Ohno S. Evolution by gene duplication. Berlin, Heidelberg: Springer; 1970.
Innan H, Kondrashov F. The evolution of gene duplications: classifying and distinguishing between models. Nat Rev Genet. 2010;11:97–108.
Article
CAS
PubMed
Google Scholar
Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J. Preservation of duplicate genes by complementary, degenerative mutations. Genetics. 1999;151:1531–45.
CAS
PubMed
PubMed Central
Google Scholar
Rastogi S, Liberles DA. Subfunctionalization of duplicated genes as a transition state to neofunctionalization. BMC Evol Biol. 2005;5:28.
Article
PubMed
PubMed Central
CAS
Google Scholar
Turetzek N, Pechmann M, Schomburg C, Schneider J, Prpic N-M. Neofunctionalization of a duplicate dachshund gene underlies the evolution of a novel leg segment in arachnids. Mol Biol Evol. 2016;33:109–21.
Article
CAS
PubMed
Google Scholar
Chen L, DeVries AL, Cheng C-HC. Evolution of antifreeze glycoprotein gene from a trypsinogen gene in Antarctic notothenioid fish. Proc Natl Acad Sci. 1997;94:3811–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dulai KS, von Dornum M, Mollon JD, Hunt DM. The evolution of trichromatic color vision by opsin gene duplication in New World and Old World Primates. Genome Res. 1999;9:629–38.
CAS
PubMed
Google Scholar
Tang Y-C, Amon A. Gene copy-number alterations: a cost-benefit analysis. Cell. 2013;152:394–405.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin Z, Li W-H. Expansion of hexose transporter genes was associated with the evolution of aerobic fermentation in yeasts. Mol Biol Evol. 2011;28:131–42.
Article
CAS
PubMed
Google Scholar
Glasauer SMK, Neuhauss SCF. Whole-genome duplication in teleost fishes and its evolutionary consequences. Mol Gen Genomics. 2014;289:1045–60.
Article
CAS
Google Scholar
Baalsrud HT, Voje KL, Tørresen OK, Solbakken MH, Matschiner M, Malmstrøm M, et al. Evolution of hemoglobin genes in codfishes influenced by ocean depth. Sci Rep. 2017;7:7956.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang J, Zhang Y, Rosenberg HF. Adaptive evolution of a duplicated pancreatic ribonuclease gene in a leaf-eating monkey. Nat Genet. 2002;30:411–5.
Article
CAS
PubMed
Google Scholar
Storz JF, Opazo JC, Hoffmann FG. Gene duplication, genome duplication, and the functional diversification of vertebrate globins. Mol Phylogenet Evol. 2013;66:469–78.
Article
CAS
PubMed
Google Scholar
Zhang J. Parallel adaptive origins of digestive RNases in Asian and African leaf monkeys. Nat Genet. 2006;38:819–23.
Article
CAS
PubMed
Google Scholar
Wray GA. The evolutionary significance of cis-regulatory mutations. Nat Rev Genet. 2007;8:206–16.
Article
CAS
PubMed
Google Scholar
Carroll SB. Evolution at two levels: on genes and form. PLoS Biol. 2005;3:e245.
Article
PubMed
PubMed Central
CAS
Google Scholar
Jiménez-Delgado S, Pascual-Anaya J, Garcia-Fernàndez J. Implications of duplicated cis-regulatory elements in the evolution of metazoans: the DDI model or how simplicity begets novelty. Brief Funct Genomic Proteomic. 2009;8:266–75.
Article
PubMed
CAS
Google Scholar
Moriyama Y, Ito F, Takeda H, Yano T, Okabe M, Kuraku S, et al. Evolution of the fish heart by sub/neofunctionalization of an elastin gene. Nat Commun. 2016;7:10397.
Article
CAS
PubMed
PubMed Central
Google Scholar
Santos ME, Braasch I, Boileau N, Meyer BS, Sauteur L, Böhne A, et al. The evolution of cichlid fish egg-spots is linked with a cis-regulatory change. Nat Commun. 2014;5:5149.
Article
CAS
PubMed
Google Scholar
Carrasco AE, McGinnis W, Gehring WJ, De Robertis EM. Cloning of an X. laevis gene expressed during early embryogenesis coding for a peptide region homologous to Drosophila homeotic genes. Cell. 1984;37:409–14.
Article
CAS
PubMed
Google Scholar
Proudfoot NJ, Shander MH, Manley JL, Gefter ML, Maniatis T. Structure and in vitro transcription of human globin genes. Science. 1980;209:1329–36.
Article
CAS
PubMed
Google Scholar
Brooke NM, Garcia-Fernàndez J, Holland PWH. The ParaHox gene cluster is an evolutionary sister of the Hox gene cluster. Nature. 1998;392:920–2.
Article
CAS
PubMed
Google Scholar
Malmstrøm M, Matschiner M, Tørresen OK, Star B, Snipen LG, Hansen TF, et al. Evolution of the immune system influences speciation rates in teleost fishes. Nat Genet. 2016;48:1204–10.
Article
PubMed
CAS
Google Scholar
Cortesi F, Musilová Z, Stieb SM, Hart NS, Siebeck UE, Malmstrøm M, et al. Ancestral duplications and highly dynamic opsin gene evolution in percomorph fishes. Proc Natl Acad Sci. 2015;112:1493–8.
Article
CAS
PubMed
Google Scholar
Garcia-Fernàndez J. The genesis and evolution of homeobox gene clusters. Nat Rev Genet. 2005;6:881–92.
Article
PubMed
Google Scholar
Hardison RC. Evolution of hemoglobin and its genes. Cold Spring Harb Perspect Med. 2012;2:a011627.
Article
PubMed
PubMed Central
CAS
Google Scholar
Robinson-Rechavi M, Boussau B, Laudet V. Phylogenetic dating and characterization of gene duplications in vertebrates: the cartilaginous fish reference. Mol Biol Evol. 2004;21:580–6.
Article
CAS
PubMed
Google Scholar
Sato Y, Nishida M. Teleost fish with specific genome duplication as unique models of vertebrate evolution. Environ Biol Fish. 2010;88:169–88.
Article
Google Scholar
Braasch I, Gehrke AR, Smith JJ, Kawasaki K, Manousaki T, Pasquier J, et al. The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nat Genet. 2016;48:427–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brunet FG, Volff J-N, Schartl M. Whole genome duplications shaped the receptor tyrosine kinase repertoire of jawed vertebrates. Genome Biol Evol. 2016;8:1600–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gillis WQ, St John J, Bowerman B, Schneider SQ. Whole genome duplications and expansion of the vertebrate GATA transcription factor gene family. BMC Evol Biol. 2009;9:207.
Article
PubMed
PubMed Central
CAS
Google Scholar
Voldoire E, Brunet F, Naville M, Volff J-N, Galiana D. Expansion by whole genome duplication and evolution of the sox gene family in teleost fish. Vaudry H, editor. PLoS One. 2017;12:e0180936.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sémon M, Wolfe KH. Rearrangement rate following the whole-genome duplication in teleosts. Mol Biol Evol. 2007;24:860–7.
Article
PubMed
CAS
Google Scholar
Kirkpatrick M, Barton N. Chromosome inversions, local adaptation and speciation. Genetics. 2006;173:419–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Farré M, Micheletti D, Ruiz-Herrera A. Recombination rates and genomic shuffling in human and chimpanzee - a new twist in the chromosomal speciation theory. Mol Biol Evol. 2013;30:853–64.
Article
PubMed
CAS
Google Scholar
Joron M, Frezal L, Jones RT, Chamberlain NL, Lee SF, Haag CR, et al. Chromosomal rearrangements maintain a polymorphic supergene controlling butterfly mimicry. Nature. 2011;477:203–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ayala D, Fontaine MC, Cohuet A, Fontenille D, Vitalis R, Simard F. Chromosomal inversions, natural selection and adaptation in the malaria vector Anopheles funestus. Mol Biol Evol. 2011;28:745–58.
Article
CAS
PubMed
Google Scholar
Barth JMI, Berg PR, Jonsson PR, Bonanomi S, Corell H, Hemmer-Hansen J, et al. Genome architecture enables local adaptation of Atlantic cod despite high connectivity. Mol Ecol. 2017;26:4452–66.
Article
CAS
PubMed
Google Scholar
Stevison LS, Hoehn KB, Noor MAF. Effects of inversions on within- and between-species recombination and divergence. Genome Biol. Evol. 2011;3:830–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Corbett-Detig RB. Selection on inversion breakpoints favors proximity to pairing sensitive sites in Drosophila melanogaster. Genetics. 2016;204:259–65.
Article
PubMed
PubMed Central
Google Scholar
Otto SP. The evolutionary consequences of polyploidy. Cell. 2007;131:452–62.
Article
CAS
PubMed
Google Scholar
Hufton AL, Groth D, Vingron M, Lehrach H, Poustka AJ, Panopoulou G. Early vertebrate whole genome duplications were predated by a period of intense genome rearrangement. Genome Res. 2008;18:1582–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ayrault Jarrier M, Levy G, Polonovski J. Etude des alpha-lipoprot’eines s’eriques humaines par. Bull Soc Chim Biol (Paris). 1963;45:703–13.
CAS
Google Scholar
Rassart E, Bedirian A, Do Carmo S, Guinard O, Sirois J, Terrisse L, et al. Apolipoprotein D. Biochim Biophys Acta - Protein Struct Mol Enzymol. 2000;1482:185–98.
Article
CAS
Google Scholar
Weech P, Provost P, Tremblay N, Camato R, Milne R, Marcel Y, et al. Apolipoprotein D - An atypical apolipoprotein. Prog Lipid Res. 1991;30:259–66.
Article
CAS
PubMed
Google Scholar
Drayna D, Fielding C, McLean J, Baer B, Castro G, Chen E, et al. Cloning and expression of human apolipoprotein D cDNA. J Biol Chem. 1986;261:16535–9.
CAS
PubMed
Google Scholar
Provost PR, Villeneuve L, Weech PK, Milne RW, Marcel YL, Rassart E. Localization of the major sites of rabbit apolipoprotein D gene transcription by in situ hybridization. J Lipid Res. 1991;32:1959–70.
CAS
PubMed
Google Scholar
Gilleron M, Lepore M, Layre E, Cala-De Paepe D, Mebarek N, Shayman JA, et al. Lysosomal lipases PLRP2 and LPLA2 process mycobacterial multi-acylated lipids and generate T cell stimulatory antigens. Cell Chem Biol. 2016;23:1147–56.
Article
CAS
PubMed
Google Scholar
Bailey SD, Xie C, Do R, Montpetit A, Diaz R, Mohan V, et al. Variation at the NFATC2 locus increases the risk of thiazolidinedione-induced edema in the diabetes reduction assessment with ramipril and rosiglitazone medication (DREAM) study. Diabetes Care. 2010;33:2250–3.
Article
PubMed
PubMed Central
Google Scholar
Fotakis P, Kuivenhoven JA, Dafnis E, Kardassis D, Zannis VI. The effect of natural LCAT mutations on the biogenesis of HDL. Biochemistry. 2015;54:3348–59.
Article
CAS
PubMed
Google Scholar
Tateno H, Yabe R, Sato T, Shibazaki A, Shikanai T, Gonoi T, et al. Human ZG16p recognizes pathogenic fungi through non-self polyvalent mannose in the digestive system. Glycobiology. 2012;22:210–20.
Article
CAS
PubMed
Google Scholar
Plestant C, Anton ES. Scaling the MAPK signaling threshold during CNS patterning. Dev Cell. 2013;25:221–2.
Article
CAS
PubMed
Google Scholar
Shvartsman SY, Coppey M, Berezhkovskii AM. MAPK signaling in equations and embryos. Fly (Austin). 2009;3:62–7.
Article
CAS
Google Scholar
Mangaraj M, Nanda R, Panda S. Apolipoprotein A-I: a molecule of diverse function. Indian J Clin Biochem. 2016;31:253–9.
Article
CAS
PubMed
Google Scholar
Fiaschetti G, Schroeder C, Castelletti D, Arcaro A, Westermann F, Baumgartner M, et al. NOTCH ligands JAG1 and JAG2 as critical pro-survival factors in childhood medulloblastoma. Acta Neuropathol Commun. 2014;2:39.
Article
PubMed
PubMed Central
Google Scholar
Reddy S, Devlin R, Menaa C, Nishimura R, Choi SJ, Dallas M, et al. Isolation and characterization of a cDNA clone encoding a novel peptide (OSF) that enhances osteoclast formation and bone resorption. J Cell Physiol. 1998;177:636–45.
Article
CAS
PubMed
Google Scholar
Wong C-H, Fung Y-WW, Ng EK-O, Lee SM-Y, Waye MM-Y, Tsui SK-W. LIM domain protein FHL1B interacts with PP2A catalytic β subunit - a novel cell cycle regulatory pathway. FEBS Lett. 2010;584:4511–6.
Article
CAS
PubMed
Google Scholar
Ng EL, Tang BL. Rab GTPases and their roles in brain neurons and glia. Brain Res Rev. 2008;58:236–46.
Article
CAS
PubMed
Google Scholar
Pandita E, Rajan S, Rahman S, Mullick R, Das S, Sau AK. Tetrameric assembly of hGBP1 is crucial for both stimulated GMP formation and antiviral activity. Biochem J. 2016;473:1745–57.
Article
CAS
PubMed
Google Scholar
Gu L, Xia C. Revelation of the genetic basis for convergent innovative anal fin pigmentation patterns in cichlid fishes. bioRxiv. 2017. https://doi.org/10.1101/165217.
Hofberger JA, Nsibo DL, Govers F, Bouwmeester K, Schranz ME. A complex interplay of tandem- and whole-genome duplication drives expansion of the L-type lectin receptor kinase gene family in the brassicaceae. Genome Biol Evol. 2015;7:720–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bellieny-Rabelo D, Oliveira AEA, Venancio TM. Impact of whole-genome and tandem duplications in the expansion and functional diversification of the F-box family in legumes (Fabaceae). PLoS One. 2013;8:e55127.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hammoudi V, Vlachakis G, Schranz ME, van den Burg HA. Whole-genome duplications followed by tandem duplications drive diversification of the protein modifier SUMO in angiosperms. New Phytol. 2016;211:172–85.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kondrashov FA, Kondrashov AS. Role of selection in fixation of gene duplications. J Theor Biol. 2006;239:141–51.
Article
CAS
PubMed
Google Scholar
Schranz ME, Mohammadin S, Edger PP. Ancient whole genome duplications, novelty and diversification: the WGD radiation lag-time model. Curr Opin Plant Biol. 2012;15:147–53.
Article
PubMed
Google Scholar
Engel A, Gaub HE. Structure and mechanics of membrane proteins. Annu Rev Biochem. 2008;77:127–48.
Article
CAS
PubMed
Google Scholar
Flower DR. The lipocalin protein family: structure and function. Biochem J. 1996;318:1–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
McLachlan AD. Protein Structure and Function. Annu Rev Phys Chem. 1972;23:165–92.
Article
CAS
Google Scholar
Klingenberg M. Membrane protein oligomeric structure and transport function. Nature. 1981;290:449–54.
Article
CAS
PubMed
Google Scholar
Friedman JM. Structure, dynamics, and reactivity in hemoglobin. Science. 1985;228:1273–80.
Article
CAS
PubMed
Google Scholar
Ewart KV, Lin Q, Hew CL. Structure, function and evolution of antifreeze proteins. Cell Mol Life Sci C. 1999;55:271–83.
Article
CAS
Google Scholar
Arévalo-Pinzón G, Curtidor H, Muñoz M, Patarroyo MA, Bermudez A, Patarroyo ME. A single amino acid change in the plasmodium falciparum RH5 (PfRH5) human RBC binding sequence modifies its structure and determines species-specific binding activity. Vaccine. 2012;30:637–46.
Article
PubMed
CAS
Google Scholar
Schaefer C, Rost B. Predict impact of single amino acid change upon protein structure. BMC Genomics. 2012;13:S4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Flower DR. Multiple molecular recognition properties of the lipocalin protein family. J Mol Recognit. 1995;8:185–95.
Article
CAS
PubMed
Google Scholar
Skerra A. Engineered protein scaffolds for molecular recognition. J Mol Recognit. 2000;13:167–87.
Article
CAS
PubMed
Google Scholar
Salzburger W. The interaction of sexually and naturally selected traits in the adaptive radiations of cichlid fishes. Mol Ecol. 2009;18:169–85.
Article
PubMed
Google Scholar
Rogers RL, Shao L, Thornton KR. Tandem duplications lead to novel expression patterns through exon shuffling in Drosophila yakuba. Begun DJ, editor. PLOS Genet. 2017;13:e1006795.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen Y, Jia L, Wei C, Wang F, Lv H, Jia J. Association between polymorphisms in the apolipoprotein D gene and sporadic Alzheimer’s disease. Brain Res. 2008;1233:196–202.
Article
CAS
PubMed
Google Scholar
Helisalmi S, Hiltunen M, Vepsäläinen S, Iivonen S, Corder EH, Lehtovirta M, et al. Genetic variation in apolipoprotein D and Alzheimer’s disease. J Neurol. 2004;251:951–7.
Article
CAS
PubMed
Google Scholar
Waldner A, Dassati S, Redl B, Smania N, Gandolfi M. Apolipoprotein D concentration in human plasma during aging and in Parkinson’s disease: a cross-sectional study. Parkinsons Dis. 2018;2018:1–7.
Article
Google Scholar
Wellenreuther M, Svensson EI, Hansson B. Sexual selection and genetic colour polymorphisms in animals. Mol Ecol. 2014;23:5398–414.
Article
PubMed
Google Scholar
Carleton KL, Parry JWL, Bowmaker JK, Hunt DM, Seehausen O. Colour vision and speciation in Lake Victoria cichlids of the genus Pundamilia. Mol Ecol. 2005;14:4341–53.
Article
CAS
PubMed
Google Scholar
Flamarique IN, Bergstrom C, Cheng CL, Reimchen TE. Role of the iridescent eye in stickleback female mate choice. J Exp Biol. 2013;216:2806–12.
Article
PubMed
Google Scholar
Bystriansky JS, Schulte PM. Changes in gill H+-ATPase and Na+/K+-ATPase expression and activity during freshwater acclimation of Atlantic salmon (Salmo salar). J Exp Biol. 2011;214:2435–42.
Article
CAS
PubMed
Google Scholar
McCormick SD, Bradshaw D. Hormonal control of salt and water balance in vertebrates. Gen Comp Endocrinol. 2006;147:3–8.
Article
CAS
PubMed
Google Scholar
Sakamoto T. Growth hormone and prolactin in environmental adaptation. Zool Sci. 2003;20:1497–8.
Article
Google Scholar
Foskett JK, Bern HA, Machen TE, Conner M. Chloride cells and the hormonal control of teleost fish osmoregulation. J Exp Biol. 1983;106:255–81.
CAS
PubMed
Google Scholar
Papetti C, Harms L, Windisch HS, Frickenhaus S, Sandersfeld T, Jürgens J, et al. A first insight into the spleen transcriptome of the notothenioid fish Lepidonotothen nudifrons: resource description and functional overview. Mar Genomics. 2015;24:237–9.
Article
PubMed
Google Scholar
Huang Y, Chain FJJ, Panchal M, Eizaguirre C, Kalbe M, Lenz TL, et al. Transcriptome profiling of immune tissues reveals habitat-specific gene expression between lake and river sticklebacks. Mol Ecol. 2016;25:943–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Muschick M, Indermaur A, Salzburger W. Convergent evolution within an adaptive radiation of cichlid fishes. Curr Biol. 2012;22:2362–8.
Article
CAS
PubMed
Google Scholar
Green SA, Simoes-Costa M, Bronner ME. Evolution of vertebrates as viewed from the crest. Nature. 2015;520:474–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barlow-Anacker AJ, Fu M, Erickson CS, Bertocchini F, Gosain A. Neural crest cells contribute an astrocyte-like glial population to the spleen. Sci Rep. 2017;7:45645.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bailey AP, Bhattacharyya S, Bronner-Fraser M, Streit A. Lens specification is the ground state of all sensory placodes, from which FGF promotes olfactory identity. Dev Cell. 2006;11:505–17.
Article
CAS
PubMed
Google Scholar
Salzburger W, Mack T, Verheyen E, Meyer A. Out of Tanganyika: genesis, explosive speciation, key-innovations and phylogeography of the haplochromine cichlid fishes. BMC Evol Biol. 2005;5:17.
Article
PubMed
PubMed Central
Google Scholar
Charlesworth D. Evolution of recombination rates between sex chromosomes. Philos Trans R Soc B Biol Sci. 2017;372:20160456.
Article
CAS
Google Scholar
Flicek P, Amode MR, Barrell D, Beal K, Billis K, Brent S, et al. Ensembl 2014. Nucleic Acids Res. 2014;42:D749–55.
Article
CAS
PubMed
Google Scholar
Stanke M, Diekhans M, Baertsch R, Haussler D. Using native and syntenically mapped cDNA alignments to improve de novo gene finding. Bioinformatics. 2008;24:637–44.
Article
CAS
PubMed
Google Scholar
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Soderlund C, Bomhoff M, Nelson W. SyMAP v3.4: a turnkey synteny system with application to plant genomes. Nucleic Acids Res. 2011;39:e68.
Article
CAS
PubMed
PubMed Central
Google Scholar
Brawand D, Wagner CE, Li YI, Malinsky M, Keller I, Fan S, et al. The genomic substrate for adaptive radiation in African cichlid fish. Nature. 2014;513:375–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rausch T, Zichner T, Schlattl A, Stutz AM, Benes V, Korbel JO. DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics. 2012;28:i333–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Letunic I, Doerks T, Bork P. SMART: recent updates, new developments and status in 2015. Nucleic Acids Res. 2015;43:D257–60.
Article
CAS
PubMed
Google Scholar
Letunic I, Bork P. 20 years of the SMART protein domain annotation resource. Nucleic Acids Res. 2018;46:D493–6.
Article
CAS
PubMed
Google Scholar
Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, et al. The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res. 2017;45:D362–8.
Article
CAS
PubMed
Google Scholar
Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 2014;42:W252–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bordoli L, Kiefer F, Arnold K, Benkert P, Battey J, Schwede T. Protein structure homology modeling using SWISS-MODEL workspace. Nat Protoc. 2008;4:1–13.
Article
CAS
Google Scholar
Arnold K, Bordoli L, Kopp J, Schwede T. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics. 2006;22:195–201.
Article
CAS
PubMed
Google Scholar
Guex N, Peitsch MC, Schwede T. Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: a historical perspective. Electrophoresis. 2009;30:S162–73.
Article
PubMed
Google Scholar
Birzele F, Gewehr JE, Csaba G, Zimmer R. Vorolign-fast structural alignment using Voronoi contacts. Bioinformatics. 2007;23:e205–11.
Article
CAS
PubMed
Google Scholar
Yang Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007;24:1586–91.
Article
CAS
PubMed
Google Scholar
Yang Z. PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci. 1997;13:555–6.
CAS
PubMed
Google Scholar
Anisimova M, Yang Z. Multiple hypothesis testing to detect lineages under positive selection that affects only a few sites. Mol Biol Evol. 2007;24:1219–28.
Article
CAS
PubMed
Google Scholar
McCurley AT, Callard GV. Characterization of housekeeping genes in zebrafish: male-female differences and effects of tissue type, developmental stage and chemical treatment. BMC Mol Biol. 2008;9:102.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hibbeler S, Scharsack JP, Becker S. Housekeeping genes for quantitative expression studies in the three-spined stickleback Gasterosteus aculeatus. BMC Mol Biol. 2008;9:18.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang Z, Hu J. Development and validation of endogenous reference genes for expression profiling of medaka (Oryzias latipes) exposed to endocrine disrupting chemicals by quantitative real-time RT-PCR. Toxicol Sci. 2007;95:356–68.
Article
CAS
PubMed
Google Scholar
Gu L, Xia C. Data from: cluster expansion of apolipoprotein D (ApoD) genes in teleost fishes. Dryad Digital Repository. 2018. https://doi.org/10.5061/dryad.39g63v2.
Tao W, Sun L, Shi H, Cheng Y, Jiang D, Fu B, et al. Integrated analysis of miRNA and mRNA expression profiles in tilapia gonads at an early stage of sex differentiation. BMC Genomics. 2016;17:328.
Article
PubMed
PubMed Central
CAS
Google Scholar