Tschöpe O, Macklin JA, Morris RA, Suhrbier L, Berendsohn WG. Annotating biodiversity data via the internet. Taxon. 2013; 62(6):1248–58.
Article
Google Scholar
Duckworth WD, Genoways HH, Rose CL, Association of Systematics Collections, National Institute for the Conservation of Cultural Property (U.S.), Society for the Preservation of Natural History Collections, Conservation and Preservation of Natural Science Collections Project. Preserving natural science collections : chronicle of our environmental heritage. Washington: National Institute for the Conservation of Cultural Property; 1993. http://trove.nla.gov.au/work/11372763.
Google Scholar
Thiers B. Index Herbariorum: a global directory of public herbaria and associated staff. 2017. http://sweetgum.nybg.org/science/ih/. Accessed 1 June 2017.
Ellwood ER, Dunckel BA, Flemons P, Guralnick R, Nelson G, Newman G, Newman S, Paul D, Riccardi G, Rios N, Seltmann KC, Mast AR. Accelerating the digitization of biodiversity research specimens through online public participation. BioScience. 2015; 65(4):383. doi:10.1093/biosci/biv005.
Article
Google Scholar
iDigBio. 2017. https://www.idigbio.org/. Accessed 1 June 2017.
Suhrbier L, Kusber WH, Tschöpe O, Güntsch A, Berendsohn WG. Annosys—implementation of a generic annotation system for schema-based data using the example of biodiversity collection data. Database. 2017; 2017(1):bax018.
Article
PubMed Central
Google Scholar
Mononen T, Tegelberg R, Sääskilahti M, Huttunen M, Tähtinen M, Saarenmaa H, et al. Digiweb-a workflow environment for quality assurance of transcription in digitization of natural history collections. Biodivers Inform. 2014; 9(1):18–29. doi:10.17161/bi.v9i1.4748, https://journals.ku.edu/jbi/article/view/4748.
Google Scholar
Bebber DP, Carine MA, Wood JR, Wortley AH, Harris DJ, Prance GT, Davidse G, Paige J, Pennington TD, Robson NK, et al.Herbaria are a major frontier for species discovery. Proc Natl Acad Sci. 2010; 107(51):22169–71.
Article
CAS
PubMed
PubMed Central
Google Scholar
Page LM, MacFadden BJ, Fortes JA, Soltis PS, Riccardi G. Digitization of biodiversity collections reveals biggest data on biodiversity. BioScience. 2015; 65(9):841. doi:10.1093/biosci/biv104.
Article
Google Scholar
Goodfellow I, Bengio Y, Courville A. Deep Learning: MIT Press; 2016. http://www.deeplearningbook.org.
Unger J, Merhof D, Renner S. Computer vision applied to herbarium specimens of german trees: testing the future utility of the millions of herbarium specimen images for automated identification. BMC Evol Biol. 2016; 16(1):248. [Online]. Available: http://dx.doi.org/10.1186/s12862-016-0827-5.
Article
PubMed
PubMed Central
Google Scholar
Gaston KJ, O’Neill MA. Automated species identification: why not?Philos Trans R Soc Lond B Biol Sci. 2004; 359(1444):655–67.
Article
PubMed
PubMed Central
Google Scholar
Casanova D, de Mesquita Sa Junior JJ, Bruno OM. Plant leaf identification using gabor wavelets. Int J Imaging Syst Technol. 2009; 19(3):236–43.
Article
Google Scholar
Goëau H, Joly A, Bonnet P, Bakic V, Barthélémy D, Boujemaa N, Molino J-F. Thes imageclef plant identification task 2013. In: Proceedings of the 2nd ACM international workshop on Multimedia analysis for ecological data. New York: ACM: 2013. p. 23–8. doi:10.1145/2509896.2509902.
Google Scholar
Yanikoglu B, Aptoula E, Tirkaz C. Automatic plant identification from photographs. Mach Vis Appl. 2014; 25(6):1369–83.
Article
Google Scholar
Joly A, Goëau H, Bonnet P, Bakić V, Barbe J, Selmi S, Yahiaoui I, Carré J, Mouysset E, Molino JF, et al.Interactive plant identification based on social image data. Ecol Inform. 2014; 23:22–34.
Article
Google Scholar
Joly A, Goëau H, Glotin H, Spampinato C, Bonnet P, Vellinga W-P, Planqué R, Rauber A, Palazzo S, Fisher B, Müller H. Lifeclef 2015: multimedia life species identification challenges. In: CLEF: Conference and Labs of the Evaluation forum. Toulouse: Springer: 2015. p. 462–83. https://hal.inria.fr/hal-01182782.
Google Scholar
Lee SH, Chan CS, Wilkin P, Remagnino P. Deep-plant: Plant identification with convolutional neural networks. In: 2015 IEEE International Conference on Image Processing (ICIP). Quebec City: IEEE: 2015. p. 452–6. doi:10.1109/ICIP.2015.7350839.
Google Scholar
Wilf P, Zhang S, Chikkerur S, Little SA, Wing SL, Serre T. Computer vision cracks the leaf code. Proc Natl Acad Sci. 2016; 113(12):3305–10. [Online]. Available: http://www.pnas.org/content/113/12/3305.abstract.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wäldchen J, Mäder P. Plant species identification using computer vision techniques: A systematic literature review. Arch Comput Methods Eng. 2017;1–37.
Kumar N, Belhumeur PN, Biswas A, Jacobs DW, Kress WJ, Lopez IC, Soares JVB. Leafsnap: A computer vision system for automatic plant species identification In: Fitzgibbon A, Lazebnik S, Perona P, Sato Y, Schmid C, editors. Computer Vision – ECCV 2012: 12th European Conference on Computer Vision, Proceedings, Part II. Berlin: Springer: 2012. p. 502–16. doi:10.1007/978-3-642-33709-3_36.
Google Scholar
Cerutti G, Tougne L, Mille J, Vacavant A, Coquin D. Understanding leaves in natural images–a model-based approach for tree species identification. Comp Vision Image Underst. 2013; 117(10):1482–501.
Article
Google Scholar
Joly A, Bonnet P, Goëau H, Barbe J, Selmi S, Champ J, Dufour-Kowalski S, Affouard A, Carré J, Molino JF, et al. A look inside the pl@ntnet experience. Multimedia Systems. 2016; 22(6):751–66.
Article
Google Scholar
Thiers BM, Tulig MC, Watson KA. Digitization of the new york botanical garden herbarium. Brittonia. 2016; 68(3):324–33. [Online]. Available: http://dx.doi.org/10.1007/s12228-016-9423-7.
Article
Google Scholar
Wijesingha D, Marikar F. Automatic Detection System for the Identification of Plants Using Herbarium Specimen Images. Trop Agric Res. 2012; 23(1):42–50. [Online]. Available: http://www.sljol.info/index.php/TAR/article/view/4630.
Article
Google Scholar
Corney D, Clark JY, Tang HL, Wilkin P. Automatic extraction of leaf characters from herbarium specimens. Taxon. 2012; 61(1):231–44.
Google Scholar
Tomaszewski D, Górzkowska A. Is shape of a fresh and dried leaf the same?. PloS ONE. 2016; 11(4):e0153071.
Article
PubMed
PubMed Central
Google Scholar
Yosinski J, Clune J, Bengio Y, Lipson H. How transferable are features in deep neural networks? In: Ghahramani Z, Welling M, Cortes C, Lawrence ND, Weinberger KQ, editors. Advances in neural information processing systems 27. New York: Curran Associates, Inc.: 2014. p. 3320–8.
Google Scholar
LeCun Y, Bengio Y, et al.Convolutional networks for images, speech, and time series. Handb Brain Theory Neural Netw. 1995; 3361(10):1995.
Google Scholar
Joly A, Goëau H, Champ J, Dufour-Kowalski S, Müller H, Bonnet P. Crowdsourcing biodiversity monitoring: how sharing your photo stream can sustain our planet. In: ACM Multimedia 2016. Amsterdam: ACM: 2016. p. 958–67. https://hal.inria.fr/hal-01373762.
Google Scholar
Goëau H, Bonnet P, Joly A. LifeCLEF Plant Identification Task 2015. In: CLEF: Conference and Labs of the Evaluation forum, ser. CLEF2015 Working notes. CEUR-WS. Toulouse: 2015. [Online]. Available: https://hal.inria.fr/hal-01182795.
Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. In: Proceedings of the 25th International Conference on Neural Information Processing Systems. USA: Curran Associates Inc.: 2012. p. 1097–105. http://dl.acm.org/citation.cfm?id=2999134.2999257.
Google Scholar
Goëau H, Bonnet P, Joly A. Plant identification in an open-world (lifeclef 2016). In: CLEF 2016 - Conference and Labs of the Evaluation forum. Évora: 2016. p. 428–39. https://hal.archives-ouvertes.fr/hal-01373780.
Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A. Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston: IEEE Conference: 2015. p. 1–9. doi:10.1109/CVPR.2015.7298594.
Google Scholar
Ioffe S, Szegedy C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. CoRR. 2015. abs/1502.03167. [Online]. Available http://arxiv.org/abs/1502.03167.
He K, Zhang X, Ren S, Sun J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. CoRR. 2015. abs/1502.01852. [Online]. Available http://arxiv.org/abs/1502.01852.
Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T. Caffe: Convolutional architecture for fast feature embedding. In: Proceedings of the 22Nd ACM International Conference on Multimedia. New York: ACM: 2014. p. 675–8. doi:10.1145/2647868.2654889.
Google Scholar
Mata-Montero E, Carranza-Rojas J. Automated plant species identification: Challenges and opportunities In: Mata FJ, Pont A, editors. 6th IFIP World Information Technology Forum (WITFOR). San José: Springer: 2016. p. 26–36. https://hal.inria.fr/hal-01429753.
Google Scholar
Mata-Montero E, Carranza-Rojas J. A texture and curvature bimodal leaf recognition model for identification of costa rican plant species. In: 2015 Latin American Computing Conference (CLEI). Arequipa: IEEE: 2015. p. 1–12. doi:10.1109/CLEI.2015.7360026.
Google Scholar
Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla A, Bernstein M, Berg AC, Fei-Fei L. ImageNet Large Scale Visual Recognition Challenge. Int J Comput Vis (IJCV). 2015; 115(3):211–52.
Article
Google Scholar
Nicolson N, Challis K, Tucker A, Knapp S. Impact of e-publication changes in the international code of nomenclature for algae, fungi and plants (melbourne code, 2012)-did we need to “run for our lives”?BMC Evol Biol. 2017; 17(1):116.
Article
PubMed
PubMed Central
Google Scholar