Land MF, Nilsson D-E. Light and vision. In: Animal Eyes. New York: Oxford University Press; 2012. p. 23–45.
Chapter
Google Scholar
Strathmann M, Simon MI. G protein diversity: a distinct class of alpha subunits is present in vertebrates and invertebrates. Proc Natl Acad Sci U S A. 1990;87:9113–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hildebrandt JD. Role of subunit diversity in signaling by heterotrimeric G proteins. Biochem Pharmacol. 1997;54:325–39.
Article
CAS
PubMed
Google Scholar
Koyanagi M, Takano K, Tsukamoto H, Ohtsu K, Tokunaga F, Terakita A. Jellyfish vision starts with cAMP signaling mediated by opsin-G(s) cascade. Proc Natl Acad Sci U S A. 2008;105:15576–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mason B, Schmale M, Gibbs P, Miller MW, Wang Q, Levay K, et al. Evidence for multiple phototransduction pathways in a reef-building coral. PLoS One. 2012;7:e50371.
Article
CAS
PubMed
PubMed Central
Google Scholar
Porter ML, Blasic JR, Bok MJ, Cameron EG, Pringle T, Cronin TW, et al. Shedding new light on opsin evolution. Proc Biol Sci. 2012;279:3–14.
Article
PubMed
Google Scholar
D’Aniello S, Delroisse J, Valero-Gracia A, Lowe EK, Byrne M, Cannon JT, et al. Opsin evolution in the Ambulacraria. Mar Genomics. 2015;24(Pt 2):177–83.
Article
PubMed
Google Scholar
Ramirez MD, Pairett AN, Pankey MS, Serb JM, Speiser DI, Swafford AJ, et al. The Last Common Ancestor of Most Bilaterian Animals Possessed at Least Nine Opsins. Genome Biol Evol. 2016;8:3640–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Suga H, Schmid V, Gehring WJ. Evolution and functional diversity of jellyfish opsins. Curr Biol. 2008;18:51–5.
Article
CAS
PubMed
Google Scholar
Shen WL, Kwon Y, Adegbola AA, Luo J, Chess A, Montell C. Function of rhodopsin in temperature discrimination in Drosophila. Science. 2011;331:1333–6.
Article
CAS
PubMed
Google Scholar
Leung NY, Montell C. Unconventional Roles of Opsins. Annu Rev Cell Dev Biol. 2017; Available from. https://doi.org/10.1146/annurev-cellbio-100616-060432.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aizenberg J, Tkachenko A, Weiner S, Addadi L, Hendler G. Calcitic microlenses as part of the photoreceptor system in brittlestars. Nature. 2001;412:819–22.
Article
CAS
PubMed
Google Scholar
Sumner-Rooney L, Rahman IA, Sigwart JD, Ullrich-Lüter E. Whole-body photoreceptor networks are independent of “lenses” in brittle stars. Proc Biol Sci. 2018;285. Available from. https://doi.org/10.1098/rspb.2017.2590.
Article
PubMed
PubMed Central
Google Scholar
Ullrich-Lüter EM, Dupont S, Arboleda E, Hausen H, Arnone MI. Unique system of photoreceptors in sea urchin tube feet. Proc Natl Acad Sci U S A. 2011;108:8367–72.
Article
PubMed
PubMed Central
Google Scholar
Ullrich-Lüter EM, D’Aniello S, Arnone MI. C-opsin expressing photoreceptors in echinoderms. Integr Comp Biol. 2013;53:27–38.
Article
PubMed
CAS
Google Scholar
Raible F, Tessmar-Raible K, Arboleda E, Kaller T, Bork P, Arendt D, et al. Opsins and clusters of sensory G-protein-coupled receptors in the sea urchin genome. Dev Biol. 2006;300:461–75.
Article
CAS
PubMed
Google Scholar
Blevins E, Johnsen S. Spatial vision in the echinoid genus Echinometra. J Exp Biol. 2004;207:4249–53.
Article
PubMed
Google Scholar
Yerramilli D, Johnsen S. Spatial vision in the purple sea urchin Strongylocentrotus purpuratus (Echinoidea). J Exp Biol. 2009;213:249–55.
Article
Google Scholar
Delroisse J, Ullrich-Lüter E, Ortega-Martinez O, Dupont S, Arnone M-I, Mallefet J, et al. High opsin diversity in a non-visual infaunal brittle star. BMC Genomics. 2014;15:1035.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yoshida M, Ohtsuki H. The phototactic behavior of the starfish, Asterias amurensis Lutken. Biol Bull. Marine Biological Laboratory. 1968;134:516–32.
Article
Google Scholar
Yoshida M. Extraocular Photoreception. Comparative Physiology and Evolution of Vision in Invertebrates. Berlin, Heidelberg: Springer; 1979. p. 581–640.
Book
Google Scholar
Yoshida M, Takasu N, Tamotsu S. Photoreception in Echinoderms. In: Photoreception and Vision in Invertebrates. Boston: Springer; 1984. p. 743–71.
Chapter
Google Scholar
Nilsson D-E. Eyes as Optical Alarm Systems in Fan Worms and Ark Clams. Philos Trans R Soc Lond B Biol Sci. 1994;346:195–212.
Article
Google Scholar
Bok MJ, Capa M, Nilsson D-E. Here, There and Everywhere: The Radiolar Eyes of Fan Worms (Annelida, Sabellidae). Integr Comp Biol. 2016;56:784–95.
Article
PubMed
Google Scholar
Garm A, Nilsson D-E. Visual navigation in starfish: first evidence for the use of vision and eyes in starfish. Proc Biol Sci. 2014;281:20133011.
Article
PubMed
PubMed Central
Google Scholar
Petie R, Garm A, Hall MR. Crown-of-thorns starfish have true image forming vision. Front Zool. 2016;13:41.
Article
PubMed
PubMed Central
Google Scholar
Petie R, Hall MR, Hyldahl M, Garm A. Visual orientation by the crown-of-thorns starfish (Acanthaster planci). Coral Reefs. 2016;35:1139–50.
Article
Google Scholar
Vogler C, Benzie J, Lessios H, Barber P, Wörheide G. A threat to coral reefs multiplied? Four species of crown-of-thorns starfish. Biol Lett. 2008;4:696–9.
Article
PubMed
PubMed Central
Google Scholar
Haszprunar G, Vogler C, Wörheide G. Persistent Gaps of Knowledge for Naming and Distinguishing Multiple Species of Crown-of-Thorns-Seastar in the Acanthaster planci Species Complex. Diversity. Multidisciplinary Digital Publishing Institute. 2017;9:22.
Article
Google Scholar
Hall MR, Kocot KM, Baughman KW, Fernandez-Valverde SL, Gauthier MEA, Hatleberg WL, et al. The crown-of-thorns starfish genome as a guide for biocontrol of this coral reef pest. Nature. 2017;544:231–4.
CAS
PubMed
Google Scholar
Arendt D. Evolution of eyes and photoreceptor cell types. Int J Dev Biol. ijdb.ehu.es. 2003;47:563–71.
PubMed
Google Scholar
Thomas PD, Campbell MJ, Kejariwal A, Mi H, Karlak B, Daverman R, et al. PANTHER: a library of protein families and subfamilies indexed by function. Genome Res. 2003;13:2129–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, et al. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol. academic.oup.com. 2012;61:539–42.
Article
PubMed
PubMed Central
Google Scholar
Minh BQ, Nguyen MAT, von Haeseler A. Ultrafast approximation for phylogenetic bootstrap. Mol Biol Evol. 2013;30:1188–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods. 2017;14:417–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.
Article
PubMed
PubMed Central
CAS
Google Scholar
Terakita A. The opsins. Genome Biol. 2005;6:213.
Article
PubMed
PubMed Central
Google Scholar
Karnik SS, Khorana HG. Assembly of functional rhodopsin requires a disulfide bond between cysteine residues 110 and 187. J Biol Chem. 1990;265:17520–4.
CAS
PubMed
Google Scholar
Hering L, Mayer G. Analysis of the opsin repertoire in the tardigrade Hypsibius dujardini provides insights into the evolution of opsin genes in panarthropoda. Genome Biol Evol. 2014;6:2380–91.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mah C, Foltz D. Molecular phylogeny of the Valvatacea (Asteroidea: Echinodermata). Zool J Linn Soc. Blackwell Publishing Ltd. 2011;161:769–88.
Article
Google Scholar
Kos M, Bulog B, Szél A, Röhlich P. Immunocytochemical demonstration of visual pigments in the degenerate retinal and pineal photoreceptors of the blind cave salamander (Proteus anguinus). Cell Tissue Res. 2001;303:15–25.
Article
CAS
PubMed
Google Scholar
Plachetzki DC, Serb JM, Oakley TH. New insights into the evolutionary history of photoreceptor cells. Trends Ecol Evol. 2005;20:465–7.
Article
PubMed
Google Scholar
Arendt D, Tessmar-Raible K, Snyman H, Dorresteijn AW, Wittbrodt J. Ciliary photoreceptors with a vertebrate-type opsin in an invertebrate brain. Science. 2004;306:869–71.
Article
CAS
PubMed
Google Scholar
Aken BL, Achuthan P, Akanni W, Amode MR, Bernsdorff F, Bhai J, et al. Ensembl 2017. Nucleic Acids Res. 2017;45:D635–42.
Article
CAS
PubMed
Google Scholar
Cameron RA, Samanta M, Yuan A, He D, Davidson E. SpBase: the sea urchin genome database and web site. Nucleic Acids Res. 2009;37:D750–4.
Article
CAS
PubMed
Google Scholar
Lesser MP, Carleton KL, Böttger SA, Barry TM, Walker CW. Sea urchin tube feet are photosensory organs that express a rhabdomeric-like opsin and PAX6. Proc Biol Sci. 2011;278:3371–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhao C, Ji N, Tian X, Feng W, Sun P, Wei J, et al. Opsin4, Opsin5, and Pax6 significantly increase their expression in recently settled juveniles of the sea urchinStrongylocentrotus intermedius(Echinodermata: Echinoidea). Invertebr Reprod Dev. 2015;59:119–23.
Article
CAS
Google Scholar
Delroisse J, Lanterbecq D, Eeckhaut I, Mallefet J, Flammang P. Opsin detection in the sea urchin Paracentrotus lividus and the sea star Asterias rubens. Cah Biol Mar. 2013;54:721–7.
Google Scholar
Hao W, Fong HK. The endogenous chromophore of retinal G protein-coupled receptor opsin from the pigment epithelium. J Biol Chem. 1999;274:6085–90.
Article
CAS
PubMed
Google Scholar
Hara T, Hara R. Regeneration of squid retinochrome. Nature. 1968;219:450–4.
Article
CAS
PubMed
Google Scholar
Nagata T, Koyanagi M, Tsukamoto H, Terakita A. Identification and characterization of a protostome homologue of peropsin from a jumping spider. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. Springer. 2010;196:51–9.
Article
CAS
PubMed
Google Scholar
Chen P, Hao W, Rife L, Wang XP, Shen D, Chen J, et al. A photic visual cycle of rhodopsin regeneration is dependent on Rgr. Nat Genet. 2001;28:256–60.
Article
CAS
PubMed
Google Scholar
Koyanagi M, Terakita A, Kubokawa K, Shichida Y. Amphioxus homologs of Go-coupled rhodopsin and peropsin having 11-cis- and all-trans-retinals as their chromophores. FEBS Lett. 2002;531:525–8.
Article
CAS
PubMed
Google Scholar
Dowling JE. Chemistry of visual adaptation in the rat. Nature. 1960;188:114–8.
Article
CAS
PubMed
Google Scholar
Bailey MJ, Cassone VM. Opsin photoisomerases in the chick retina and pineal gland: characterization, localization, and circadian regulation. Invest Ophthalmol Vis Sci. 2004;45:769–75.
Article
PubMed
Google Scholar
Kojima D, Terakita A, Ishikawa T, Tsukahara Y, Maeda A, Shichida YA. Novel Go-mediated Phototransduction Cascade in Scallop Visual Cells. J Biol Chem. 1997;272:22979–82.
Article
CAS
PubMed
Google Scholar
Arenas O, Osorno T, Malagón G, Pulido C, Gomez MDP, Nasi E. Molecular and functional identification of a novel photopigment in ciliary photoreceptors. J Gen Physiol. 2018; Available from. https://doi.org/10.1085/jgp.201711938.
Article
PubMed Central
PubMed
Google Scholar
Gühmann M, Jia H, Randel N, Verasztó C, Bezares-Calderón LA, Michiels NK, et al. Spectral Tuning of Phototaxis by a Go-Opsin in the Rhabdomeric Eyes of Platynereis. Curr Biol. 2015;25:2265–71.
Article
PubMed
CAS
Google Scholar
Tsukamoto H, Terakita A, Shichida Y. A rhodopsin exhibiting binding ability to agonist all-trans-retinal. Proc Natl Acad Sci U S A. 2005;102:6303–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li B, Ruotti V, Stewart RM, Thomson JA, Dewey CN. RNA-Seq gene expression estimation with read mapping uncertainty. Bioinformatics. 2010;26:493–500.
Article
PubMed
CAS
Google Scholar
Smith-Unna RD, Boursnell C, Patro R, Hibberd JM, Kelly S. TransRate: reference free quality assessment of de-novo transcriptome assemblies [Internet]. 2015. Available from: https://doi.org/10.1101/021626.
Google Scholar
Ooka S, Katow T, Yaguchi S, Yaguchi J, Katow H. Spatiotemporal expression pattern of an encephalopsin orthologue of the sea urchin Hemicentrotus pulcherrimus during early development, and its potential role in larval vertical migration. Dev Growth Differ. 2010;52:195–207.
Article
CAS
PubMed
Google Scholar
Cannon JT, Kocot KM, Waits DS, Weese DA, Swalla BJ, Santos SR, et al. Phylogenomic resolution of the hemichordate and echinoderm clade. Curr Biol. 2014;24:2827–32.
Article
CAS
PubMed
Google Scholar
Mashanov VS, Zueva OR, García-Arrarás JE. Transcriptomic changes during regeneration of the central nervous system in an echinoderm. BMC Genomics. 2014;15:357.
Article
PubMed
PubMed Central
CAS
Google Scholar
Elphick MR, Semmens DC, Blowes LM, Levine J, Lowe CJ, Arnone MI, et al. Reconstructing SALMFamide Neuropeptide Precursor Evolution in the Phylum Echinodermata: Ophiuroid and Crinoid Sequence Data Provide New Insights. Front Endocrinol. 2015;6:2.
Article
Google Scholar
Freeman RM Jr, Wu M, Cordonnier-Pratt M-M, Pratt LH, Gruber CE, Smith M, et al. cDNA sequences for transcription factors and signaling proteins of the hemichordate Saccoglossus kowalevskii: efficacy of the expressed sequence tag (EST) approach for evolutionary and developmental studies of a new organism. Biol Bull. 2008;214:284–302.
Article
CAS
PubMed
Google Scholar
Hall MD, Hoon MA, Ryba NJ, Pottinger JD, Keen JN, Saibil HR, et al. Molecular cloning and primary structure of squid (Loligo forbesi) rhodopsin, a phospholipase C-directed G-protein-linked receptor. Biochem J. 1991;274(Pt 1):35–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hara-Nishimura I, Kondo M, Nishimura M, Hara R, Hara T. Cloning and nucleotide sequence of cDNA for rhodopsin of the squid Todarodes pacificus. FEBS Lett. 1993;317:5–11.
Article
CAS
PubMed
Google Scholar
Carulli JP, Hartl DL. Variable rates of evolution among Drosophila opsin genes. Genetics. 1992;132:193–204.
CAS
PubMed
PubMed Central
Google Scholar
Chou WH, Hall KJ, Wilson DB, Wideman CL, Townson SM, Chadwell LV, et al. Identification of a novel Drosophila opsin reveals specific patterning of the R7 and R8 photoreceptor cells. Neuron. 1996;17:1101–15.
Article
CAS
PubMed
Google Scholar
Okano T, Kojima D, Fukada Y, Shichida Y, Yoshizawa T. Primary structures of chicken cone visual pigments: vertebrate rhodopsins have evolved out of cone visual pigments. Proc Natl Acad Sci U S A. 1992;89:5932–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun H, Gilbert DJ, Copeland NG, Jenkins NA, Nathans J. Peropsin, a novel visual pigment-like protein located in the apical microvilli of the retinal pigment epithelium. Proc Natl Acad Sci U S A. 1997;94:9893–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tao L, Shen D, Pandey S, Hao W, Rich KA, Fong HK. Structure and developmental expression of the mouse RGR opsin gene. Mol Vis. 1998;4:25.
CAS
PubMed
Google Scholar
Provencio I, Rodriguez IR, Jiang G, Hayes WP, Moreira EF, Rollag MD. A novel human opsin in the inner retina. J Neurosci Soc Neuroscience. 2000;20:600–5.
Article
CAS
Google Scholar
Kasper G, Taudien S, Staub E, Mennerich D, Rieder M, Hinzmann B, et al. Different structural organization of the encephalopsin gene in man and mouse. Gene. 2002;295:27–32.
Article
CAS
PubMed
Google Scholar
Sakami S, Kolesnikov AV, Kefalov VJ, Palczewski K. P23H opsin knock-in mice reveal a novel step in retinal rod disc morphogenesis. Hum Mol Genet. 2014;23:1723–41.
Article
CAS
PubMed
Google Scholar
Arendt D, Tessmar K, de Campos-Baptista M-IM, Dorresteijn A, Wittbrodt J. Development of pigment-cup eyes in the polychaete Platynereis dumerilii and evolutionary conservation of larval eyes in Bilateria. Development. 2002;129:1143–54.
CAS
PubMed
Google Scholar
NCBI Resource Coordinators. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2016;44:D7–19.
Article
CAS
Google Scholar
Katoh K. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–66.
Article
CAS
PubMed
PubMed Central
Google Scholar
Katoh K, Standley DM. MAFFT: Iterative Refinement and Additional Methods. Methods in Molecular Biology. 2013:131–46.
Thompson JD, Linard B, Lecompte O, Poch O. A comprehensive benchmark study of multiple sequence alignment methods: current challenges and future perspectives. PLoS One. 2011;6:e18093.
Article
CAS
PubMed
PubMed Central
Google Scholar
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–3.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74.
Article
CAS
PubMed
Google Scholar
Anisimova M, Gil M, Dufayard J-F, Dessimoz C, Gascuel O. Survey of branch support methods demonstrates accuracy, power, and robustness of fast likelihood-based approximation schemes. Syst Biol. 2011;60:685–99.
Article
PubMed
PubMed Central
Google Scholar
Morariu VI, Srinivasan BV, Raykar VC, Duraiswami R, Davis LS. Automatic online tuning for fast Gaussian summation. In: Koller D, Schuurmans D, Bengio Y, Bottou L, editors. Advances in Neural Information Processing Systems 21: Curran Associates, Inc; 2009. p. 1113–20.
Cai K, Klein-Seetharaman J, Hwa J, Hubbell WL, Khorana HG. Structure and function in rhodopsin: effects of disulfide cross-links in the cytoplasmic face of rhodopsin on transducin activation and phosphorylation by rhodopsin kinase. Biochemistry. 1999;38:12893–8.
Article
CAS
PubMed
Google Scholar
Haskell-Luevano C, Cone RD, Monck EK, Wan YP. Structure activity studies of the melanocortin-4 receptor by in vitro mutagenesis: identification of agouti-related protein (AGRP), melanocortin agonist and synthetic peptide antagonist interaction determinants. Biochemistry. 2001;40:6164–79.
Article
CAS
PubMed
Google Scholar
Fritze O, Filipek S, Kuksa V, Palczewski K, Hofmann KP, Ernst OP. Role of the conserved NPxxY(x)5,6F motif in the rhodopsin ground state and during activation. Proc Natl Acad Sci USA. 2003;100:2290–5.
Article
CAS
Google Scholar