficients and Benjamini-Hochberg (BH) corrected p-
values (p < 0.05 [112]). We removed variables that were
significantly correlated (r > 0.65), and those with a vari-
ance inflation factor (VIF) > 10.

Isolation-by-distance (IBD) versus isolation-by-
environment (IBE) Isolation-by-distance (IBD) and
isolation-by-environment (IBE) were tested using Mantel
tests. Mantel tests are widely used in landscape genetics
to test which spatial features are significant drivers of
genetic differentiation [113]. IBD was assessed with a
standard Mantel test, which evaluates the relationship
between two matrices (i.e. geographic versus genetic dis-
tances) and IBE was tested with Partial Mantel tests,
which compare the relationship between two matrices
while taking into account the effect of a third (i.e.
temperature versus genetic distance, accounting for geo-
graphic distance [113]).
IBD analyses consisted of Slatkin’s linearized pairwise

FST (FST = [FST /(1-FST)] [114]), and log-transformed
geographic distances along the coastline calculated with
the roadmap tool in QGIS [115], starting from the
western-most site for each species. IBE analyses add-
itionally included pairwise Euclidean climatic distances.
Partial Mantel tests were performed for each climatic
variable separately, with geographic distance as a condi-
tioning variable. Individual Mantel test significance was
assessed in ecodist, using 1000 permutations. To account
for multiple tests, p- were converted to q-values and sig-
nificance was assessed using a False Discovery Rate of
0.05 (FDR) based on BH criteria with the qvalue R pack-
age [116].

A multi-model approach to identifying environmental
associations with SNPs
To investigate possible associations between SNPs and
environmental variables, we used seven different outlier
detection methods, using the same seascape features as
stated above as predictor variables. As GEAA methods
have been shown to vary in the type and number of out-
liers detected [23, 30], the multi-model approach used
here allows for more robust inferences. The protocol
pertaining to each outlier detection method are outlined
below.

BayPass Bayesian hierarchical models For an FST-like
outlier detection approach, the core model of BayPass
was run, which uses a hierarchical Bayesian model to
create per-locus XTX values, which can be interpreted as
an FST values corrected for the scaled covariance (Ω) of
population allele frequencies [45]. BayPass v.2.1 was run
under default conditions to create XTX values. As de-
scribed in [45], a pseudo-observed dataset (POD) was
created to estimate the posterior predictive distribution
of XTX values, and candidate SNPs were selected if they
fell within the 99.9% quantile of the POD XTX
distribution.
For a GEAA-like approach, the auxiliary model in Bay-

Pass was run to identify candidate SNPs due to
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associations with environmental variables. The auxiliary
covariate model includes a binary auxiliary variable to
classify the association and compute a Bayes factor (BF)
for each locus while accounting for multiple testing [45].
After running the model under default conditions, we
followed the general rule derived from [117], which
identifies outliers as those having a log10 Bayes factor
(db) > 20 [45].

Latent factor mixed models (LFMM) Latent factor
mixed models (LFMM) use mixed linear models to test
for correlation between allele frequencies and an environ-
mental predictor variable while correcting for population
structure with latent factors [118]. As such, these models
require a priori knowledge of the number of genetic clus-
ters (K). K was inferred from previous mtDNA clustering
analyses (K = 2 for each species [33–35]), as it is recom-
mended to estimate K from independent genetic datasets
[118]. LFMMs were run separately for each environmental
variable using the R package LEA [119] with 10,000 cycles
of the Gibbs sampling algorithm, 5000 burn-in cycles, and
10 replicate runs. For all runs per predictor variable, z-
scores were combined, genomic inflation factor was calcu-
lated, and candidate loci were selected following using R
scripts available from: http://membres-timc.imag.fr/Oliv-
ier.Francois/LEA.

Moran spectral outlier detection (MSOD) & Moran
spectral randomization (MSR) Moran spectral outlier
detection (MSOD) uses Moran’s eigenvector maps
(MEMs) to create power spectrums for each individual
SNP, by taking the squared correlation coefficient of al-
lele frequencies with MEM eigenvectors [120]. Candi-
date SNPs are then identified as having power spectra
outside of the average spectrum across all SNPs. Moran
spectral randomization (MSR), is then used to identify
candidate SNPs that show a strong correlation to envir-
onmental variables by building the observed spatial
structure into the null model, while accounting for
spatial autocorrelation [120].
MEM axes were first created from geographic coordi-

nates using the spdep R package [121], then power spec-
tra corresponding MAFs and MEMs at each site were
calculated. Z-scores were calculated for each locus based
on the deviation from the average power spectrum fol-
lowing R code from: https://popgen.nescent.org/2
016-12-13_MEM_outlier.html. The outlier loci identified
by MSOD were then subjected to the MSR
randomization approach, which tests the correlation be-
tween outlier MAFs and environmental variables, given
the power spectra of each SNP. Using the adespatial R
package, the MSR was run individually for each environ-
mental variable, with 1000 permutations. We followed

the suggested cut-offs of [120] of 0.01 and 0.05 for
MSOD and MSR candidates, respectively.

Redundancy analysis (RDA) Redundancy analyses
(RDAs) are an extension of linear regressions that
compare a matrix of dependent variables with mul-
tiple independent predictor variables. Linear regres-
sions are calculated between allele frequencies and
the climate variables at each site, while the fitted
values are simultaneously constrained using a PCA.
Environmental variables were centred and scaled, and
allele frequencies were Hellinger transformed [122].
All RDAs were performed with the ‘rda’ function of
the vegan R package [123]. Significance was assessed
from the adjusted R2 value and with an ANOVA fol-
lowing 1000 permutations. Candidate loci were those
that had loading scores ±3 Standard Deviations (SD)
of the mean loading for each of the first two con-
strained axes [28, 30].
Distance-based RDAs (dbRDAs) were also run to ac-

count for autocorrelation between environmental and
geographic distance. Distance-based Moran’s eigenvector
maps (dbMEMS), which decompose Euclidean distances
into a set of spatial variables [124], were created with the
R package adespatial [125]. Significant dbMEMs were
selected by first running an RDA solely using the
dbMEMs as predictor variables, then using the adjusted
R2 value from that RDA as the threshold for the forward
selection procedure with the ‘forward.sel’ function in the
packfor R package [126].

Outlier variation and functional annotation Loci that
were selected by two or more detection methods (2X
outliers) were used to create a statistical ‘outlier dataset’,
and these loci were removed from the total SNP dataset
to create a ‘putatively neutral dataset’. Intraspecific out-
lier and putatively neutral variation was compared by
running PCA ordinations on the MAFs of each dataset
with the vegan package, and plotting the ordinations
with the ggplot2 package in Rstudio [127].
Furthermore, we investigated the potential functional

roles of outlier SNPs selected by two or more detection
methods (2X outliers). The contigs containing the 2X
outliers were BLASTed against NCBI non-redundant
protein sequence database for crustaceans (for C. punc-
tatus), molluscs (for S. granularis), and sea urchins (for
P. angulosus) using Blast2GO [128]. Search results were
filtered to only include those which had an E-value less
than 10− 4, and a minimal alignment length of 20 bp.
Gene Ontology (GO) mapping and annotation was con-
ducted on BLAST searches passing quality filters, using
default parameters in Blast2GO.

Nielsen et al. BMC Evolutionary Biology          (2020) 20:121 Page 13 of 17

http://membres-timc.imag.fr/Olivier.Francois/LEA
http://membres-timc.imag.fr/Olivier.Francois/LEA
https://popgen.nescent.org/2016-12-13_MEM_outlier.html
https://popgen.nescent.org/2016-12-13_MEM_outlier.html


Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12862-020-01679-4.

Additional file 1. Sampling information, bioinformatic pipeline
parameters, results of mitogenome mapping and de novo assembly
comparisons, and single nucleotide polymorphism (SNP) results are
shown per species. The study species distributions, and population
clustering based on three coverage cut-off scenarios are also shown.

Additional file 2. Per species pairwise Weir and Cockerham’s FST and
Nei's genetic distance values.

Additional file 3. The seascape features considered in the gene-
environment association analyses, shown as values per sample site, as
well as the Spearman’s R coefficients and p-values between variables.

Additional file 4. BLAST results against NCBI non-redundant protein se-
quences, including the species, contig ID and length, protein match, E-
value, and mean percent identical. The Gene Ontology (GO) terms from
Blast2GO are also shown.

Abbreviations
2X outliers: outliers selected by two or more outlier-detection methods;
BF: Bayes factor; BH: Benjamini-Hochberg; BPA: BayPass auxiliary model;
BPC: BayPass core model; CAF-SU: Central Analytical Facility at Stellenbosch
University; CI: confidence interval; dbRDA: distance-based redundancy
analysis; GEAA: gene-environment association analysis; GO: gene ontology;
HPC: high performance cluster; IBD: isolation-by-distance; IBE: isolation-by-
environment; LD: linkage disequilibrium; LFMM: latent factor mixed models;
MAF: minor allele frequency; MEM: Moran’s eigenvector map; MSOD: Moran
spectral outlier detection; mtDNA: mitochondrial DNA; NGS: next generation
sequencing; PCA: principal components analysis; PCoA: principal coordinates
analysis; PLD: pelagic larval duration; POD: pseudo-observed dataset; Pool-
seq: pooled DNA sequencing; RAD-seq: restriction site associated DNA
sequencing; RDA: redundancy analysis; SNP: single nucleotide polymorphism;
SSS: sea surface salinity; SSSmean: mean sea surface salinity; SSSrange: range
in sea surface salinity; SST: sea surface temperature; SSTmean: mean sea
surface temperature; SSTrange: range in sea surface temperature;
Trange: range in air temperature; VIF: variance inflation factor

Acknowledgements
We would like to thank the following for assisting in data collection: A.
Steele, M. Czachur, C. Waspe, A. Shurtey, N. and D. Phair. A special thank you
to Lisa Mertens for collecting specimens and extracting DNA from the
following locations: Cape Agulhas (CA), Knysna (KY), Cape St. Francis (CF),
and Haga Haga (HH). We thank A. Vorster for Qubit assistance, and C. Van
Der Vyver for freeze-drying assistance. We would like to especially thank In-
grid Knapp for her assistance with library preparation. Further thanks to G.
Van Wageningen for his assistance with the HPC, and A. Le Moan for his
code to LD-prune the SNP datasets.

Authors’ contributions
E.S.N., S.V.D.H., M.B., and R.H. conceptualized the study. R.T. assisted with data
generation. E.S.N. collected and analysed data. E.S.N. led the writing, to
which all other authors contributed. All authors have read and approved the
manuscript.

Funding
The running costs for field, laboratory and analytical work were funded by
grants to S.V.D.H. (National Research Foundation Grant numbers 92788,
105949).

Availability of data and materials
Raw reads accessible via Genbank accessions PRJNA660200 and
PRJNA411764. Allele frequencies and R scripts accessible via GitHub: https://
github.com/vonderHeydenLab/Nielsen_et_al_2020_BMC_Evol_Biol

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare no competing interests.

Author details
1Evolutionary Genomics Group, Department of Botany and Zoology,
University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa.
2Technical University of Denmark, National Institute of Aquatic Resources,
Section for Marine Living Resources, Velsøvej 39, 8600 Silkeborg, Denmark.
3School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds
LS2 9JT, UK. 4Hawaiʻi Institute of Marine Biology, University of Hawaiʻi at
Mānoa, Kāne’ohe, HI 96744, USA.

Received: 10 June 2020 Accepted: 24 August 2020

References
1. Harvey BP, Gwynn-Jones D, Moore PJ. Meta-analysis reveals complex marine

biological responses to the interactive effects of ocean acidification and
warming. Ecol Evol. 2013;3(4):1016–30.

2. Pecl GT, Ward TM, Doubleday ZA, Clarke S, Day J, Dixon C, et al. Rapid
assessment of fisheries species sensitivity to climate change. Clim Chang.
2014;127(3–4):505–20.

3. Glavovic B, Limburg K, Liu K-K, Emeis K-C, Thomas H, Kremer H, et al. Living
on the margin in the Anthropocene: engagement arenas for sustainability
research and action at the ocean–land interface. Curr Opin Environ Sust.
2015;14:232–8.

4. Helmuth B, Mieszkowska N, Moore P, Hawkins SJ. Living on the edge of two
changing worlds: forecasting the responses of rocky intertidal ecosystems
to climate change. Annu Rev Ecol Evol Syst. 2006;37(1):373–404.

5. Riginos C, Crandall ED, Liggins L, Bongaerts P, Treml EA. Navigating the
currents of seascape genomics: how spatial analyses can augment
population genomic studies. Curr Zool. 2016;62(6):581–601.

6. Ravinet M, Westram A, Johannesson K, Butlin R, André C, Panova M. Shared
and nonshared genomic divergence in parallel ecotypes of Littorina saxatilis
at a local scale. Mol Ecol. 2016;25(1):287–305.

7. Tisthammer KH, Forsman ZH, Toonen RJ, Richmond RH. Genetic structure is
stronger across human-impacted habitats than among islands in the coral
Porites lobata. PeerJ. 2020;8:e8550.

8. Selkoe KA, Gaggiotti OE, Bowen BW, Toonen RJ. Emergent patterns of
population genetic structure for a coral reef community. Mol Ecol. 2014;
23(12):3064–79.

9. Stanley RRE, DiBacco C, Lowen B, Beiko RG, Jeffery NW, Wyngaarden MV, et
al. A climate-associated multispecies cryptic cline in the northwest Atlantic.
Sci Adv. 2018;4(3):eaaq0929.

10. De Wit P, Jonsson PR, Pereyra RT, Panova M, André C, Johannesson K.
Spatial genetic structure in a crustacean herbivore highlights the need for
local considerations in Baltic Sea biodiversity management. Evol Appl. 2020;
13(5):974–90.

11. Benestan L, Quinn BK, Maaroufi H, Laporte M, Clark FK, Greenwood SJ, et al.
Seascape genomics provides evidence for thermal adaptation and current-
mediated population structure in American lobster (Homarus americanus).
Mol Ecol. 2016;25(20):5073–92.

12. Bernatchez S, Xuereb A, Laporte M, Benestan L, Steeves R, Laflamme M, et
al. Seascape genomics of eastern oyster (Crassostrea virginica) along the
Atlantic coast of Canada. Evol Appl. 2019;12(3):587–609.

13. Saenz-Agudelo P, Dibattista JD, Piatek MJ, Gaither MR, Harrison HB,
Nanninga GB, et al. Seascape genetics along environmental gradients in the
Arabian peninsula: insights from ddRAD sequencing of anemonefishes. Mol
Ecol. 2015;24(24):6241–55.

14. Sandoval-Castillo J, Robinson NA, Hart AM, Strain LW, Beheregaray LB.
Seascape genomics reveals adaptive divergence in a connected and
commercially important mollusc, the greenlip abalone (Haliotis laevigata),
along a longitudinal environmental gradient. Mol Ecol. 2018;27(7):1603–20.

15. Barshis DJ, Birkeland C, Toonen RJ, Gates RD, Stillman JH. High-frequency
temperature variability mirrors fixed differences in thermal limits of the
massive coral Porites lobata. J Exp Biol. 2018;221(24):jeb188581.

Nielsen et al. BMC Evolutionary Biology          (2020) 20:121 Page 14 of 17

https://doi.org/10.1186/s12862-020-01679-4
https://doi.org/10.1186/s12862-020-01679-4
https://github.com/vonderHeydenLab/Nielsen_et_al_2020_BMC_Evol_Biol
https://github.com/vonderHeydenLab/Nielsen_et_al_2020_BMC_Evol_Biol


16. Narum SR, Buerkle CA, Davey JW, Miller MR, Hohenlohe PA. Genotyping-by-
sequencing in ecological and conservation genomics. Mol Ecol. 2013;22(11):
2841–7.

17. Razgour O, Taggart JB, Manel S, Juste J, Ibáñez C, Rebelo H, et al. An
integrated framework to identify wildlife populations under threat from
climate change. Mol Ecol Res. 2018;18(1):18–31.

18. von der Heyden S. Making evolutionary history count: biodiversity planning
for coral reef fishes and the conservation of evolutionary processes. Coral
Reefs. 2017;36(1):183–94.

19. Aldrich DP, Meyer MA. Social capital and community resilience. Am Behav
Sci. 2015;59(2):254–69.

20. Stapley J, Reger J, Feulner PGD, Smadja C, Galindo J, Ekblom R, et al.
Adaptation genomics: the next generation. Trends Ecol Evol. 2010;25(12):
705–12.

21. Balkenhol N, Dudaniec RY, Krutovsky KV, Johnson JS, Cairns DM,
Segelbacher G, et al. Landscape Genomics: Understanding Relationships
Between Environmental Heterogeneity and Genomic Characteristics of
Populations. Population Genomics: Concepts, Approaches and Applications:
Springer International Publishing; 2019. p. 261–322.

22. Joost S, Bonin A, Bruford MW, Després L, Conord C, Erhardt G, et al. A
spatial analysis method (SAM) to detect candidate loci for selection:
towards a landscape genomics approach to adaptation. Mol Ecol. 2007;
16(18):3955–69.

23. Forester BR, Lasky JR, Wagner HH, Urban DL. Comparing methods for
detecting multilocus adaptation with multivariate genotype-environment
associations. Mol Ecol. 2018;27(9):2215–33.

24. Rellstab C, Gugerli F, Eckert AJ, Hancock AM, Holderegger R. A practical
guide to environmental association analysis in landscape genomics. Mol
Ecol. 2015;24(17):4348–70.

25. Selkoe K, D’Aloia C, Crandall E, Iacchei M, Liggins L, Puritz J, et al. A decade
of seascape genetics: contributions to basic and applied marine
connectivity. Mar Ecol Prog Ser. 2016;554:1–19.

26. Wei K, Wood A, Gardner J. Seascape genetics of the New Zealand
greenshell mussel: sea surface temperature explains macrogeographic scale
genetic variation. Mar Ecol Prog Ser. 2013;477:107–21.

27. Takeuchi T, Masaoka T, Aoki H, Koyanagi R, Fujie M, Satoh N. Divergent
northern and southern populations and demographic history of the pearl
oyster in the western Pacific revealed with genomic SNPs. Evol Appl. 2020;
13:837–53.

28. Xuereb A, Kimber CM, Curtis JMR, Bernatchez L, Fortin M. Putatively
adaptive genetic variation in the giant California Sea cucumber
(Parastichopus californicus ) as revealed by environmental association
analysis of restriction-site associated DNA sequencing data. Mol Ecol. 2018;
27(24):5035–48.

29. Hanson JO, Rhodes JR, Riginos C, Fuller RA. Environmental and geographic
variables are effective surrogates for genetic variation in conservation
planning. Proc Natl Acad Sci. 2017;114(48):12755–60.

30. Dalongeville A, Benestan L, Mouillot D, Lobreaux S, Manel S. Combining six
genome scan methods to detect candidate genes to salinity in the
Mediterranean striped red mullet (Mullus surmuletus). BMC Genomics. 2018;
19(1):217.

31. Lotterhos KE, Whitlock MC. The relative power of genome scans to detect
local adaptation depends on sampling design and statistical method. Mol
Ecol. 2015;24(5):1031–46.

32. Smit AJ, Roberts M, Anderson RJ, Dufois F, Dudley SFJ, Bornman TG, et al. A
coastal seawater temperature dataset for biogeographical studies: large
biases between in situ and remotely-sensed data sets around the coast of
South Africa. PLoS One. 2013;8(12):e81944.

33. Mmonwa K, Teske P, McQuaid C, Barker N. Historical demography of
southern African patellid limpets: congruence of population expansions, but
not phylogeography. Afr J Mar Sci. 2015;37(1):11–20.

34. Muller C, von der Heyden S, Bowie R, Matthee C. Oceanic circulation, local
upwelling and palaeoclimatic changes linked to the phylogeography of the
Cape Sea urchin Parechinus angulosus. Mar Ecol Prog Ser. 2012;468:203–15.

35. Wright D, Bishop JM, Matthee CA, von der Heyden S. Genetic isolation by
distance reveals restricted dispersal across a range of life histories:
implications for biodiversity conservation planning across highly variable
marine environments. Divers Distrib. 2015;21(6):698–710.

36. Phair NL, Toonen RJ, Knapp I, von der Heyden S. Shared genomic outliers
across two divergent population clusters of a highly threatened seagrass.
PeerJ. 2019;7:e6806.

37. Toonen RJ, Puritz JB, Forsman ZH, Whitney JL, Fernandez-Silva I, Andrews
KR, et al. ezRAD: a simplified method for genomic genotyping in non-
model organisms. PeerJ. 2013;1:e203.

38. Forsman ZH, Knapp ISS, Tisthammer K, Eaton DAR, Belcaid M, Toonen RJ.
Coral hybridization or phenotypic variation? Genomic data reveal gene flow
between Porites lobata and P. Compressa. Mol Phylogenet Evol. 2017;111:
132–48.

39. Kofler R, Nolte V, Schlötterer C. The impact of library preparation protocols
on the consistency of allele frequency estimates in Pool-Seq data. Mol Ecol
Res. 2016;16(1):118–22.

40. Kofler R, Langmüller AM, Nouhaud P, Otte KA, Schlötterer C. Data from:
Suitability of different mapping algorithms for genome-wide polymorphism
scans with Pool-Seq data. G3: Genes Genom Genet. 2016;6(11):3507–15.

41. Schlötterer C, Tobler R, Kofler R, Nolte V. Sequencing pools of individuals —
mining genome-wide polymorphism data without big funding. Nat Rev
Genet. 2014;15(11):749–63.

42. Morin PA, Luikart G, Wayne RK. The SNP workshop group. SNPs in ecology,
evolution and conservation. Trends Ecol Evol. 2004;19(4):208–16.

43. Narzisi G, Mishra B. Comparing De novo genome assembly: the long and
short of it. PLoS One. 2011;6(4):e19175.

44. Moreton J, Izquierdo A, Emes RD. Assembly, assessment, and availability of
De novo generated eukaryotic Transcriptomes. Front Genet. 2016;6:361.

45. Gautier M. Genome-wide scan for adaptive divergence and association with
population-specific covariates. Genetics. 2015;4:1555–79.

46. Rellstab C, Zoller S, Tedder A, Gugerli F, Fischer MC. Validation of SNP Allele
Frequencies Determined by Pooled Next-Generation Sequencing in Natural
Populations of a Non-Model Plant Species. PLOS ONE. 2013;8(11):e80422.

47. Hivert V, Leblois R, Petit EJ, Gautier M, Vitalis R. Measuring genetic
differentiation from Pool-seq data. Genetics. 2018;210:315–30.

48. Epps CW, Keyghobadi N. Landscape genetics in a changing world:
disentangling historical and contemporary influences and inferring change.
Mol Ecol. 2015;24:6021–40.

49. de Lafontaine G, Ducousso A, Lefèvre S, Magnanou E, Petit RJ. Stronger
spatial genetic structure in recolonized areas than in refugia in the
European beech. Mol Ecol. 2013;22(17):4397–412.

50. Nadeau S, Meirmans PG, Aitken SN, Ritland K, Isabel N. The challenge of
separating signatures of local adaptation from those of isolation by distance
and colonization history: the case of two white pines. Ecol Evol. 2016;6(24):
8649–64.

51. Blamey LK, Branch GM. Habitat diversity relative to wave action on rocky
shores: implications for the selection of marine protected areas. Aquatic
Conserv: Mar Freshw Ecosyst. 2009;19(6):645–57.

52. Kankondi SL, McQuaid CD, Tagliarolo M. Influence of respiratory mode
on the thermal tolerance of intertidal limpets. PLoS One. 2018;13(9):
e0203555.

53. Sink K, van der Bank MG, Majiedt PA, Harris LR, Atkinson LP, Kirkman SP, et
al. South African National Biodiversity Assessment 2018 technical report
volume 4: marine realm. Pretoria: South African National Biodiversity
Institute; 2018.

54. Teske PR, Sandoval-Castillo J, Golla TR, Emami-Khoyi A, Tine M, von der
Heyden S, et al. Thermal selection as a driver of marine ecological
speciation. Proc R Soc B. 2019;286(1896):20182023.

55. Diopere E, Vandamme SG, Hablützel PI, Cariani A, Van Houdt J, Rijnsdorp A,
et al. Seascape genetics of a flatfish reveals local selection under high levels
of gene flow. ICES J Mar Sci. 2018;75(2):675–89.

56. Pujolar JM, Jacobsen MW, Als TD, Frydenberg J, Munch K, Jónsson B, et al.
Genome-wide single-generation signatures of local selection in the
panmictic European eel. Mol Ecol. 2014;23(10):2514–28.

57. Eckert CG, Samis KE, Lougheed SC. Genetic variation across species’
geographical ranges: the central–marginal hypothesis and beyond. Mol
Ecol. 2008;17(5):1170–88.

58. Peluso L, Tascheri V, Nunes FLD, Castro CB, Pires DO, Zilberberg C.
Contemporary and historical oceanographic processes explain genetic
connectivity in a southwestern Atlantic coral. Sci Rep. 2018;8(1):2684.

59. Johannesson K, André C. INVITED REVIEW: Life on the margin: genetic
isolation and diversity loss in a peripheral marine ecosystem, the Baltic Sea.
Mol Ecol. 2006;15(8):2013–29.

60. Branch G. Two oceans: a guide to the marine life of southern Africa. South
Africa: Penguin Random House; 2017.

61. Branch G, Branch M. The Living Shores of Southern Africa. Cape Town:
Penguin Random House; 2018.

Nielsen et al. BMC Evolutionary Biology          (2020) 20:121 Page 15 of 17



62. Ayre DJ, Minchinton TE, Perrin C. Does life history predict past and current
connectivity for rocky intertidal invertebrates across a marine biogeographic
barrier? Mol Ecol. 2009;18(9):1887–903.

63. O’Connor MI, Bruno JF, Gaines SD, Halpern BS, Lester SE, Kinlan BP, et al.
Temperature control of larval dispersal and the implications for marine
ecology, evolution, and conservation. Proceed Nat Acad Sci. 2007;104(4):
1266–71.

64. Reitzel A, Miner B, McEdward L. Relationships between spawning date and
larval development time for benthic marine invertebrates: a modeling
approach. Mar Ecol Prog Ser. 2004;280:13–23.

65. Galindo HM, Pfeiffer-Herbert AS, McManus MA, Chao Y, Chai F, Palumbi SR.
Seascape genetics along a steep cline: using genetic patterns to test
predictions of marine larval dispersal. Mol Ecol. 2010;19(17):3692–707.

66. Storfer A, Patton A, Fraik AK. Navigating the Interface between landscape
genetics and landscape genomics. Front Genet. 2018;9:68.

67. Coscia I, Wilmes SB, Ironside JE, Goward-Brown A, O’Dea E, Malham SK, et al.
Fine-scale seascape genomics of an exploited marine species, the common
cockle Cerastoderma edule, using a multi-modelling approach. Evol Appl.
2020;00:1–14.

68. Winch JJWW, Hodgson AN. The effect of temperature and salinity on
oxygen consumption in the brachyuran crab Cyclograpsus punctatus
(Crustacea: Decapoda: Grapsidae). Afr Zoo. 2007;42(1):118–23.

69. Anger K. Salinity as a key parameter in the larval biology of decapod
crustaceans. Invert Rep Develop. 2003;43(1):29–45.

70. Pespeni MH, Palumbi SR. Signals of selection in outlier loci in a widely
dispersing species across an environmental mosaic. Mol Ecol. 2013;22(13):
3580–97.

71. Suarez-Ulloa V, Gonzalez-Romero R, Eirin-Lopez JM. Environmental
epigenetics: a promising venue for developing next-generation
pollution biomonitoring tools in marine invertebrates. Mar Poll Bull.
2015;98(1–2):5–13.

72. Prates I, Penna A, Rodrigues MT, Carnaval AC. Local adaptation in mainland
anole lizards: integrating population history and genome–environment
associations. Ecol Evol. 2018;8(23):11932–44.

73. Foo SA, Byrne M. Chapter Two - Acclimatization and Adaptive Capacity of
Marine Species in a Changing Ocean. Advances in Marine Biology.
Academic Press; 2016. p. 69–116.

74. Osores SJA, Ruz GA, Opitz T, Lardies MA. Discovering divergence in the
thermal physiology of intertidal crabs along latitudinal gradients using an
integrated approach with machine learning. J Therm Biol. 2018;78:140–50.

75. Andrade SCS, Solferini VN. Fine-scale genetic structure overrides macro-scale
structure in a marine snail: nonrandom recruitment, demographic events or
selection? Biol J Linn Soc. 2007;91(1):23–36.

76. Gamboa M, Watanabe K. Genome-wide signatures of local adaptation
among seven stoneflies species along a nationwide latitudinal gradient in
Japan. BMC Genomics. 2019;20(1):84.

77. The Global Invertebrate Genomics Alliance (GIGA). Developing Community
Resources to Study Diverse Invertebrate Genomes. J Hered. 2014;105(1):1–18.

78. Goodwin S, McPherson JD, McCombie WR. Coming of age: ten years of
next-generation sequencing technologies. Nat Rev Genet. 2016;17(6):333–51.

79. Lowry DB, Hoban S, Kelley JL, Lotterhos KE, Reed LK, Antolin MF, et al.
Responsible RAD: striving for best practices in population genomic studies
of adaptation. Mol Ecol Resour. 2017;17(3):366–9.

80. Tiffin P, Ross-Ibarra J. Advances and limits of using population genetics to
understand local adaptation. Trends Ecol Evol. 2014;12:673–80.

81. Dorant Y, Benestan L, Rougemont Q, Normandeau E, Boyle B, Rochette R, et
al. Comparing Pool-seq, rapture, and GBS genotyping for inferring weak
population structure: the American lobster (Homarus americanus) as a case
study. Ecol Evol. 2019;9(11):6606–23.

82. Fischer MC, Rellstab C, Tedder A, Zoller S, Gugerli F, Shimizu KK, et al.
Population genomic footprints of selection and associations with climate in
natural populations of Arabidopsis halleri from the Alps. Mol Ecol. 2013;
22(22):5594–607.

83. Griffiths CL, Robinson TB, Lange L, Mead A. Marine biodiversity in South
Africa: an evaluation of current states of knowledge. PLoS One. 2010;5(8):
e12008.

84. Hobday AJ, Pecl GT. Identification of global marine hotspots: sentinels for
change and vanguards for adaptation action. Rev Fish Biol Fisheries. 2014;
24(2):415–25.

85. Mertens LEA, Treml EA, von der Heyden S. Genetic and biophysical models
help define marine conservation focus areas. Front Mar Sci. 2018;5:268.

86. Kurland S, Wheat CW, de la PC MM, Kutschera VE, Hill J, Andersson A, et al.
Exploring a Pool-seq-only approach for gaining population genomic
insights in nonmodel species. Ecol Evol. 2019;9(19):11448–63.

87. Nielsen ES, Henriques R, Toonen RJ, Guo B, von der Heyden S. Complex
signatures of genomic variation of two non-model marine species in a
homogeneous environment. BMC Genomics. 2018;19:347.

88. Knapp I, Puritz J, Bird C, Whitney M, Sudek M, Forsman Z, et al. ezRAD—an
accessible next-generation RAD sequencing protocol suitable for non-
model organisms_v3. Protocols. io Life Sciences Protocol Repository; 2016.

89. Andrews S. FastQC: a quality control tool for high throughput sequence
data. 2010. http://www.bioinformatics.babraham.ac.uk/projects/fastqc.

90. Krueger F. Trim galore!: a wrapper tool around Cutadapt and FastQC to
consistently apply quality and adapter trimming to FastQ files. Cambridge:
Babraham. Bioinformatics. 2015.

91. Teske PR, Golla TR, Sandoval-Castillo J, Emami-Khoyi A, van der Lingen CD,
von der Heyden S, et al. Mitochondrial DNA is unsuitable to test for
isolation by distance. Sci Rep. 2018;8(1):1–9.

92. Li H. Aligning sequence reads, clone sequences and assembly contigs with
BWA-MEM. arXiv:13033997. 2013; http://arxiv.org/abs/1303.3997.

93. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The
sequence alignment/map format and SAMtools. Bioinformatics. 2009;25(16):
2078–9.

94. Barnett DW, Garrison EK, Quinlan AR, Stromberg MP, Marth GT. BamTools: a
C++ API and toolkit for analyzing and managing BAM files. Bioinformatics.
2011;27(12):1691–2.

95. Bushnell B. BBMap short-read aligner, and other bioinformatics tools.
Berkeley: University of California; 2015.

96. Chikhi R, Medvedev P. Informed and automated k-mer size selection for
genome assembly. Bioinformatics. 2014;30(1):31–7.

97. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJM, Birol I. ABySS: a
parallel assembler for short read sequence data. Genome Res. 2009;19(6):
1117–23.

98. Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. MEGAHIT: an ultra-fast single-
node solution for large and complex metagenomics assembly via succinct
de Bruijn graph. Bioinformatics. 2015;31(10):1674–6.

99. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al.
SPAdes: a new genome assembly algorithm and its applications to single-
cell sequencing. J Comput Biol. 2012;19(5):455–77.

100. Mayela Soto-Jimenez L, Estrada K, Sanchez-Flores A. GARM: genome
assembly, reconciliation and merging pipeline. Curr Top Medl Chem. 2014;
14(3):418–24.

101. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool
for genome assemblies. Bioinformatics. 2013;29(8):1072–5.

102. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al.
BLAST+: architecture and applications. BMC Bioinformatics. 2009;10(1):421.

103. Tripp EA, Tsai Y-HE, Zhuang Y, Dexter KG. RADseq dataset with 90% missing
data fully resolves recent radiation of Petalidium (Acanthaceae) in the ultra-
arid deserts of Namibia. Ecol Evol. 2017;7(19):7920–36.

104. Kofler R, Pandey RV, Schlotterer C. PoPoolation2: identifying differentiation
between populations using sequencing of pooled DNA samples (Pool-Seq).
Bioinformatics. 2011;27(24):3435–6.

105. Graham CF, Boreham DR, Manzon RG, Stott W, Wilson JY, Somers CM.
How “simple” methodological decisions affect interpretation of
population structure based on reduced representation library DNA
sequencing: a case study using the lake whitefish. PLoS One. 2020;15(1):
e0226608.

106. Leblois R, Gautier M, Rohfritsch A, Foucaud J, Burban C, Galan M, et al.
Deciphering the demographic history of allochronic differentiation in the
pine processionary moth Thaumetopoea pityocampa. Mol Ecol. 2018;27(1):
264–78.

107. Goslee SC, Urban DL. The ecodist Package for Dissimilarity-based Analysis of
Ecological Data. J Stat Soft. 2007;22(7):1–19.

108. Fick SE, Hijmans RJ. WorldClim 2: new 1-km spatial resolution climate
surfaces for global land areas. Int J Climatol. 2017;37(12):4302–15.

109. Sbrocco EJ, Barber PH. MARSPEC: ocean climate layers for marine spatial
ecology. Ecology. 2013;94(4):979.

110. Tyberghein L, Verbruggen H, Pauly K, Troupin C, Mineur F, Clerck OD. Paper.
Glob Ecol Biogeogr. 2012;21(2):272–81.

111. Bosch S, Tyberghein L, De Clerck O. Sdmpredictors: an R package for
species distribution modelling predictor datasets. Marine Species
Distributions: From data to predictive models; 2017.

Nielsen et al. BMC Evolutionary Biology          (2020) 20:121 Page 16 of 17

http://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://arxiv.org/abs/1303.3997


112. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical
and powerful approach to multiple testing. J R Stat Soc Ser B. 1995;57(1):
289–300.

113. Diniz-Filho JAF, Soares TN, Lima JS, Dobrovolski R, Landeiro VL, Telles MP de
C, et al. Mantel test in population genetics. Gen Mol Biol. 2013;36(4):475–85.

114. Slatkin M. A measure of population subdivision based on microsatellite
allele frequencies. Genetics. 1995;139:457–62.

115. Team QD. QGIS geographic information system. Open Source Geospatial
Foundation; 2009.

116. Dabney A, Storey JD, Warnes GR. qvalue: Q-value estimation for false
discovery rate control. R package version. 1(0); 2010.

117. Jefferys H. Theory of probability (3rd edition). New York: Oxford university
press; 1961.

118. Frichot E, Schoville SD, Bouchard G, François O. Testing for associations
between loci and environmental gradients using latent factor mixed
models. Mol Biol Evol. 2013;30(7):1687–99.

119. Frichot E, François O. LEA: an R package for landscape and ecological
association studies. Methods Ecol Evol. 2015;6(8):925–9.

120. Wagner HH, Chávez-Pesqueira M, Forester BR. Spatial detection of outlier
loci with Moran eigenvector maps. Mol Ecol Resour. 2017;17(6):1122–35.

121. Bivand R, Anselin L, Berke O, Bernat A, Carvalho M, Chun Y, et al. spdep:
Spatial dependence: weighting schemes, statistics and models. 2011.

122. Legendre P, Gallagher ED. Ecologically meaningful transformations for
ordination of species data. Oecologia. 2001;129(2):271–80.

123. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara RB, et al.
Package ‘vegan.’ Community ecology package, version 2. 2013;9:1–295.

124. Dray S, Legendre P, Peres-Neto PR. Spatial modelling: a comprehensive
framework for principal coordinate analysis of neighbour matrices (PCNM).
Ecol Model. 2006;196(3–4):483–93.

125. Dray S, Blanchet G, Borcard D, Guenard G, Jombart T, Larocque G, et al.
Adespatial: multivariate multiscale spatial analysis. R package version.
2017;0:0–9.

126. Blanchet FG, Legendre P, Borcard D. Forward selection of explanatory
variables. Ecology. 2008;89(9):2623–32.

127. Wickham H. ggplot2: elegant graphics for data analysis. J Stat Soft. 2016;77.
128. Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M. Blast2GO: a

universal tool for annotation, visualization and analysis in functional
genomics research. Bioinformatics. 2005;21(18):3674–6.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Nielsen et al. BMC Evolutionary Biology          (2020) 20:121 Page 17 of 17


	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	Sequencing and bioinformatic processing
	Genomic structuring
	Potential environmental drivers of genomic structuring
	Characterising possible selection signals via outlier loci identification
	Genomic structure of putatively neutral vs. outlier SNPs
	Potential functionality of outlier SNPs

	Discussion
	Genomic markers elucidate distinct patterns of population structuring
	Identifying drivers of selection using a multi-model approach
	Different environmental drivers of selection across species

	Conclusions
	Methods
	Study region and species
	Laboratory protocols and bioinformatics
	Assessing gene flow and potential drivers of population structuring
	A multi-model approach to identifying environmental associations with SNPs


	Supplementary information
	Abbreviations
	Acknowledgements
	Authors’ contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Author details
	References
	Publisher’s Note

