Linder HP. Plant species radiations: where, when, why? Philos Trans R Soc Lond Ser B Biol Sci. 2008;363:3097–105.
Article
Google Scholar
Zanne AE, Tank DC, Cornwell WK, Eastman JM, Smith SA, FitzJohn RG, et al. Three keys to the radiation of angiosperms into freezing environments. Nature. 2014;506:89–92. doi:10.1038/nature12872.
Article
CAS
PubMed
Google Scholar
Hughes CE, Atchison GW. The ubiquity of alpine plant radiations: from the Andes to the Hengduan Mountains. New Phytol. 2015;207:275–82.
Article
PubMed
Google Scholar
Kohler T, Maselli D, editors. Mountains and climate change: From understanding to action. Bern: CDE; 2009.
Google Scholar
Barthlott W, Mutke J, Rafiqpoor D, Kier G, Kreft H. Global centers of vascular plant diversity. Nova Acta Leopold. 2005;92:61–83.
Google Scholar
Spehn EM, Rudmann-Maurer K, Körner C. Mountain biodiversity. Plant Ecol Divers. 2011;4:301–2. doi:10.1080/17550874.2012.698660.
Article
Google Scholar
Körner C. Mountain Biodiversity, its causes and function. Ambio Spec Rep. 2004:11–7.
Luebert F, Muller LAH. Effects of mountain formation and uplift on biological diversity. Front Genet. 2015;6:54. doi:10.3389/fgene.2015.00054.
Article
PubMed
PubMed Central
Google Scholar
Wen J, Zhang J, Nie Z, Zhong Y, Sun H. Evolutionary diversifications of plants on the Qinghai-Tibetan Plateau. Front Genet. 2014; doi:10.3389/fgene.2014.00004.
Hughes C, Eastwood R. Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. Proc Natl Acad Sci U S A. 2006;103:10334–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Winkworth R. Evolution of the New Zealand mountain flora: Origins, diversification and dispersal. Org Divers Evol. 2005;5:237–47. doi:10.1016/j.ode.2004.12.001.
Article
Google Scholar
Uribe-Convers S, Tank DC. Shifts in diversification rates linked to biogeographic movement into new areas: An example of a recent radiation in the Andes. Am J Bot. 2015;102:1854–69. doi:10.3732/ajb.1500229.
Article
CAS
PubMed
Google Scholar
Hoorn C, Mosbrugger V, Mulch A, Antonelli A. Biodiversity from mountain building. Nat Geosci. 2013;6:154. doi:10.1038/ngeo1742.
Article
CAS
Google Scholar
Renner SS. Available data point to a 4-km-high Tibetan Plateau by 40 Ma, but 100 molecular-clock papers have linked supposed recent uplift to young node ages. J Biogeogr. 2016;
Favre A, Päckert M, Pauls SU, Jähnig SC, Uhl D, Michalak I, et al. The role of the uplift of the Qinghai-Tibetan Plateau for the evolution of Tibetan biotas. Biol Rev Camb Philos Soc. 2015;90:236–53. doi:10.1111/brv.12107.
Article
PubMed
Google Scholar
Nürk NM, Uribe-Convers S, Gehrke B, Tank DC, Blattner FR. Oligocene niche shift, Miocene diversification – cold tolerance and accelerated speciation rates in the St. John’s Worts (Hypericum, Hypericaceae). BMC Evol Biol. 2015;15:190. doi:10.1186/s12862-015-0359-4.
Article
Google Scholar
Wang L, Schneider H, Zhang X, Xiang Q. The rise of the Himalaya enforced the diversification of SE Asian ferns by altering the monsoon regimes. BMC Plant Biol. 2012;12:210. doi:10.1186/1471-2229-12-210.
Article
PubMed
PubMed Central
Google Scholar
Nagy L, Grabherr G. The biology of alpine habitats. Oxford: Oxford University Press; 2009.
Google Scholar
Simões M, Breitkreuz L, Alvarado M, Baca S, Cooper JC, Heins L, et al. The evolving theory of evolutionary radiations. Trends Ecol Evol. 2016;31:27–34. doi:10.1016/j.tree.2015.10.007.
Article
PubMed
Google Scholar
Hodges SA, Arnold ML. Spurring plant diversification: Are floral nectar spurs a key innovation? Proc R Soc B. 1995;262:343–8.
Article
Google Scholar
Schwery O, Onstein RE, Bouchenak-Khelladi Y, Xing Y, Carter RJ, Linder HP. As old as the mountains: the radiations of the Ericaceae. New Phytol. 2015;207:355–67. doi:10.1111/nph.13234.
Article
PubMed
Google Scholar
Boucher FC, Thuiller W, Roquet C, Douzet R, Aubert S, Alvarez N, et al. Reconstructing the origins of high-alpine niches and cushion life form in the genus Androsace s.l. (Primulaceae). Evolution. 2012;66:1255–68. doi:10.1111/j.1558-5646.2011.01483.x.
Article
PubMed
Google Scholar
Matuszak S, Favre A, Schnitzler J, Muellner-Riehl AN. Key innovations and climatic niche divergence as drivers of diversification in subtropical Gentianinae in southeastern and eastern Asia. Am J Bot. 2016;103:899–911. doi:10.3732/ajb.1500352.
Article
CAS
PubMed
Google Scholar
Lagomarsino LP, Condamine FL, Antonelli A, Mulch A, Davis CC. The abiotic and biotic drivers of rapid diversification in Andean bellflowers (Campanulaceae). New Phytol. 2016;210:1430–42. doi:10.1111/nph.13920.
Article
PubMed
PubMed Central
Google Scholar
Vargas P. A phylogenetic study of Saxifraga sect.Saxifraga (Saxifragaceae) based on nrDNA ITS sequences. Plant Syst Evol. 2000;223:59–70.
Article
CAS
Google Scholar
Tkach N, Röser M, Miehe G, Muellner-Riehl AN, Ebersbach J, Favre A, Hoffmann MH. Molecular phylogenetics, morphology and a revised classification of the complex genus Saxifraga (Saxifragaceae). Taxon. 2015:1159–87. doi:10.12705/646.4.
Xu B, Li Z, Sun H. Plant diversity and floristic characters of the alpine subnival belt flora in the Hengduan Mountains, SW China. J Syst Evol. 2014;52:271–9. doi:10.1111/jse.12037.
Article
Google Scholar
Soltis DE, Kuzoff RK, Conti E, Gornall RJ, Ferguson IK. matK and rbcL gene sequence data indicate that Saxifraga (Saxifragaceae) is polyphyletic. Am J Bot. 1996;83:371–82.
Article
CAS
Google Scholar
Prieto JAF, Arjona JM, Sanna M, Perez R, Cires E. Phylogeny and systematics of Micranthes (Saxifragaceae): an appraisal in European territories. J Plant Res. 2013;126:605–11. doi:10.1007/s10265-013-0566-2.
Article
PubMed
Google Scholar
Pan J, Gornall RJ, Ohba H. Saxifraga. In: Wu C, Raven PH, editors. Flora of China: Brassicaceae through Saxifragaceae. St. Louis: Science Press; Missouri Botanical Garden Press; 2001. p. 280–344.
Google Scholar
Ebersbach J, Muellner-Riehl AN, Michalak I, Tkach N, Hoffmann MH, Röser M, et al. In and out of the Qinghai-Tibet Plateau: divergence time estimation and historical biogeography of the large arctic-alpine genus Saxifraga L. J Biogeogr. 2017;44:900–10. doi:10.1111/jbi.12899.
Article
Google Scholar
Gao Q, Li Y, Gornall RJ, Zhang Z, Zhang F, Xing R, et al. Phylogeny and speciation in Saxifraga sect. Ciliatae (Saxifragaceae): Evidence from psbA-trnH, trnL-F and ITS sequences. Taxon. 2015;64:703–13. doi:10.12705/644.3.
Article
Google Scholar
Gornall RJ. An outline of a revised classification of Saxifraga L. Bot J Linn Soc. 1987:273–92.
Beaulieu JM, Donoghue MJ. Fruit evolution and diversification in campanulid angiosperms. Evolution. 2013;67:3132–44. doi:10.1111/evo.12180.
Article
PubMed
Google Scholar
Beaulieu JM, O’Meara BC. Extinction can be estimated from moderately sized molecular phylogenies. Evolution. 2015;69:1036–43. doi:10.1111/evo.12614.
Article
PubMed
Google Scholar
Mitchell JS, Rabosky DL. Bayesian model selection with BAMM: effects of the model prior on the inferred number of diversification shifts. Methods Ecol Evol. 2017;8:37–46.
Article
Google Scholar
Favre A, Michalak I, Chen C, Wang J, Pringle JS, Matuszak S, et al. Out-of-Tibet: The spatio-temporal evolution of Gentiana (Gentianaceae). J Biogeogr. 2016. doi:10.1111/jbi.12840.
Jabbour F, Renner SS. A phylogeny of Delphinieae (Ranunculaceae) shows that Aconitum is nested within Delphinium and that Late Miocene transitions to long life cycles in the Himalayas and Southwest China coincide with bursts in diversification. Mol Phylogenet Evol. 2012;62:928–42. doi:10.1016/j.ympev.2011.12.005.
Article
PubMed
Google Scholar
Drummond CS, Eastwood RJ, Miotto STS, Hughes CE. Multiple continental radiations and correlates of diversification in Lupinus (Leguminosae): Testing for key innovation with incomplete taxon sampling. Syst Biol. 2012;61:443–60. doi:10.1093/sysbio/syr126.
Article
PubMed
PubMed Central
Google Scholar
von Hagen KB, Kadereit JW. The phylogeny of Gentianella (Gentianaceae) and its colonization of the southern hemisphere as revealed by nuclear and chloroplast DNA sequence variation. Org Divers Evol. 2001;1:61–79. doi:10.1078/1439-6092-00005.
Article
Google Scholar
Rabosky DL. Extinction rates should not be estimated from molecular phylogenies. Evolution. 2010;64:1816–24. doi:10.1111/j.1558-5646.2009.00926.x.
Article
PubMed
Google Scholar
Nee S, Holmes EC, May RM, Harvey PH. Extinction rates can be estimated from molecular phylogenies. Philos Trans R Soc Lond Ser B Biol Sci. 1994;344:77–82. doi:10.1098/rstb.1994.0054.
Article
CAS
Google Scholar
Silvestro D, Schnitzler J, Zizka G. A Bayesian framework to estimate diversification rates and their variation through time and space. BMC Evol Biol. 2011;11:311. doi:10.1186/1471-2148-11-311.
Article
PubMed
PubMed Central
Google Scholar
Xu B, Li Z, Sun H. Seed plants of the alpine subnival belt from the Hengduan Mountains. Southwest China: Science Press; 2014.
Google Scholar
Lippert PC, van Hinsbergen DJ, Dupont-Nivet G. Early Cretaceous to present latitude of the central proto-Tibetan Plateau: A paleomagnetic synthesis with implications for Cenozoic tectonics, paleogeography, and climate of Asia. In: Nie J, Horton BK, Hoke GD, editors. Toward an Improved Understanding of Uplift Mechanisms and the Elevation History of the Tibetan Plateau. Boulder: Geological Society of America; 2014. p. 1–22. doi:10.1130/2014.2507(01).
Google Scholar
Wang P, Scherler D, Liu-Zeng J, Mey J, Avouac J, Zhang Y, et al. Tectonic control of Yarlung Tsangpo Gorge revealed by a buried canyon in Southern Tibet. Science. 2014;346:978–81. doi:10.1126/science.1259041.
Article
CAS
PubMed
Google Scholar
Sun B, Wu J, Liu Y, Ding S, Li X, Xie S, et al. Reconstructing Neogene vegetation and climates to infer tectonic uplift in western Yunnan, China. Palaeogeogr Palaeoclimatol Palaeoecol. 2011;304:328–36. doi:10.1016/j.palaeo.2010.09.023.
Article
Google Scholar
Xing Y, Ree RH. Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot. Proc Natl Acad Sci U S A. 2017; doi:10.1073/pnas.1616063114.
Mosbrugger V, Favre A, Muellner-Riehl AN, Päckert M, Mulch A. Cenozoic Evolution of Geo-Biodiversity in the Tibeto-Himalayan Region. In: Mountains, Climate, and Biodiversity.
Zachos JC, Dickens GR, Zeebe RE. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature. 2008;451:279–83. doi:10.1038/nature06588.
Article
CAS
PubMed
Google Scholar
Zachos JC, Pagani M, Sloan L, Thomas E, Billups K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science. 2001;292:686–93. doi:10.1126/science.1059412.
Article
CAS
PubMed
Google Scholar
Tank DC, Eastman JM, Pennell MW, Soltis PS, Soltis DE, Hinchliff CE, et al. Nested radiations and the pulse of angiosperm diversification: increased diversification rates often follow whole genome duplications. New Phytol. 2015;207:454–67. doi:10.1111/nph.13491.
Article
PubMed
Google Scholar
Nie Z, Wen J, Gu Z, Boufford DE, Sun H. Polyploidy in the flora of the Hengduan Mountains Hotspot, Southwestern China. Ann Mo Bot Gard. 2005;92:275–306.
Google Scholar
Zhang F, Li Y, Gao Q, Lei S, Khan G, Yang H, Chen S. Development and characterization of polymorphic microsatellite loci for Saxifraga egregia (Saxifragaceae). Appl Plant Sci. 2015. doi:10.3732/apps.1500037.
Rubio de Casas R, Mort ME, Soltis DE. The influence of habitat on the evolution of plants: a case study across Saxifragales. Ann Bot. 2016. doi: 10.1093/aob/mcw160.
Bürgel J. Hybridisation in Saxifraga subsection Kabschia (Saxifragaceae) from the Central Himalaya. Phyton. 2007;47:191–204.
Google Scholar
Boucher FC, Lavergne S, Basile M, Choler P, Aubert S. Evolution and biogeography of the cushion life form in angiosperms. Perspect Plant Ecol Evol Syst. 2016;20:22–31. doi:10.1016/j.ppees.2016.03.002.
Article
Google Scholar
Roquet C, Boucher FC, Thuiller W, Lavergne S. Replicated radiations of the alpine genus Androsace (Primulaceae) driven by range expansion and convergent key innovations. J Biogeogr. 2013;40:1874–86. doi:10.1111/jbi.12135.
PubMed
PubMed Central
Google Scholar
Donoghue MJ. Key innovations, convergence, and success: macroevolutionary lessons from plant phylogeny. Paleobiology. 2005;2:77–93.
Article
Google Scholar
Webb DA, Gornall RJ. A Manual of Saxifrages and their cultivation. 1st ed. Portland: Timber Press, Incorporated; 1989.
Google Scholar
Conti E, Soltis DE, Hardig TM, Schneider J. Phylogenetic relationships of the silver saxifrages (Saxifraga, sect. Ligulatae Haworth): implications for the evolution of substrate specificity, life histories, and biogeography. Mol Phylogenet Evol. 1999;13:536–55. doi:10.1006/mpev.1999.0673.
Spriggs EL, Clement WL, Sweeney PW, Madrinan S, Edwards EJ, Donoghue MJ. Temperate radiations and dying embers of a tropical past: the diversification of Viburnum. New Phytol. 2015;207:340–54. doi:10.1111/nph.13305.
Article
PubMed
Google Scholar
Bouchenak-Khelladi Y, Onstein RE, Xing Y, Schwery O, Linder HP. On the complexity of triggering evolutionary radiations. New Phytol. 2015;207:313–26. doi:10.1111/nph.13331.
Article
PubMed
Google Scholar
Revell LJ. phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol Evol. 2012;3:217–23. doi:10.1111/j.2041-210X.2011.00169.x.
Article
Google Scholar
R Core Team. R: A Language and Environment for Statistical. Vienna, R Foundation for Statistical Computing; 2016.
Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol. 2012;29:1969–73. doi:10.1093/molbev/mss075.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rabosky DL. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS One. 2014;9:e89543. doi:10.1371/journal.pone.0089543.
Article
PubMed
PubMed Central
Google Scholar
Rabosky DL, Grundler M, Anderson C, Title P, Shi JJ, BROWN JW, et al. BAMMtools: An R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods Ecol Evol. 2014;5:701–7. doi:10.1111/2041-210X.12199.
Article
Google Scholar
Rabosky DL, Santini F, Eastman J, Smith SA, Sidlauskas B, Chang J, et al. Rates of speciation and morphological evolution are correlated across the largest vertebrate radiation. Nat Commun. 2013;4:1958. doi:10.1038/ncomms2958.
Article
PubMed
Google Scholar
DeChaine EG, Anderson SA, McNew JM, Wendling BM. On the evolutionary and biogeographic history of Saxifraga sect. Trachyphyllum (Gaud.) Koch (Saxifragaceae Juss.). PLoS One. 2013;8:e69814. doi:10.1371/journal.pone.0069814.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Z, Chen S, Gornall RJ. Morphology and anatomy of the exine in Saxifraga (Saxifragaceae). Phytotaxa. 2015;212:105. doi:10.11646/phytotaxa.212.2.1.
Article
Google Scholar
Moore BR, Hohna S, May MR, Rannala B, Huelsenbeck JP. Critically evaluating the theory and performance of Bayesian analysis of macroevolutionary mixtures. Proc Natl Acad Sci U S A. 2016;113:9569–74. doi:10.1073/pnas.1518659113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rabosky DL, Mitchell JS, Chang J. Is BAMM flawed? Theoretical and practical concerns in the analysis of multi-rate diversification models. Syst Biol. 2017. doi:10.1093/sysbio/syx037.
Kass RE, Raftery AE. Bayes Factors. J Am Stat Assoc. 1995;90:773–95. doi:10.1080/01621459.1995.10476572.
Article
Google Scholar
Brouillet L, Elvander PE. Saxifraga. In: Flora of North America Editorial Committee, editor. Flora of North America; 2009. p. 43–166.
Google Scholar
Akiyama S, Gornall RJ. Saxifraga. In: Watson A, et al., editors. Flora of Nepal; 2012. p. 254–303.
Google Scholar
Horný R, Webr KM, Byam-Grounds J. Porophyllum saxifrages. Stamford: Byam-Grounds Publications; 1986.
Google Scholar
FitzJohn RG. Diversitree: Comparative phylogenetic analyses of diversification in R. Methods Ecol Evol. 2012;3:1084–92. doi:10.1111/j.2041-210X.2012.00234.x.
Article
Google Scholar
Burin G, Kissling WD, Guimaraes PR Jr, Sekercioglu CH, Quental TB. Omnivory in birds is a macroevolutionary sink. Nat Commun. 2016;7:11250. doi:10.1038/ncomms11250.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maddison WP, Midford P, Otto SP. Estimating a binary character’s effect on speciation and extinction. Syst Biol. 2007;56:701–10.
Article
PubMed
Google Scholar
Maddison WP, FitzJohn RG. The unsolved challenge to phylogenetic correlation tests for categorical characters. Syst Biol. 2015;64:127–36. doi:10.1093/sysbio/syu070.
Article
PubMed
Google Scholar
Davis MP, Midford PE, Maddison W. Exploring power and parameter estimation of the BiSSE method for analyzing species diversification. BMC Evol Biol. 2013;13:38. doi:10.1186/1471-2148-13-38.
Article
PubMed
PubMed Central
Google Scholar
Rabosky DL, Goldberg EE. Model inadequacy and mistaken inferences of trait-dependent speciation. Syst Biol. 2015;64:340–55. doi:10.1093/sysbio/syu131.
Article
CAS
PubMed
Google Scholar
Goldberg EE, Lancaster LT, Ree RH. Phylogenetic inference of reciprocal effects between geographic range evolution and diversification. Syst Biol. 2011;60:451–65. doi:10.1093/sysbio/syr046.
Article
PubMed
Google Scholar
Boufford DE. Biodiversity Hotspot: China’s Hengduan Mountains. Arnoldia. 2014;72:24–35.
Google Scholar
Akaike H. On the Likelihood of a Time Series Model. Underst Stat. 1978;27:217. doi:10.2307/2988185.
Google Scholar
Engler H, Irmscher E. Saxifragaceae – Saxifraga. In: Engler H, editor. Das Pflanzenreich. Regni vegetabilis conspectus, vol. 1919. Leipzig: Engelmann; 1916. p. 449–709.
Google Scholar