Conti M, Beavo J. Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu Rev Biochem. 2007;76(c):481–511.
Article
CAS
PubMed
Google Scholar
Cote RH. Characteristics of photoreceptor PDE (PDE6): similarities and differences to PDE5. Int J Impot Res. 2004;16:S28–33.
Article
CAS
PubMed
Google Scholar
Nordström K, Larsson TA, Larhammar D. Extensive duplications of phototransduction genes in early vertebrate evolution correlate with block (chromosome) duplications. Genomics. 2004;83:852–72.
Article
PubMed
Google Scholar
Larhammar D, Nordström K, Larsson TA. Evolution of vertebrate rod and cone phototransduction genes. Philos Trans R Soc Lond B Biol Sci. 2009;364:2867–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Muradov H, Boyd KK, Kerov V, Artemyev NO. PDE6 in lamprey Petromyzon marinus: implications for the evolution of the visual effector in vertebrates. Biochemistry. 2007;46:9992–10000.
Article
CAS
PubMed
Google Scholar
Nakatani Y, Takeda H, Kohara Y, Morishita S. Reconstruction of the vertebrate ancestral genome reveals dynamic genome reorganization in early vertebrates. Genome Res. 2007;17:1254–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Putnam NH, Butts T, Ferrier DEK, Furlong RF, Hellsten U, Kawashima T, Robinson-Rechavi M, Shoguchi E, Terry A, Yu J-K, Benito-Gutiérrez EL, Dubchak I, Garcia-Fernàndez J, Gibson-Brown JJ, Grigoriev I V, Horton AC, de Jong PJ, Jurka J, Kapitonov V V, Kohara Y, Kuroki Y, Lindquist E, Lucas S, Osoegawa K, Pennacchio LA, Salamov AA, Satou Y, Sauka-Spengler T, Schmutz J, Shin-I T, et al. The amphioxus genome and the evolution of the chordate karyotype. Nature. 2008;453:1064–71.
Article
CAS
PubMed
Google Scholar
Yuasa K, Kanoh Y, Okumura K, Omori K. Genomic organization of the human phosphodiesterase PDE11A gene. Evolutionary relatedness with other PDEs containing GAF domains. Eur J Biochem. 2001;268:168–78.
Article
CAS
PubMed
Google Scholar
Sundström G, Larsson TA, Larhammar D. Phylogenetic and chromosomal analyses of multiple gene families syntenic with vertebrate Hox clusters. BMC Evol Biol. 2008;8:254.
Article
PubMed
PubMed Central
Google Scholar
Guo L-W, Muradov H, Hajipour AR, Sievert MK, Artemyev NO, Ruoho AE. The inhibitory gamma subunit of the rod cGMP phosphodiesterase binds the catalytic subunits in an extended linear structure. J Biol Chem. 2006;281:15412–22.
Article
CAS
PubMed
Google Scholar
Arshavsky VY, Lamb TD, Pugh EN. G proteins and phototransduction. Annu Rev Physiol. 2002;64:153–87.
Article
CAS
PubMed
Google Scholar
Zhang XJ, Gao XZ, Yao W, Cote RH. Functional mapping of interacting regions of the photoreceptor phosphodiesterase (PDE6) γ-subunit with PDE6 catalytic dimer, transducin, and regulator of G-protein signaling9-1 (RGS9-1). J Biol Chem. 2012;287:26312–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nishiwaki Y, Komori A, Sagara H, Suzuki E, Manabe T, Hosoya T, Nojima Y, Wada H, Tanaka H, Okamoto H, Masai I. Mutation of cGMP phosphodiesterase 6alpha’-subunit gene causes progressive degeneration of cone photoreceptors in zebrafish. Mech Dev. 2008;125:932–46.
Article
CAS
PubMed
Google Scholar
Vihtelic TS, Fadool JM, Gao J, Thornton KA, Hyde DR, Wistow G. Expressed sequence tag analysis of zebrafish eye tissues for NEIBank. Mol Vis. 2005;11:1083–100.
CAS
PubMed
Google Scholar
Larsson TA, Olsson F, Sundstrom G, Lundin L-G, Brenner S, Venkatesh B, Larhammar D. Early vertebrate chromosome duplications and the evolution of the neuropeptide Y receptor gene regions. BMC Evol Biol. 2008;8:184.
Article
PubMed
PubMed Central
Google Scholar
Ocampo Daza D, Sundström G, Bergqvist CA, Larhammar D. The evolution of vertebrate somatostatin receptors and their gene regions involves extensive chromosomal rearrangements. BMC Evol Biol. 2012;12:231.
Article
PubMed
PubMed Central
Google Scholar
Tostivint H, Ocampo Daza D, Bergqvist CA, Quan FB, Bougerol M, Lihrmann I, Larhammar D. Molecular evolution of GPCRs: Somatostatin/urotensin II receptors. J Mol Endocrinol. 2014;52:T61–86.
Article
CAS
PubMed
Google Scholar
Menger GJ, Koke JR, Cahill GM. Diurnal and circadian retinomotor movements in zebrafish. Vis Neurosci. 2005;22:203–9.
Article
PubMed
Google Scholar
Hodel C, Neuhauss SCF, Biehlmaier O. Time course and development of light adaptation processes in the outer zebrafish retina. Anat Rec A: Discov Mol Cell Evol Biol. 2006;288:653–62.
Article
Google Scholar
Schmitt EA, Dowling JE. Early retinal development in the zebrafish, Danio rerio: light and electron microscopic analyses. J Comp Neurol. 1999;404:515–36.
Article
CAS
PubMed
Google Scholar
McCurley AT, Callard GV. Characterization of housekeeping genes in zebrafish: male–female differences and effects of tissue type, developmental stage and chemical treatment. BMC Mol Biol. 2008;9:102.
Article
PubMed
PubMed Central
Google Scholar
Lagman D, Daza DO, Widmark J, Abalo XM, Sundström G, Larhammar D. The vertebrate ancestral repertoire of visual opsins, transducin alpha subunits and oxytocin/vasopressin receptors was established by duplication of their shared genomic region in the two rounds of early vertebrate genome duplications. BMC Evol Biol. 2013;13:238.
Article
PubMed
PubMed Central
Google Scholar
Lagman D, Sundström G, Ocampo Daza D, Abalo XM, Larhammar D. Expansion of Transducin Subunit Gene Families in Early Vertebrate Tetraploidizations. Genomics. 2012;100:203–11.
Article
CAS
PubMed
Google Scholar
Muradov H, Boyd KK, Artemyev NO. Rod phosphodiesterase-6 PDE6A and PDE6B subunits are enzymatically equivalent. J Biol Chem. 2010;285:39828–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang D, Hinds TR, Martinez SE, Doneanu C, Beavo JA. Molecular determinants of cGMP binding to chicken cone photoreceptor phosphodiesterase. J Biol Chem. 2004;279:48143–51.
Article
CAS
PubMed
Google Scholar
Wu DD, Zhang YP. Evolution and function of de novo originated genes. Mol Phylogenet Evol. 2013;67:541–5.
Article
PubMed
Google Scholar
Jeffares DC, Mourier T, Penny D. The biology of intron gain and loss. Trends Genet. 2006;22:16–22.
Article
CAS
PubMed
Google Scholar
da Lage JL, Maczkowiak F, Cariou ML. Phylogenetic distribution of intron positions in alpha-amylase genes of bilateria suggests numerous gains and losses. PLoS One. 2011;6:e19673.
Article
PubMed
PubMed Central
Google Scholar
Kawaguchi M, Hiroi J, Miya M, Nishida M, Iuchi I, Yasumasu S. Intron-loss evolution of hatching enzyme genes in Teleostei. BMC Evol Biol. 2010;10:260.
PubMed
PubMed Central
Google Scholar
Zhou M, Yan J, Ma Z, Zhou Y, Abbood NN, Liu J, Su L, Jia H, Guo AY. Comparative and evolutionary analysis of the HES/HEY gene family reveal exon/intron loss and teleost specific duplication events. PLoS One. 2012;7:e40649.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bellingham J, Tarttelin E, Foster R, Wells DJ. Structure and Evolution of the Teleost Extraretinal Rod-Like Opsin ( errlo ) and Ocular Rod Opsin ( rho ) Genes: Is Teleost rho a Retrogene? J Exp Zool Part B Mol Dev Evol. 2003;297B:1–10.
Article
CAS
Google Scholar
Smith JJ, Antonacci F, Eichler EE, Amemiya CT. Programmed loss of millions of base pairs from a vertebrate genome. Proc Natl Acad Sci U S A. 2009;106:11212–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Renaud CB. Lampreys of the World: An Annotated and Illustrated Catalogue of Lamprey Species Known to Date. Volume 1. 5th ed. 2011.
Google Scholar
Collin SP, Knight MA, Davies WL, Potter IC, Hunt DM, Trezise AEO. Ancient colour vision: multiple opsin genes in the ancestral vertebrates. Curr Biol. 2003;13:R864–5.
Article
CAS
PubMed
Google Scholar
Collin SP, Davies WL, Hart NS, Hunt DM. The evolution of early vertebrate photoreceptors. Philos Trans R Soc Lond B Biol Sci. 2009;364:2925–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lynch M, Conery JS. The evolutionary fate and consequences of duplicate genes. Science. 2000;290:1151–5.
Article
CAS
PubMed
Google Scholar
Lynch M, Force A. The probability of duplicate gene preservation by subfunctionalization. Genetics. 2000;154:459–73.
CAS
PubMed
PubMed Central
Google Scholar
Lamb TD. Evolution of phototransduction, vertebrate photoreceptors and retina. Prog Retin Eye Res. 2013;36:52–119.
Article
CAS
PubMed
Google Scholar
Lagman D, Callado-Pérez A, Franzén IE, Larhammar D, Abalo XM. Transducin Duplicates in the Zebrafish Retina and Pineal Complex: Differential Specialisation after the Teleost Tetraploidisation. PLoS One. 2015;10:e0121330.
Article
PubMed
PubMed Central
Google Scholar
Zang J, Keim J, Kastenhuber E, Gesemann M, Neuhauss SCF. Recoverin depletion accelerates cone photoresponse recovery. Open Biol. 2015;5:150086.
Article
PubMed
PubMed Central
Google Scholar
Renninger SL, Gesemann M, Neuhauss SCF. Cone arrestin confers cone vision of high temporal resolution in zebrafish larvae. Eur J Neurosci. 2011;33:658–67.
Article
PubMed
Google Scholar
Wada Y, Sugiyama J, Okano T, Fukada Y. GRK1 and GRK7: Unique cellular distribution and widely different activities of opsin phosphorylation in the zebrafish rods and cones. J Neurochem. 2006;98:824–37.
Article
CAS
PubMed
Google Scholar
Tamotsu S, Oishi T, Nakao K, Fukada Y, Shichida Y, Yoshizawa T, Morita Y. Localization of iodopsin and rod-opsin immunoreactivity in the retina and pineal complex of the river lamprey, Lampetra japonica. Cell Tissue Res. 1994;278:1–10.
Article
CAS
Google Scholar
Allwardt BA, Dowling JE. The pineal gland in wild-type and two zebrafish mutants with retinal defects. J Neurocytol. 2001;30:493–501.
Article
CAS
PubMed
Google Scholar
Mano H, Kojima D, Fukada Y. Exo-rhodopsin: a novel rhodopsin expressed in the zebrafish pineal gland. Brain Res Mol Brain Res. 1999;73:110–8.
Article
CAS
PubMed
Google Scholar
Rinner O, Makhankov YV, Biehlmaier O, Neuhauss SCF. Knockdown of cone-specific kinase GRK7 in larval zebrafish leads to impaired cone response recovery and delayed dark adaptation. Neuron. 2005;47:231–42.
Article
CAS
PubMed
Google Scholar
Li X, Montgomery J, Cheng W, Noh JH, Hyde DR, Li L. Pineal photoreceptor cells are required for maintaining the circadian rhythms of behavioral visual sensitivity in zebrafish. PLoS One. 2012;7:e40508.
Article
CAS
PubMed
PubMed Central
Google Scholar
Falcón J, Coon SL, Besseau L, Cazaméa-Catalan D, Fuentès M, Magnanou E, Paulin C-H, Boeuf G, Sauzet S, Jørgensen EH, Mazan S, Wolf YI, Koonin EV, Steinbach PJ, Hyodo S, Klein DC. Drastic neofunctionalization associated with evolution of the timezyme AANAT 500 Mya. Proc Natl Acad Sci U S A. 2014;111:314–9.
Article
PubMed
Google Scholar
Van Veen T, Ekström P, Nyberg L. Serotonin and opsin immunoreactivities in the developing pineal organ of the three-spined stickleback, Gasterosteus aculeatus L. Cell Tissue Res. 1984;237:559–64.
Article
PubMed
Google Scholar
Negishi K, Wagner H. Differentiation of photoreceptors, glia, and neurons in the retina of the cichlid fish Aequidens pulcher; an immunocytochemical study. Dev Brain Res. 1995;89:87–102.
Article
CAS
Google Scholar
Forsell J, Holmqvist B, Helvik JV, Ekstrom P. Role of the pineal organ in the photoregulated hatching of the Atlantic halibut. Int J Dev Biol. 1997;41:591–5.
CAS
PubMed
Google Scholar
Easter Jr S, Nicola G. The Development of Vision in the Zebrafish ( Danio rerio). Dev Biol. 1996;663:646–63.
Article
Google Scholar
Halstenberg S, Lindgren KM, Samagh SPS, Nadal-Vicens M, Balt S, Fernald RD. Diurnal rhythm of cone opsin expression in the teleost fish Haplochromis burtoni. Vis Neurosci. 2005;22:135–41.
Article
PubMed
Google Scholar
Li P, Temple S, Gao Y, Haimberger TJ, Hawryshyn CW, Li L. Circadian rhythms of behavioral cone sensitivity and long wavelength opsin mRNA expression: a correlation study in zebrafish. J Exp Biol. 2005;208(Pt 3):497–504.
Article
CAS
PubMed
Google Scholar
Li L, Dowling JE. Zebrafish visual sensitivity is regulated by a circadian clock. Vis Neurosci. 1998;15:851–7.
CAS
PubMed
Google Scholar
Burnside B. Light and circadian regulation of retinomotor movement. Prog Brain Res. 2001;131:477–85. Review.
Article
CAS
PubMed
Google Scholar
Haeri M, Calvert PD, Solessio E, Pugh EN, Knox BE. Regulation of rhodopsin-eGFP distribution in transgenic xenopus rod outer segments by light. PLoS One. 2013;8:e80059.
Article
PubMed
PubMed Central
Google Scholar
Pierce ME, Sheshberadaran H, Zhang Z, Fox LE, Applebury M, Takahashi JS. Circadian Regulation of lodopsin Gene Expression in Embryonic Photoreceptors in ‘ Retinal Cell Cult & e. Neuron. 1993;10:579–84.
Article
CAS
PubMed
Google Scholar
Von Schantz M, Lucas R, Foster R. Circadian oscillation of photopigment transcript levels in the mouse retina. Mol Brain Res. 1999;72:108–14.
Article
Google Scholar
Bobu C, Sandu C, Laurent V, Felder-Schmittbuhl MP, Hicks D. Prolonged light exposure induces widespread phase shifting in the circadian clock and visual pigment gene expression of the Arvicanthis ansorgei retina. Mol Vis. 2013;19:1060–73.
CAS
PubMed
PubMed Central
Google Scholar
Rajendran RR, Van Niel EE, Stenkamp DL, Cunningham LL, Raymond PA, Gonzalez-Fernandez F. Zebrafish interphotoreceptor retinoid-binding protein: differential circadian expression among cone subtypes. J Exp Biol. 1996;199(Pt 12):2775–87.
CAS
PubMed
Google Scholar
Stenkamp DL, Calderwood JL, Van Niel EE, Daniels LM, Gonzalez-Fernandez F. The interphotoreceptor retinoid-binding protein (IRBP) of the chicken (Gallus gallus domesticus). Mol Vis. 2005;11:833–45.
CAS
PubMed
PubMed Central
Google Scholar
Brann MR, Cohen LV. Diumal Expression of Transducin mRNA and Translocation of Transducin in Rods of Rat Retina. Sciencen (80- ). 1987;235:585–7.
Article
CAS
Google Scholar
Burge C, Karlin S. Prediction of Complete Gene Structures in Human Genomic DNA. J Mol Biol. 1997;268:78–94.
Article
CAS
PubMed
Google Scholar
Finn RD, Clements J, Eddy SR. HMMER web server: interactive sequence similarity searching. Nucleic Acids Res. 2011;39(Web Server issue):W29–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gouy M, Guindon S, Gascuel O. SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol Biol Evol. 2010;27:221–4.
Article
CAS
PubMed
Google Scholar
Abascal F, Zardoya R, Posada D. ProtTest: selection of best-fit models of protein evolution. Bioinformatics. 2005;21:2104–5.
Article
CAS
PubMed
Google Scholar
Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. New Algorithms and Methods to Estimate Maximum-Likelihood Phylogenies: Assessing the Performance of PhyML 3.0. Syst Biol. 2010;59:307–21.
Article
CAS
PubMed
Google Scholar
Smyth VA, Di Lorenzo D, Kennedy BN. A novel, evolutionarily conserved enhancer of cone photoreceptor-specific expression. J Biol Chem. 2008;283:10881–91.
Article
CAS
PubMed
Google Scholar
Williams A, Sarkar S, Cuddon P, Ttofi EK, Saiki S, Siddiqi FH, Jahreiss L, Fleming A, Pask D, Goldsmith P, O’Kane CJ, Floto RA, Rubinsztein DC. Novel targets for Huntington’s disease in an mTOR-independent autophagy pathway. Nat Chem Biol. 2008;4:295–305.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ruijter JM, Ramakers C, Hoogaars WMH, Karlen Y, Bakker O, van den Hoff MJB, Moorman AFM. Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucleic Acids Res. 2009;37:e45.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics. 2012;13:134.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hauptmann G, Gerster T. Multicolor whole-mount in situ hybridization. Methods Mol Biol. 2000;137:139–48.
CAS
PubMed
Google Scholar
Hauptmann G. One-, two-, and three-color whole-mount in situ hybridization to Drosophila embryos. Methods. 2001;23:359–72.
Article
CAS
PubMed
Google Scholar
Tarboush R, Novales Flamarique I, Chapman GB, Connaughton VP. Variability in mitochondria of zebrafish photoreceptor ellipsoids. Vis Neurosci. 2014;31:11–23.
Article
CAS
PubMed
Google Scholar
Raymond PA, Barthel LK. A moving wave patterns the cone photoreceptor mosaic array in the zebrafish retina. Int J Dev Biol. 2004;48:935–45.
Article
CAS
PubMed
Google Scholar
Lagman D, Franzén IE, Eggert J, Larhammar D, Abalo XM. Data from: Evolution and expression of the phosphodiesterase 6 genes unveils vertebrate novelty to control photosensitivity. Dryad Digital Repository. 2016. doi:10.5061/dryad.k2f04.
Google Scholar