Keren H, Lev-Maor G, Ast G. Alternative splicing and evolution: diversification, exon definition and function. Nat Rev Genet. 2010;11(5):345–55.
Article
CAS
PubMed
Google Scholar
Bush SJ, Chen L, Tovar-Corona JM, Urrutia AO. Alternative splicing and the evolution of phenotypic novelty. Philos Trans R Soc Lond B Biol Sci. 2017;372:1713.
Lee C, Wang Q. Bioinformatics analysis of alternative splicing. Brief Bioinform. 2005;6(1):23–33.
Article
CAS
PubMed
Google Scholar
Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet. 2008;40(12):1413–5.
Article
CAS
PubMed
Google Scholar
Cartegni L, Chew SL, Krainer AR. Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet. 2002;3(4):285–98.
Article
CAS
PubMed
Google Scholar
EZ WL, Zhou J. Splicing and alternative splicing in rice and humans. BMB Rep. 2013;46(9):439–47.
Article
CAS
Google Scholar
Kim E, Goren A, Ast G. Alternative splicing: current perspectives. Bioessays. 2008;30(1):38–47.
Article
CAS
PubMed
Google Scholar
Kelley DR, Hendrickson DG, Tenen D, Rinn JL. Transposable elements modulate human RNA abundance and splicing via specific RNA-protein interactions. Genome Biol. 2014;15(12):537.
Article
PubMed
PubMed Central
CAS
Google Scholar
Abascal F, Tress ML, Valencia A. Alternative splicing and co-option of transposable elements: the case of TMPO/LAP2alpha and ZNF451 in mammals. Bioinformatics. 2015;31(14):2257–61.
Article
CAS
PubMed
PubMed Central
Google Scholar
Alekseyenko AV, Kim N, Lee CJ. Global analysis of exon creation versus loss and the role of alternative splicing in 17 vertebrate genomes. RNA. 2007;13(5):661–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huh JW, Kim YH, Park SJ, Kim DS, Lee SR, Kim KM, Jeong KJ, Kim JS, Song BS, Sim BW, et al. Large-scale transcriptome sequencing and gene analyses in the crab-eating macaque (Macaca fascicularis) for biomedical research. BMC Genomics. 2012;13:163.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sultana T, Zamborlini A, Cristofari G, Lesage P. Integration site selection by retroviruses and transposable elements in eukaryotes. Nat Rev Genet. 2017;18(5):292–308.
Article
CAS
PubMed
Google Scholar
Belyayev A. Bursts of transposable elements as an evolutionary driving force. J Evol Biol. 2014;27(12):2573–84.
Article
CAS
PubMed
Google Scholar
Boeke JD, Garfinkel DJ, Styles CA, Fink GR. Ty elements transpose through an RNA intermediate. Cell. 1985;40(3):491–500.
Article
CAS
PubMed
Google Scholar
Finnegan DJ. Eukaryotic transposable elements and genome evolution. Trends Genet. 1989;5(4):103–7.
Article
CAS
PubMed
Google Scholar
Bourque G, Burns KH, Gehring M, Gorbunova V, Seluanov A, Hammell M, Imbeault M, Izsvak Z, Levin HL, Macfarlan TS, et al. Ten things you should know about transposable elements. Genome Biol. 2018;19(1):199.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hedges DJ, Batzer MA. From the margins of the genome: mobile elements shape primate evolution. Bioessays. 2005;27(8):785–94.
Article
CAS
PubMed
Google Scholar
Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860–921.
Article
CAS
PubMed
Google Scholar
Deininger P. Alu elements: know the SINEs. Genome Biol. 2011;12(12):236.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ule J. Alu elements: at the crossroads between disease and evolution. Biochem Soc Trans. 2013;41(6):1532–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen LL, Yang L. ALUternative Regulation for Gene Expression. Trends Cell Biol. 2017;27(7):480–90.
Article
CAS
PubMed
Google Scholar
Cordaux R, Batzer MA. The impact of retrotransposons on human genome evolution. Nat Rev Genet. 2009;10(10):691–703.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sorek R, Lev-Maor G, Reznik M, Dagan T, Belinky F, Graur D, Ast G. Minimal conditions for exonization of intronic sequences: 5′ splice site formation in alu exons. Mol Cell. 2004;14(2):221–31.
Article
CAS
PubMed
Google Scholar
Sorek R. The birth of new exons: mechanisms and evolutionary consequences. RNA. 2007;13(10):1603–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Muller J, Oma Y, Vallar L, Friederich E, Poch O, Winsor B. Sequence and comparative genomic analysis of actin-related proteins. Mol Biol Cell. 2005;16(12):5736–48.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vieu E, Hernandez N. Actin's latest act: polymerizing to facilitate transcription? Nat Cell Biol. 2006;8(7):650–1.
Article
CAS
PubMed
Google Scholar
Kandasamy MK, McKinney EC, Deal RB, Meagher RB. Arabidopsis ARP7 is an essential actin-related protein required for normal embryogenesis, plant architecture, and floral organ abscission. Plant Physiol. 2005;138(4):2019–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dion V, Shimada K, Gasser SM. Actin-related proteins in the nucleus: life beyond chromatin remodelers. Curr Opin Cell Biol. 2010;22(3):383–91.
Article
CAS
PubMed
Google Scholar
Kristo I, Bajusz I, Bajusz C, Borkuti P, Vilmos P. Actin, actin-binding proteins, and actin-related proteins in the nucleus. Histochem Cell Biol. 2016;145(4):373–88.
Article
CAS
PubMed
Google Scholar
Oma Y, Harata M. Actin-related proteins localized in the nucleus: from discovery to novel roles in nuclear organization. Nucleus. 2011;2(1):38–46.
PubMed
PubMed Central
Google Scholar
Tosi A, Haas C, Herzog F, Gilmozzi A, Berninghausen O, Ungewickell C, Gerhold CB, Lakomek K, Aebersold R, Beckmann R, et al. Structure and subunit topology of the INO80 chromatin remodeler and its nucleosome complex. Cell. 2013;154(6):1207–19.
Article
CAS
PubMed
Google Scholar
Chen M, Shen X. Nuclear actin and actin-related proteins in chromatin dynamics. Curr Opin Cell Biol. 2007;19(3):326–30.
Article
CAS
PubMed
Google Scholar
Ford J, Odeyale O, Shen CH. Activator-dependent recruitment of SWI/SNF and INO80 during INO1 activation. Biochem Biophys Res Commun. 2008;373(4):602–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mersch B, Sela N, Ast G, Suhai S, Hotz-Wagenblatt A. SERpredict: detection of tissue- or tumor-specific isoforms generated through exonization of transposable elements. BMC Genet. 2007;8:78.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lin L, Shen S, Tye A, Cai JJ, Jiang P, Davidson BL, Xing Y. Diverse splicing patterns of exonized Alu elements in human tissues. PLoS Genet. 2008;4(10):e1000225.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tajnik M, Vigilante A, Braun S, Hanel H, Luscombe NM, Ule J, Zarnack K, Konig J. Intergenic Alu exonisation facilitates the evolution of tissue-specific transcript ends. Nucleic Acids Res. 2015;43(21):10492–505.
CAS
PubMed
PubMed Central
Google Scholar
Saravanan M, Wuerges J, Bose D, McCormack EA, Cook NJ, Zhang X, Wigley DB. Interactions between the nucleosome histone core and Arp8 in the INO80 chromatin remodeling complex. Proc Natl Acad Sci U S A. 2012;109(51):20883–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gerhold CB, Winkler DD, Lakomek K, Seifert FU, Fenn S, Kessler B, Witte G, Luger K, Hopfner KP. Structure of Actin-related protein 8 and its contribution to nucleosome binding. Nucleic Acids Res. 2012;40(21):11036–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brahma S, Ngubo M, Paul S, Udugama M, Bartholomew B. The Arp8 and Arp4 module acts as a DNA sensor controlling INO80 chromatin remodeling. Nat Commun. 2018;9(1):3309.
Article
PubMed
PubMed Central
CAS
Google Scholar
Aoyama N, Oka A, Kitayama K, Kurumizaka H, Harata M. The actin-related protein hArp8 accumulates on the mitotic chromosomes and functions in chromosome alignment. Exp Cell Res. 2008;314(4):859–68.
Article
CAS
PubMed
Google Scholar
Osakabe A, Takahashi Y, Murakami H, Otawa K, Tachiwana H, Oma Y, Nishijima H, Shibahara KI, Kurumizaka H, Harata M. DNA binding properties of the actin-related protein Arp8 and its role in DNA repair. PLoS One. 2014;9(10):e108354.
Article
PubMed
PubMed Central
CAS
Google Scholar
Deininger PL, Jolly DJ, Rubin CM, Friedmann T, Schmid CW. Base sequence studies of 300 nucleotide renatured repeated human DNA clones. J Mol Biol. 1981;151(1):17–33.
Article
CAS
PubMed
Google Scholar
Hasler J, Strub K. Alu elements as regulators of gene expression. Nucleic Acids Res. 2006;34(19):5491–7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Brookfield JF, Johnson LJ. The evolution of mobile DNAs: when will transposons create phylogenies that look as if there is a master gene? Genetics. 2006;173(2):1115–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Deininger P. Alu Elements; 2006. p. 21–34.
Google Scholar
Salem AH, Kilroy GE, Watkins WS, Jorde LB, Batzer MA. Recently integrated Alu elements and human genomic diversity. Mol Biol Evol. 2003;20(8):1349–61.
Article
CAS
PubMed
Google Scholar
Ray DA, Batzer MA. Tracking Alu evolution in New World primates. BMC Evol Biol. 2005;5:51.
Article
PubMed
PubMed Central
Google Scholar
Kim YH, Choe SH, Song BS, Park SJ, Kim MJ, Park YH, Yoon SB, Lee Y, Jin YB, Sim BW, et al. Macaca specific exon creation event generates a novel ZKSCAN5 transcript. Gene. 2016;577(2):236–43.
Article
CAS
PubMed
Google Scholar
Park SJ, Kim YH, Lee SR, Choe SH, Kim MJ, Kim SU, Kim JS, Sim BW, Song BS, Jeong KJ, et al. Gain of a New Exon by a Lineage-Specific Alu Element-Integration Event in the BCS1L Gene during Primate Evolution. Mol Cells. 2015;38(11):950–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sorek R, Ast G, Graur D. Alu-containing exons are alternatively spliced. Genome Res. 2002;12(7):1060–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lei H, Vorechovsky I. Identification of splicing silencers and enhancers in sense Alus: a role for pseudoacceptors in splice site repression. Mol Cell Biol. 2005;25(16):6912–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Deininger PL, Batzer MA, Hutchison CA 3rd, Edgell MH. Master genes in mammalian repetitive DNA amplification. Trends Genet. 1992;8(9):307–11.
Article
CAS
PubMed
Google Scholar
Bennett EA, Keller H, Mills RE, Schmidt S, Moran JV, Weichenrieder O, Devine SE. Active Alu retrotransposons in the human genome. Genome Res. 2008;18(12):1875–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mills RE, Bennett EA, Iskow RC, Devine SE. Which transposable elements are active in the human genome? Trends Genet. 2007;23(4):183–91.
Article
CAS
PubMed
Google Scholar
Kim DD, Kim TT, Walsh T, Kobayashi Y, Matise TC, Buyske S, Gabriel A. Widespread RNA editing of embedded alu elements in the human transcriptome. Genome Res. 2004;14(9):1719–25.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wildschutte JH, Baron A, Diroff NM, Kidd JM. Discovery and characterization of Alu repeat sequences via precise local read assembly. Nucleic Acids Res. 2015;43(21):10292–307.
CAS
PubMed
PubMed Central
Google Scholar
Kryatova MS, Steranka JP, Burns KH, Payer LM. Insertion and deletion polymorphisms of the ancient AluS family in the human genome. Mob DNA. 2017;8:6.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fazza AC, Sabino FC, de Setta N, Bordin NA Jr, da Silva EH, Carareto CM. Estimating genomic instability mediated by Alu retroelements in breast cancer. Genet Mol Biol. 2009;32(1):25–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang W, Edwards A, Fan W, Deininger P, Zhang K. Alu distribution and mutation types of cancer genes. BMC Genomics. 2011;12:157.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim S, Cho CS, Han K, Lee J. Structural Variation of Alu Element and Human Disease. Genomics Inform. 2016;14(3):70–7.
Article
PubMed
PubMed Central
Google Scholar
Song X, Beck CR, Du R, Campbell IM, Coban-Akdemir Z, Gu S, Breman AM, Stankiewicz P, Ira G, Shaw CA, et al. Predicting human genes susceptible to genomic instability associated with Alu/Alu-mediated rearrangements. Genome Res. 2018;28(8):1228–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nakama M, Otsuka H, Ago Y, Sasai H, Abdelkreem E, Aoyama Y, Fukao T. Intronic antisense Alu elements have a negative splicing effect on the inclusion of adjacent downstream exons. Gene. 2018;664:84–9.
Article
CAS
PubMed
Google Scholar
Lev-Maor G, Sorek R, Shomron N, Ast G. The birth of an alternatively spliced exon: 3′ splice-site selection in Alu exons. Science. 2003;300(5623):1288–91.
Article
CAS
PubMed
Google Scholar
Khitrinskaia I, Stepanov VA, Puzyrev VP. Alu repeats in the human genome. Mol Biol (Mosk). 2003;37(3):382–91.
Google Scholar
Chen L, Zhou W, Zhang L, Zhang F. Genome architecture and its roles in human copy number variation. Genomics Inform. 2014;12(4):136–44.
Article
PubMed
PubMed Central
Google Scholar
Aleshin A, Zhi D. Recombination-associated sequence homogenization of neighboring Alu elements: signature of nonallelic gene conversion. Mol Biol Evol. 2010;27(10):2300–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Corvelo A, Hallegger M, Smith CW, Eyras E. Genome-wide association between branch point properties and alternative splicing. PLoS Comput Biol. 2010;6(11):e1001016.
Article
PubMed
PubMed Central
CAS
Google Scholar