Lloyd Evans D, Joshi SV. Complete chloroplast genomes of Saccharum spontaneum, Saccharum officinarum and Miscanthus floridulus (Panicoideae: Andropogoneae) reveal the plastid view on sugarcane origins. Syst Biodivers. 2016;14:548–71.
Article
Google Scholar
Reddy BV, Ramesh S, Kumar AA, Wani SS, Ortiz R, Ceballos H, Sreedevi TK. Bio-fuel crops research for energy security and rural development in developing countries. Bioenergy Res. 2008;1:48–258.
Article
Google Scholar
Ebrahim MK, Vogg G, Osman MN, Komor E. 1998. Photosynthetic performance and adaptation of sugarcane at suboptimal temperatures. J Plant Physiol. 1998;153:587–92.
Article
CAS
Google Scholar
Wu J, Huang Y, Lin Y, Fu C, Liu S, Deng Z, et al. Unexpected inheritance pattern of Erianthus arundinaceus chromosomes in the intergeneric progeny between Saccharum spp. and Erianthus arundinaceus. PloS One. 2014;9:e110390.
Article
Google Scholar
Mukherjee SK. Origin and distribution of Saccharum. Bot Gaz. 1957;119:55–61.
Article
Google Scholar
Clayton B, Renvoize SA. Genera graminum. Grasses of the World. 1986;13.
Kew Gardens GrassBase Entry for Saccharum. http://www.kew.org/data/grasses-db/sppindex.htm#S. Accessed 10 Oct 2017.
Hodkinson TR, Chase MW, Takahashi C, Leitch IJ, Bennett MD, Renvoize SA. The use of DNA sequencing (ITS and trnL-F), AFLP, and fluorescent in situ hybridization to study allopolyploid Miscanthus (Poaceae). Am J Bot. 2002;89:279–86.
Article
CAS
Google Scholar
Grassl CO. Taxonomy of Saccharum relatives: Sclerostachya, Narenga, and Erianthus. Proceedings of the 14th Congress of the International Society of Sugar Cane Technologists. 1971. p. 240–248.
von Trinius CB. Fundamenta agrostographiae, sive Theoria constructionis Floris graminei; adjecta synopsi generum graminum hucusque cognitorum. Vienna: JG Heubner; 1820. p. 169.
Google Scholar
Bernhardi JJ. 1801. J Bot (Schrader), 1801;1800:127.
Valdés B, Scholz H. The euro+ med treatment of Gramineae—a generic synopsis and some new names. Willdenowia. 2006;36:657–69.
Article
Google Scholar
Berding JJ, RoachBT. Germplasm collection, maintenance, and use. In: Heinz DJ, editor. Sugarcane improvement through breeding, pages: Amsterdam: Elsevier; 1987. p. 143–210.
Michaux FA. Flora borealis Americana. Paris: Caroli Crapelet, Paris; 1803.
Google Scholar
NCBI Taxonomy entries for genus Tripidium. https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=1612336. Accessed 12 Oct 2017.
Welker CA, Souza-Chies TT, Longhi-Wagner HM, Peichoto MT, McKain MR, Kellogg EA. Phylogenetic analysis of Saccharum sl (Poaceae; Andropogoneae), with emphasis on the circumscription of the south American species. Am J Bot. 2015;102:248–63.
Article
Google Scholar
Estep MC, McKain MR, Diaz DV, Zhong J, Hodge JG, Hodkinson TR, et al. Allopolyploidy, diversification, and the Miocene grassland expansion. Proc Natl Acad Sci U S A. 2014;111:15149–54.
Article
CAS
Google Scholar
Soreng R-J, Peterson PM, Romaschenko K, Davidse G, Zuloaga FO, Judziewicz EJ, Morrone O. A worldwide phylogenetic classification of the Poaceae (Gramineae). J Syst Evol. 2015;53:117–37.
Article
Google Scholar
Folk RA, Mandel JR, Freudenstein JV. Ancestral gene flow and parallel organellar genome capture result in extreme phylogenomic discord in a lineage of angiosperms. Syst Biol. 2017;66:320–37.
PubMed
Google Scholar
Folk RA, Soltis PS, Soltis DE, Guralnick R. New prospects in the detection and comparative analysis of hybridization in the tree of life. Am J Bot. 2018 in press. https://doi.org/10.1002/ajb2.1018.
Mallet J. Hybrid speciation. Nature. 2007;446:279.
Article
CAS
Google Scholar
Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, Zheng C, et al. Polyploidy and angiosperm diversification. Am J Bot. 2009;2009(96):336–48.
Article
Google Scholar
Pirie MD, Humphreys AM, Barker NP, Linder HP. Reticulation, data combination, and inferring evolutionary history: an example from Danthonioideae (Poaceae). Syst Biol. 2009;58:612–28.
Article
CAS
Google Scholar
Guo X, Thomas DC, Saunders RM. Gene tree discordance and coalescent methods support ancient intergeneric hybridisation between Dasymaschalon and Friesodielsia (Annonaceae). Molecular Phylogenetics and Evolution. 2018:127:14–29. DOI. 2018. https://doi.org/10.1016/j.ympev.2018.04.009.
Záveská E, Fér T, Šída O, Marhold K, Leong-Škorničková J. Hybridization among distantly related species: examples from the polyploid genus Curcuma (Zingiberaceae). Mol Phylogenet Evol. 2016;100:303–21.
Article
Google Scholar
Whitfield JB, Lockhart PJ. Deciphering ancient rapid radiations. Trends Ecol Evol. 2007;22:258–65.
Article
Google Scholar
Hinsinger DD, Gaudeul M, Couloux A, Bousquet J, Frascaria-Lacoste N. 2014. The phylogeography of Eurasian Fraxinus species reveals ancient transcontinental reticulation. Mol Phylogenet Evol. 2014;77:223–37.
Article
Google Scholar
García N, Folk RA, Meerow AW, Chamala S, Gitzendanner MA, de Oliveira RS, et al. Deep reticulation and incomplete lineage sorting obscure the diploid phylogeny of rain-lilies and allies (Amaryllidaceae tribe Hippeastreae). Mol Phylogenet Evol. 2017;111:231–47.
Article
Google Scholar
Kellogg EA, Appels R, Mason-Gamer RJ. When genes tell different stories: the diploid genera of Triticeae (Gramineae). Syst Bot. 1996;21:321–47.
Article
Google Scholar
Connor HE. 2004. Flora of New Zealand — Gramineae supplement I: Danthonioideae. N Z J Bot. 2004;42:771–95.
Article
Google Scholar
NCBI Taxonomy entries for genus Saccharum. https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=4546. Accessed 12 Oct 2017.
Whalen MD. Taxonomy of saccharum (Poaceae). Baileya. 1991;23:109–25.
Google Scholar
Daniels J, Smith P, Paton N, Williams CA. The origin of the genus Saccharum. Sugarcane Breed Newsl. 1975;36:24–39.
Google Scholar
Grassl CO. Problems relating to the origin and evolution of wild and cultivated Saccharum. Indian J Sugarcane Res Dev. 1964;8:106–16.
Google Scholar
D’Hont A, Rao PS, Feldmann P, Grivet L, Islam-Faridi N, Taylor P, Glaszmann JC. Identification and characterisation of sugarcane intergeneric hybrids, Saccharum officinarum × Erianthus arundinaceus, with molecular markers and DNA in situ hybridisation. Theor and Appl Genet. 1995;91:320–6.
Article
Google Scholar
Alix K, Baurens FC, Paulet F, Glaszmann JC, D’Hont A. Isolation and characterization of a satellite DNA family in the Saccharum complex. Genome. 1998;41:854–64.
Article
CAS
Google Scholar
Alix K, Glaszmann JC, D’Hont A. Inter-Alu-like species-specific sequences in the Saccharum complex. Theor Appl Genet. 1999;99:962–8.
Article
CAS
Google Scholar
Piperidis N, Chen JW, Deng HH, Wang LP, Jackson P, Piperidis G. GISH characterization of Erianthus arundinaceus chromosomes in three generations of sugarcane intergeneric hybrids. Genome. 2010;53:331–6.
Article
CAS
Google Scholar
Huang Y, Wu P, Lin Y, Fu C, Deng Z, Wang Q, et al. Characterization of Chromosome Inheritance of the Intergeneric BC 2 and BC 3 Progeny between Saccharum spp. and Erianthus arundinaceus. PloS One. 2015;10:e0133722.
Article
Google Scholar
Riera-Lizarazu O, Rines HW, Phillips RL. Cytological and molecular characterization of oat x maize partial hybrids. Theor Appl Genet. 1996;93:123–35.
Article
CAS
Google Scholar
Burke SV, Wysocki WP, Zuloaga FO, Craine JM, Pires J-C, Edger PP, Mayfield-Jones D, et al. Evolutionary relationships in Panicoid grasses based on plastome phylogenomics (Panicoideae; Poaceae). BMC Plant Biol. 2016;16:140. https://doi.org/10.1186/s12870-016-0823-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Song J, Yang X, Resende MF Jr, Neves LG, Todd J, Zhang J, et al. Natural allelic variations in highly polyploidy Saccharum complex. Frontiers Plant Sci. 2016;7:804–32.
Google Scholar
NCBI primer design tool. https://www.ncbi.nlm.nih.gov/tools/primer-blast/. Accessed 23 Sept 2017.
Engels B. Amplify4 In Silico PCR. https://engels.genetics.wisc.edu/amplify/. Accessed 7 Oct 2017.
Clayton B, Vorontsova MS, Harman KT, Williamson H. GrassBase — The Online World Grass Flora. http://www.kew.org/data/grasses-db.html. 2006 onwards. Accessed 6 Oct 2017.
Vicentini A, Barber JC, Aliscioni SS, Giussani LM, Kellogg EA. The age of the grasses and clusters of origins of C4 photosynthesis. Glob Chang Biol. 2008;14:2963–77.
Article
Google Scholar
Tropicos entry for genus Tripidium. http://tropicos.info/NamePage.aspx?nameid=50314867&tab=subordinatetaxa&projectid=48. Accessed 12 Oct 2017.
Rieseberg LH, Soltis DE. Phylogenetic consequences of cytoplasmic gene flow in plants. Evolutionary Trends in Plants. 1991;5:65–84.
Google Scholar
Hawkins JS, Ramachandran D, Henderson A, Freeman J, Carlise M, Harris A, Willison-Headley Z. Phylogenetic reconstruction using four low-copy nuclear loci strongly supports a polyphyletic origin of the genus Sorghum. Ann Bot. 2015;116:291–9.
Article
CAS
Google Scholar
Zachos J, Pagani S, Sloan L, Thomas E, Billups K. Trends, rhythms, and aberrations in global climate 65 ma to present. Science. 2001;292:686–93. https://doi.org/10.1126/science.1059412.
Article
CAS
PubMed
Google Scholar
Spriggs EL, Christin PA, Edwards EJ. 2014. C4 photosynthesis promoted species diversification during the Miocene grassland expansion. PLoS One. 2014;9:e97722. https://doi.org/10.1371/journal.pone.0097722.
Article
CAS
PubMed
PubMed Central
Google Scholar
Snyman SJ, Komape DM, Khanyi H, van den Berg J, Cilliers D, Lloyd Evans D, Barnard S, Siebert SJ. Assessing the likelihood of gene flow from sugarcane (Saccharum hybrids) to wild relatives in South Africa. Frontiers in Bioengineering. 2018;6:72.
Article
Google Scholar
Tsuruta SI, Ebina M, Kobayashi M, Takahashi W. Complete Chloroplast Genomes of Erianthus arundinaceus and Miscanthus sinensis: Comparative Genomics and Evolution of the Saccharum Complex. PloS One. 2017;12:e0169992.
Article
Google Scholar
Kellogg EA. Phylogenetic relationships of Saccharinae and Sorghinae. In: Paterson AH, editor. Genomics of the Saccharinae. New York: Springer; 2013. p. 3–21.
Chapter
Google Scholar
Wang J, Roe B, Macmil S, Yu Q, Murray JE, Tang H, et al. Microcollinearity between autopolyploid sugarcane and diploid sorghum genomes. BMC Genomics. 2010;11:261.
Article
Google Scholar
Chevreux C, Wetter T, Suhai S. Genome sequence assembly using trace signals and additional sequence information. German Conference on Bioinformatics. 1999;99:45–56.
Google Scholar
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.
Article
CAS
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina Sequence Data. Bioinformatics. 2014;btu170.
Li H, Durbin R. Fast and accurate short read alignment with burrows–wheeler transform. Bioinformatics. 2009;25:1754–60.
Article
CAS
Google Scholar
Thorvaldsdóttir H, Robinson JT, Mesirov JP. Integrative genomics viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform. 2013;14:178–92.
Article
Google Scholar
Lloyd Evans D, Joshi SV. Herbicide targets and detoxification proteins in sugarcane: from gene assembly to structure modelling. Genome. 2017;60:601–17.
Article
CAS
Google Scholar
Lloyd Evans D, Joshi SV and Wang J (2017) Data from: whole chloroplast and gene locus phylogenies reveal the taxonomic placement and relationship of Tripidium (Panicoideae: Andropogoneae) to sugarcane. Dryad. https://doi.org/10.5061/dryad.1k5s048. Last accessed 10 Dec 2018
Picard tools. Available from: http://broadinstitute.github.io/picard/. Last accessed 10 Nov 2017.
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.
Article
CAS
Google Scholar
Walker B-J, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PloS One. 2014;9:e112963.
Article
Google Scholar
McKain MR, Hartsock RH, Wohl MM, Kellogg EA. Verdant: automated annotation, alignment and phylogenetic analysis of whole chloroplast genomes. Bioinformatics. 2016;btw583.
Lloyd Evans D. Sequence annotation code. Available from: https://github.com/gwydion1/bifo-scripts.git. Accessed 10 Nov 2017.
Liu K, Raghavan S, Nelesen S, Linder CR, Warnow T. Rapid and accurate large-scale coestimation of sequence alignments and phylogenetic trees. Science. 2009;324:1561–4.
Article
CAS
Google Scholar
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.
Article
CAS
Google Scholar
Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.
Article
CAS
Google Scholar
Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22:2688–90.
Article
CAS
Google Scholar
Löytynoja A, Vilella AJ, Goldman N. Accurate extension of multiple sequence alignments using a phylogeny-aware graph algorithm. Bioinformatics. 2012;28:1684–91.
Zhu, Q. 2014. BeforePhylo.Pl version 0.9.0 available from: https://github.com/qiyunzhu/BeforePhylo. Accessed 12 Nov 2017.
Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods. 2012;9:772.
Article
CAS
Google Scholar
Paradis E, Claude J, Strimmer K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics. 2004;20:289–90.
Article
CAS
Google Scholar
Ronquist F, Huelsenbeck JP. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003;19:1572–4.
Article
CAS
Google Scholar
Nguyen L-T, Schmidt HA, von Haeseler A, Minh QA; IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies, Mol Biol and Evol, 2015; 32:268–274. https://doi.org/10.1093/molbev/msu300.
Rambaut A, Suchard MA, Xie D, Drummond AJ. Tracer, Version 1.5. http://tree.bio.ed.ac.uk/software/tracer/. Accessed 7 Oct 2017.
Nylander JA, Wilgenbusch JC, Warren DL. Swofford DL. AWTY (are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics. Bioinformatics 2008; 24:581–583.
Sukumaran J, Holder MT. DendroPy: a Python library for phylogenetic computing. Bioinformatics. 2010;26:1569–71.
Article
CAS
Google Scholar
Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol. 2012;29:1969–73.
Article
CAS
Google Scholar
Drummond AJ, Ho SYW, Phillips MJ, Rambaut A. Relaxed phylogenetics and dating with confidence. PLoS Biol. 2006;4:e88.
Article
Google Scholar
FigTree, available from http://tree.bio.ed.ac.uk/software/figtree/. Accessed 10 Nov 2017.
Lloyd Evans D, Joshi SV and Wang J (2017) Data from: whole chloroplast and gene locus phylogenies reveal the taxonomic placement and relationship of Tripidium (Panicoideae: Andropogoneae) to sugarcane. TreeBase. http://purl.org/phylo/treebase/phylows/study/TB2:S23649.
Filgueiras TS, Peterson PM, Soreng RJ, Judziewicz EJ. Editors. Catalogue of New World grasses (Poaceae): III. Subfamilies Panicoideae, Aristidoideae, Arundinoideae, and Danthonioideae, Contr US Natl herb. Washington DC: Smithsonian Institution; 2003.
Google Scholar
Flora of China Editorial Committee. Flora of China (Poaceae). In Wu CY, Raven PH, Hong DY, editors, Flora of China. Beijing and St. Louis: Science Press and Missouri Botanical Garden Press. 2006. p. 1–733.
Cabi E, Doğan M. Poaceae. In: Güner A, Aslan S, Ekim T, Vural M, Babaç MC editors. Türkiye Bitkileri Listesi. Istanbul: Nezahat Gökyiğit Botanik Bahçesi ve Flora Araştırmaları Derneği Yayını. 2012. p. 690–756.
Conant GC, Wolfe KH. GenomeVx: simple web-based creation of editable circular chromosome maps. Bioinformatics. 2008;24:861–2.
Article
CAS
Google Scholar