Zhou SZ, Wang XL, Wang J, Xu LB. A preliminary study on timing of the oldest Pleistocene glaciation in Qinghai Tibetan Plateau. Quatern Int. 2006;154:44–51.
Article
Google Scholar
Su J, Wang Z. Studies on the population energetics of plateau zokor: Average daily metabolic rate and burrowing metabolic rate. Acta Theriol Sin. 1992;12:200–6.
Google Scholar
Yang J, Zhao XQ, Guo SC, Li HG, Qi DL, Wang DP, et al. Leptin cDNA cloning and its mRNA expression in plateau pikas (Ochotona curzoniae) from different altitudes on Qinghai-Tibet Plateau. Biochem Biophys Res Commun. 2006;345(4):1405–13.
Article
PubMed
CAS
Google Scholar
Wang Z, Yonezawa T, Liu B, Ma T, Shen X, Su J, et al. Domestication relaxed selective constraints on the Yak mitochondrial genome. Mol Biol Evol. 2011;28(5):1553–6.
Article
PubMed
CAS
Google Scholar
Qi D, Chao Y, Guo S, Zhao L, Li T, Wei F, et al. Convergent parallel and correlated evolution of trophic morphologies in the subfamily Schizothoracinae from the Qinghai-Tibetan Plateau. PLoS One. 2012;7(3):e34070.
Article
PubMed
CAS
PubMed Central
Google Scholar
Wei DB, Wei L, Zhang JM, Yu HY. Blood-gas properties of plateau zokor (Myospalax baileyi). Comp Biochem Physiol A Mol Integr Physiol. 2006;145(3):372–5.
Article
PubMed
Google Scholar
Xu SQ, Yang YZ, Zhou J, Jing GE, Chen YT, Wang J, et al. A mitochondrial genome sequence of the Tibetan antelope (Pantholops hodgsonii). Genomics Proteomics Bioinformatics. 2005;3(1):5–17.
PubMed
CAS
Google Scholar
Luo Y, Gao W, Gao Y, Tang S, Huang Q, Tan X, et al. Mitochondrial genome analysis of Ochotona curzoniae and implication of cytochrome c oxidase in hypoxic adaptation. Mitochondrion. 2008;8(5–6):352–7.
Article
PubMed
CAS
Google Scholar
Luo Y, Chen Y, Liu F, Gao Y. Mitochondrial genome of Tibetan wild ass (Equus kiang) reveals substitutions in NADH which may reflect evolutionary adaption to cold and hypoxic conditions. Asia Life Sci. 2012;21(1):1–11.
Google Scholar
Lin G, Zhao F, Chen H, Deng X, Su J, Zhang T. Comparative phylogeography of the plateau zokor (Eospalax baileyi) and its host-associated flea (Neopsylla paranoma) in the Qinghai-Tibet Plateau. BMC Evol Biol. 2014;14(1):180.
Article
PubMed
PubMed Central
Google Scholar
Zhang W, Fan Z, Han E, Hou R, Zhang L, Galaverni M, et al. Hypoxia adaptations in the grey wolf (Canis lupus chanco) from Qinghai-Tibet Plateau. PLoS Genet. 2014;10(7):e1004466.
Article
PubMed
PubMed Central
Google Scholar
Li Y, Ren Z, Shedlock AM, Wu J, Sang L, Tersing T, et al. High altitude adaptation of the schizothoracine fishes (Cyprinidae) revealed by the mitochondrial genome analyses. Gene. 2013;517(2):169–78.
Article
PubMed
CAS
Google Scholar
Mirza MR. A contribution to the systematics of the Schizothoracine fishes (Pisces: Cyprinidae) with the description of three new tribes. Pak J Zool. 1991;23:339–41.
Google Scholar
Wu YF. Systematics and taxonomy of the Schizothoracine fishes in China. Acta Biol Plateau Sin. 1984;3:119–39.
Google Scholar
Wu YF, Wu CZ. The Fishes of the Qinghai–Xizang Plateau. Sichuan: Sichuan Publishing House of Science and Technology; 1992.
Google Scholar
Cao WX, Chen YY, Wu YF, Zhu SQ. Origin and evolution of schizothoracine fishes in relation to the upheaval of the Xizang Plateau. In: Tibetan Expedition Team of the Chinese Academy of Science, editor. Studies on the period, Amplitude and Types of the Uplift of the Qinghai-Xizang Plateau. Beijing: Science Press; 1981. p. 118–30.
Google Scholar
Guan L, Chi W, Xiao W, Chen L, He S. Analysis of hypoxia-inducible factor alpha polyploidization reveals adaptation to Tibetan plateau in the evolution of schizothoracine fish. BMC Evol Biol. 2014;14:192.
Article
PubMed
PubMed Central
Google Scholar
Ding R. The fishes of Sichuan, China. Chengdu: Sichuan Publishing House of Science and Technology; 1994. p. 397–406.
Google Scholar
Krantz SB. Erythropoietin. Blood. 1991;77(3):419–34.
PubMed
CAS
Google Scholar
Fried W. Erythropoietin and erythropoiesis. Exp Hematol. 2009;37(9):1007–15.
Article
PubMed
CAS
Google Scholar
Jelkmann W, Wagner K. Beneficial and ominous aspects of the pleiotropic action of erythropoietin. Ann Hematol. 2004;83(11):673–86.
Article
PubMed
CAS
Google Scholar
Ratajczak J, Majka M, Kijowski J, Baj M, Pan ZK, Marquez LA, et al. Biological significance of MAPK, AKT and JAK-STAT protein activation by various erythropoietic factors in normal human early erythroid cells. Br J Haematol. 2001;115(1):195–204.
Article
PubMed
CAS
Google Scholar
Miyake T, Kung CK, Goldwasser E. Purification of human erythropoietin. J Biol Chem. 1977;252(15):5558–64.
PubMed
CAS
Google Scholar
Koury ST, Bondurant MC, Koury MJ. Localization of erythropoietin synthesizing cells in murine kidneys by in situ hybridization. Blood. 1988;71(2):524–7.
PubMed
CAS
Google Scholar
Chou CF, Tohari S, Brenner S, Venkatesh B. Erythropoietin gene from a teleost fish, Fugu rubripes. Blood. 2004;104(5):1498–503.
Article
PubMed
CAS
Google Scholar
Chu CY, Cheng CH, Chen GD, Chen YC, Hung CC, Huang KY, et al. The zebrafish erythropoietin: functional identification and biochemical characterization. FEBS Lett. 2007;581(22):4265–71.
Article
PubMed
CAS
Google Scholar
Paffett-Lugassy N, Hsia N, Fraenkel PG, Paw B, Leshinsky I, Barut B, et al. Functional conservation of erythropoietin signaling in zebrafish. Blood. 2007;110(7):2718–26.
Article
PubMed
CAS
PubMed Central
Google Scholar
Katakura F, Katzenback BA, Belosevic M. Molecular and functional characterization of erythropoietin of the goldfish (Carassius auratus L.). Dev Comp Immunol. 2013;40(2):148–57.
Article
PubMed
CAS
Google Scholar
Richmond TD, Chohan M, Barber DL. Turning cells red: signal transduction mediated by erythropoietin. Trends Cell Biol. 2005;15(3):146–55.
Article
PubMed
CAS
Google Scholar
Semenza GL. HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol. 2000;88(4):1474–80.
PubMed
CAS
Google Scholar
Nikinmaa M, Rees BB. Oxygen-dependent gene expression in fishes. Am J Physiol Regul Integr Comp Physiol. 2005;288(5):R1079–1090.
Article
PubMed
CAS
Google Scholar
Brines M, Patel NS, Villa P, Brines C, Mennini T, De Paola M, et al. Nonerythropoietic, tissue-protective peptides derived from the tertiary structure of erythropoietin. Proc Natl Acad Sci U S A. 2008;105(31):10925–4912.
Article
PubMed
CAS
PubMed Central
Google Scholar
Noguchi CT, Wang L, Rogers HM, Teng R, Jia Y. Survival and proliferative roles of erythropoietin beyond the erythroid lineage. Expert Rev Mol Med. 2008;10:e36.
Article
PubMed
PubMed Central
Google Scholar
Vogel J, Gassmann M. Erythropoietic and non-erythropoietic functions of erythropoietin in mouse models. J Physiol. 2011;589(6):1259–64.
Article
PubMed
CAS
PubMed Central
Google Scholar
Cheetham JC, Smith DM, Aoki KH, Stevenson JL, Hoeffel TJ, Syed RS, et al. NMR structure of human erythropoietin and a comparison with its receptor bound conformation. Nat Struct Biol. 1998;5(10):861–6.
Article
PubMed
CAS
Google Scholar
Yang Z. PAML 4: Phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007;24(8):1586–91.
Article
PubMed
CAS
Google Scholar
Wang X, Lupardus P, Laporte SL, Garcia KC. Structural biology of shared cytokine receptors. Annu Rev Immunol. 2009;27:29–60.
Article
PubMed
PubMed Central
Google Scholar
Sautina L, Sautin Y, Beem E, Zhou Z, Schuler A, Brennan J, et al. Induction of nitric oxide by erythropoietin is mediated by the {beta} common receptor and requires interaction with VEGF receptor 2. Blood. 2010;115(4):896–905.
Article
PubMed
CAS
Google Scholar
Thompson LG, Yao T, Thompson EM, Davis ME, Henderson KA, Lin PN. A high-resolution millennial record of the south asian monsoon from himalayan ice cores. Science. 2000;289(5486):1916–20.
Article
PubMed
CAS
Google Scholar
Bickler PE, Buck LT. Hypoxia tolerance in reptiles, amphibians, and fishes: life with variable oxygen availability. Annu Rev Physiol. 2007;69:145–70.
Article
PubMed
CAS
Google Scholar
Beall CM, Cavalleri GL, Deng L, Elston RC, Gao Y, Knight J, et al. Natural selection on EPAS1 (HIF2alpha) associated with low hemoglobin concentration in Tibetan highlanders. Proc Natl Acad Sci U S A. 2010;107(25):11459–64.
Article
PubMed
CAS
PubMed Central
Google Scholar
Bigham A, Bauchet M, Pinto D, Mao X, Akey JM, Mei R, et al. Identifying signatures of natural selection in Tibetan and Andean populations using dense genome scan data. PLoS Genet. 2010;6(9):e1001116.
Article
PubMed
PubMed Central
Google Scholar
Simonson TS, Yang Y, Huff CD, Yun H, Qin G, Witherspoon DJ, et al. Genetic evidence for high-altitude adaptation in Tibet. Science. 2010;329(5987):72–5.
Article
PubMed
CAS
Google Scholar
Yi X, Liang Y, Huerta-Sanchez E, Jin X, Cuo ZX, Pool JE, et al. Sequencing of 50 human exomes reveals adaptation to high altitude. Science. 2010;329(5987):75–8.
Article
PubMed
CAS
PubMed Central
Google Scholar
Peng Y, Yang Z, Zhang H, Cui C, Qi X, Luo X, et al. Genetic variations in Tibetan populations and highaltitude adaptation at the Himalayas. Mol Biol Evol. 2011;28(2):1075–81.
Article
PubMed
CAS
Google Scholar
Xu S, Li S, Yang Y, Tan J, Lou H, Jin W, et al. A genome-wide search for signals of high-altitude adaptation in Tibetans. Mol Biol Evol. 2011;28(2):1003–11.
Article
PubMed
Google Scholar
Wu T, Kayser B. High altitude adaptation in Tibetans. High Alt Med Biol. 2006;7(3):193–208.
Article
PubMed
Google Scholar
Beall CM. Two routes to functional adaptation: Tibetan and Andean high-altitude natives. Proc Natl Acad Sci U S A. 2007;104 Suppl 1:8655–60.
Article
PubMed
CAS
PubMed Central
Google Scholar
Boissel JP, Lee WR, Presnell SR, Cohen FE, Bunn HF. Erythropoietin structure-function relationships. Mutant proteins that test a model of tertiary structure. J Biol Chem. 1993;268(21):15983–93.
PubMed
CAS
Google Scholar
Fried W, Goldwasser E, Jacobson LO, Plzak LF. Studies on erythropoiesis III. Factors controlling erythropoietin production. Proc Soc Exp Biol Med. 1957;94(1):241–3.
Article
Google Scholar
Wang Z, Chen Y, Yang J, Chen W, Zhang Y, Zhao X. cDNA cloning and expression of erythropoietin in the plateau zokor (Myospalax baileyi) from the Qinghai-Tibet Plateau. Chin Sci Bull. 2012;57(9):997–1006.
Article
CAS
Google Scholar
Wang Z, Zhang Y. Predicted structural change in erythropoietin of plateau zokors adaptation to high altitude. Gene. 2012;501(2):206–12.
Article
PubMed
CAS
Google Scholar
Jelkmann W, Pagel H, Wolff M, Fandrey J. Monokines inhibiting erythropoietin production in human hepatoma cultures and in isolated perfused rat kidneys. Life Sci. 1992;50(4):301–8.
Article
PubMed
CAS
Google Scholar
Rogers HM, Yu X, Wen J, Smith R, Fibach E, Noguchi CT. Hypoxia alters progression of the erythroid program. Exp Hematol. 2008;36(1):17–27.
Article
PubMed
CAS
PubMed Central
Google Scholar
Chateauvieux S, Grigorakaki C, Morceau F, Dicato M, Diederich M. Erythropoietin, erythropoiesis and beyond. Biochem Pharmacol. 2011;82(10):1291–303.
Article
PubMed
CAS
Google Scholar
Ostrowski D, Ehrenreich H, Heinrich R. Erythropoietin promotes survival and regeneration of insect neurons in vivo and in vitro. Neuroscience. 2011;188:95–108.
Article
PubMed
CAS
Google Scholar
Broxmeyer HE. Erythropoietin: multiple targets, actions, and modifying influences for biological and clinical consideration. J Exp Med. 2013;210(2):205–8.
Article
PubMed
CAS
PubMed Central
Google Scholar
Miljus N, Heibeck S, Jarrar M, Micke M, Ostrowski D, Ehrenreich H, et al. Erythropoietin-mediated protection of insect brain neurons involves JAK and STAT but not PI3K transduction pathways. Neuroscience. 2014;258:218–27.
Article
PubMed
CAS
Google Scholar
Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389–402.
Article
PubMed
CAS
PubMed Central
Google Scholar
Bjellqvist B, Hughes GJ, Pasquali C, Paquet N, Ravier F, Sanchez JC, et al. The focusing positions of polypeptides in immobilized pH gradients can be predicted from their amino acid sequences. Electrophoresis. 1993;14:1023–31.
Article
PubMed
CAS
Google Scholar
Bjellqvist B, Basse B, Olsen E, Celis JE. Reference points for comparisons of two-dimensional maps of proteins from different human cell types defined in a pH scale where isoelectric points correlate with polypeptide compositions. Electrophoresis. 1994;15:529–39.
Article
PubMed
CAS
Google Scholar
Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 2011;8(10):785–6.
Article
PubMed
CAS
Google Scholar
De Castro E, Sigrist CJ, Gattiker A, Bulliard V, Langendijk-Genevaux PS, Gasteiger E, et al. ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Res. 2006;34(Web Server issue):W362–365.
Article
PubMed
PubMed Central
Google Scholar
Buchan DWA, Minneci F, Nugent TCO, Bryson K, Jones DT. Scalable web services for the PSIPRED Protein Analysis Workbench. Nucleic Acids Res. 2013;41(Web Server issue):W349–57.
Article
PubMed
PubMed Central
Google Scholar
Arnold K, Bordoli L, Kopp J, Schwede T. The SWISS-MODEL Workspace: A web-based environment for protein structure homology modelling. Bioinformatics. 2006;22(2):195–201.
Article
PubMed
CAS
Google Scholar
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23(21):2947–8.
Article
PubMed
CAS
Google Scholar
Suyama M, Torrents D, Bork P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 2006;34(Web Server issue):W609–12.
Article
PubMed
CAS
PubMed Central
Google Scholar
Posada D, Crandall KA. MODELTEST: testing the model of DNA substitution. Bioinformatics. 1998;14(9):817–8.
Article
PubMed
CAS
Google Scholar
Wilgenbusch JC, Swofford D. Inferring evolutionary trees with PAUP*. Curr Protoc Bioinformatic. 2003;00(6.4):6.4.1–6.4.28.
Google Scholar
Yang Z, Wong WS, Nielsen R. Bayes empirical bayes inference of amino acid sites under positive selection. Mol Biol Evol. 2005;22(4):1107–18.
Article
PubMed
CAS
Google Scholar
Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat Biotechnol. 2011;29(7):644–52.
Article
PubMed
CAS
PubMed Central
Google Scholar
Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome boil. 2013;14(4):R36.
Article
Google Scholar
Anders S, Pyl PT, Huber W. HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31(2):166–9.
Article
PubMed
PubMed Central
Google Scholar
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome boil. 2014;15(12):550.
Article
Google Scholar
Mougeolle A, Poussard S, Decossas M, Lamaze C, Lambert O, Dargelos E. Oxidative stress induces caveolin 1 degradation and impairs caveolae functions in skeletal muscle cells. PLoS One. 2015;10(3):e0122654.
Article
PubMed
PubMed Central
Google Scholar