Brandt A, Gooday AJ, Brandao SN, Brix S, Brökeland W, Cedhagen T, et al. First insights into the biodiversity and biogeography of the Southern Ocean deep sea. Nature. 2007;447(7142):307–11.
Article
PubMed
CAS
Google Scholar
Clarke A. Antarctic marine benthic diversity: patterns and processes. J Exp Mar Biol Ecol. 2008;366:48–55.
Article
Google Scholar
Griffiths HJ. Antarctic marine biodiversity – what do we know about the distribution of life in the Southern Ocean? PLoS One. 2010;5(8):e11683.
Article
PubMed
PubMed Central
CAS
Google Scholar
Krabbe K, Leese F, Mayer C, Tollrian R, Held C. Cryptic mitochondrial lineages in the widespread pycnogonid Colossendeis megalonyx Hoek, 1881 from Antarctic and Subantarctic waters. Polar Biol. 2010;33(3):281–92.
Article
Google Scholar
Clark A, Johnston NM. Antarctic marine benthic diversity. Oceanogr Mar Biol Annu Rev. 2003;41:47–114.
Google Scholar
Gutt J, Sirenko BI, Smirnov IS, Arntz WE. How many macrozoobenthic species might inhabit the Antarctic shelf? Antarct Sci. 2004;16(1):11–6.
Article
Google Scholar
Barker PF, Filippelli GM, Florindo F, Martin EE, Scher HD. Onset and role of the Antarctic Circumpolar Current. Deep Sea Res II. 2007;54:2388–98.
Article
Google Scholar
Barker PF, Thomas E. Origin, signature and palaeoclimatic influence of the Antarctic Circumpolar Current. Earth Sci Rev. 2004;66:143–62.
Article
Google Scholar
Orsi AH, Whitworth III T, Nowlin Jr W. On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep Sea Res I. 1995;42(5):641–73.
Article
Google Scholar
Hunter RL, Halanych KM. Evaluating connectivity in the brooding brittle star Astrotoma agassizii across the Drake Passage in the Southern Ocean. J Hered. 2008;99(2):137–48. doi:10.1093/jhered/esm119.
Article
PubMed
CAS
Google Scholar
Page TJ, Linse K. More evidence of speciation and dispersal across the Antarctic Polar Front through molecular systematics of Southern Ocean Limatula (Bivalvia: Limidae). Polar Biol. 2002;25:818–26.
Google Scholar
Janosik AM, Mahon AR, Halanych KM. Evolutionary history of Southern Ocean Odontaster sea star species (Odontasteridae; Asteroidea). Polar Biol. 2011;34:575–86.
Article
Google Scholar
Thornhill DJ, Mahon AR, Norenburg JL, Halanych KM. Open-ocean barriers to dispersal: a test case with the Antarctic Polar Front and the ribbon worm Parborlasia corrugatus (Nemertea: Lineidae). Mol Ecol. 2008;17:5104–17.
Article
PubMed
CAS
Google Scholar
Clarke A, Barnes DKA, Hodgson DA. How isolated is Antarctica? TRENDS Ecol Evol. 2005;20(1):1–3. doi:10.1016/j.tree.2004.10.004.
Article
PubMed
Google Scholar
Paz A, Ibáñez R, Lips KR, Crawford AJ. Testing the role of ecology and life history in structuring genetic variation across a landscape: A comparative ecophylogeographic approach. Mol Ecol. 2015;24(14):3723–37. doi:10.1111/mec.13275.
Article
PubMed
Google Scholar
Lewis PN, Hewitt CL, Riddle M, McMinn A. Marine introductions in the Southern Ocean: an unrecognised hazard to biodiversity. Mar Pollut Bull. 2003;46:213–23.
Article
PubMed
CAS
Google Scholar
Kahng SE, Benayahu Y, Lasker HR. Sexual reproduction in octocorals. Mar Ecol Prog Ser. 2011;443:265–83. doi:10.3354/meps09414.
Article
Google Scholar
Gutiérrez-Rodríguez C, Lasker H. Reproductive biology, development, and planula behavior in the Caribbean gorgonian Pseudopterogorgia elisabethae. Invertebr Biol. 2005;123:54–67.
Article
Google Scholar
Arndt A, Smith MJ. Genetic diversity and population structure in two species of sea cucumber: differing patterns according to mode of development. Mol Ecol. 1998;7:1053–64.
Article
Google Scholar
Sherman CDH, Hunt A, Ayre DJ. Is life history a barrier to dispersal? Contrasting patterns of genetic differentiation along an oceanographically complex coast. Biol J Linn Soc. 2008;95:106–16.
Article
Google Scholar
Bayer FM. New Primnoid gorgonians (Coelenterata:Octocorallia) from Antarctic waters. Bull Mar Sci. 1996;58(2):511–30.
Google Scholar
Gray JE. Catalogue of the lithophytes or stony corals in the collection of the British Museum. London: British Museum; 1870. p. 1–51.
Google Scholar
Beerli P. How to use MIGRATE or why are Markov chains montecarlo programs difficult to use? In: Bertorelle G, Bruford MW, Hauffe HC, Rizzoli A, Vernesi C, editors. Population Genetics for Animal Conservation. Cambridge: Cambridge University Press; 2009. p. 43–79.
Google Scholar
Bostock HC, Barrows TT, Carter L, Chase Z, Cortese G, Dunbar GB, et al. A review of the Australian-New Zealand sector of the Southern Ocean over the last 30 ka (Aus-INTIMATE project). Quat Sci Rev. 2013;74:35–57.
Article
Google Scholar
Wong APS, Bindoff NL, Church JA. Large-scale freshening of intermediate waters in the Pacific and Indian oceans. Nature. 1999;400:440–3.
Article
CAS
Google Scholar
Lorrey AM, Vandergoes M, Almond P, Renwick J, Stephens T, Bostock H, et al. Palaeocirculation across New Zealand during the last glacial maximum at ~21 ka. Quat Sci Rev. 2012;36:189–213.
Article
Google Scholar
Neil HL, Carter L, Morris MY. Thermal isolation of Campbell Plateau, New Zealand, by the Antarctic Circumpolar Current over the past 130 kyr. Paleoceanography. 2004;19(4):A4008. doi:10.1029/2003PA000975.
Article
Google Scholar
Dambach J, Thatje S, Rödder D, Basher Z, Raupach MJ. Effects of Late-Cenozoic glaciation on habitat availability in Antarctic benthic shrimps (Crustacea: Decapoda: Caridea). PLoS One. 2012;7(9):e46283. doi:10.1371/journal.pone.0046283.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pyron RA, Burbrink FT. Hard and soft allopatry: physically and ecologically mediated modes of geographic speciation. J Biogeogr. 2010;37:2005–15.
Google Scholar
Luiz OJ, Madin JS, Robertson DR, Rocha LA, Wirtz P, Floeter SR. Ecological traits influencing range expansion across large oceanic dispersal barriers: insights from tropical Atlantic reef fishes. Proc R Soc B Biol Sci. 2012;279(1730):1033–40. doi:10.1098/rspb.2011.1525.
Article
Google Scholar
Whitworth T, Nowlin WD, Worley SJ. The net transport of the Antarctic Circumpolar Current through Drake Passage. J Phys Oceanogr. 1982;12:960–71.
Article
Google Scholar
Havermans C, Sonet G, d’Udekem d’Acoz C, Nagy ZT, Martin P, Brix S, et al. Genetic and morphological divergences in the cosmopolitan deep-sea amphipod Eurythenes gryllus reveal a diverse abyss and a bipolar species. PLoS One. 2013;8(9):e74218.
Article
PubMed
PubMed Central
CAS
Google Scholar
Bargelloni L, Marcato S, Zane L, Patarnello T. Mitochondrial phylogeny of Notothenioids: a molecular approach to Antarctic fish evolution and biogeography. Syst Biol. 2000;49:114–29.
Article
PubMed
CAS
Google Scholar
Rodrıguez E, Lopez-Gonzalez PJ, Gili JM. Biogeography of Antarctic sea anemones (Anthozoa, Actiniaria): What do they tell us about the origin of the Antarctic benthic fauna? Deep Sea Res II. 2007;54:1876–904.
Article
Google Scholar
Herrera S, Shank TM, Sánchez JA. Spatial and temporal patterns of genetic variation in the widespread antitropical deep-sea coral Paragorgia arborea. Mol Ecol. 2012;21(24):6053–67. doi:10.1111/mec.12074.
Article
PubMed
CAS
Google Scholar
Cheng C-HC, Chen L, Near TJ, Jin Y. Functional antifreeze glycoprotein genes in temperate-water New Zealand Nototheniid fish infer an Antarctic evolutionary origin. Mol Biol Evol. 2003;20(11):1897–908. doi:10.1093/molbev/msg208.
Article
PubMed
CAS
Google Scholar
Cairns SD, Bayer FM. A generic reevision and phylogenetic analysis on the Primnoidae (Cnidaria:Octocorallia). Smithson Contrib Zool. 2009;629:1–72.
Article
Google Scholar
Butzin M, Lohmann IG, Bickertl T. Miocene ocean circulation inferred from marine carbon cycle modeling combined with benthic isotope records. Paleoceanography. 2011;26:PA1203. doi:10.1029/2009PA001901.
Article
Google Scholar
Kennett JP. The Miocene Ocean: Paleoceanography and Biogeography. The Geological Society of America Inc. Boulder, Colorado; 1985.
Shank TM, Black MB, Halanych KM, Lutz RA, Vrijenhoek RC. Miocene radiation of deep-sea hydrothermal vent shrimp (Caridea: Bresiliidae): evidence from mitochondrial Cytochrome Oxidase Subunit I. Mol Phylogenet Evol. 1999;13(2):244–54.
Article
PubMed
CAS
Google Scholar
Woodruff F. Changes in Miocene deep-sea benthic foraminiferal distribution in the Pacific Ocean: Relationship to paleoceanography. In: Kennett JP, editor. The Miocene Ocean: Paleoceanography and Biogeography. The Geological Society of America: Inc; 1985. p. 131–76.
Chapter
Google Scholar
Tian J, Shevenell A, Wang P, Zhao Q, Li Q, Cheng X. Reorganization of pacific deep waters linked to middle Miocene Antarctic cryosphere expansion: a perspective from the South China Sea. Palaeogeogr Palaeoclimatol Palaeoecol. 2009;284:375–82.
Article
Google Scholar
Holbourn A, Kuhnt W, Frank M, Haley BA. Changes in pacific ocean circulation following the miocene onset of permanent antarctic ice cover. Earth Planet Sci Lett. 2013;365:38–50.
Article
CAS
Google Scholar
Shevenell AE, Kennett JP, Lea DW. Middle Miocene ice sheet dynamics, deep-sea temperatures, and carbon cycling: A Southern Ocean perspective. Geochem Geophys Geosyst. 2008;9(2):Q02006. doi:10.1029/2007GC001736.
Article
CAS
Google Scholar
Raupach MJ, Thatje S, Dambach J, Rehm P, Misof B, Leese F. Genetic homogeneity and circum-Antarctic distribution of two benthic shrimp species of the Southern Ocean, Chorismus antarcticus and Nematocarcinus lanceopes. Mar Biol. 2010;157(8):1783–97.
Article
CAS
Google Scholar
Ho SYW. The changing face of the molecular evolutionary clock. Trends Ecol Evol. 2014;29(9):496–503.
Article
PubMed
Google Scholar
Quattrini AM, Georgian SE, Byrnes L, Stevens A, Falco R, Cordes EE. Niche divergence by deep-sea octocorals in the genus Callogorgia across the continental slope of the Gulf of Mexico. Mol Ecol. 2013;22(15):4123–40.
Article
PubMed
Google Scholar
Taylor ML, Rogers AD. Evolutionary dynamics of a common sub-Antarctic octocoral family. Mol Phylogenet Evol. 2015;84:185–204.
Article
PubMed
Google Scholar
Helm C, Schülke I. An almost complete specimen of the Late Cretaceous (Campanian) octocoral ‘Isis’ ramosa Voigt (Gorgonacea) from the Lower Saxony Basin, northwest Germany. Cretac Res. 2003;24(1):35–40.
Article
Google Scholar
Bayer FM, Grasshoff M, Verseveldt J. Illustrated trilingual glossary of morphological and anatomical terms applied to Octocorallia. Leiden: Brill; 1983.
Google Scholar
Taylor ML, Cairns SD, Agnew DJ, Rogers AD. A revision of the genus Thouarella Gray, 1870 (Octocorallia: Primnoidae), including an illustrated dichotomous key, a new species description, and comments on Plumarella Gray, 1870 and Dasystenella, Versluys, 1906. Zootaxa. 2013;3602(1):1–105.
Article
PubMed
CAS
Google Scholar
Zapata-Guardiola R, López-González PJ. Redescription of Thouarella brucei Thomson and Ritchie, 1906 (Cnidaria: Octocorallia: Primnoidae) and description of two new Antarctic primnoid species. Zootaxa. 2010;2616:48–68.
Google Scholar
Coffroth MA, Lasker HR, Diamond ME, Bruenn JA, Berringham E. DNA fingerprints of a gorgonian coral: a method for detecting clonal structure in a vegetative species. Mar Biol. 1992;114:317–25.
Article
CAS
Google Scholar
Aguilar C, Sánchez JA. Molecular morphometrics: contribution of ITS2 sequences and predicted RNA secondary structures to octocoral systematics. Bull Mar Sci. 2007;81(3):335–49.
Google Scholar
Medina M, Collins AG, Silberman JD, Sogin ML. Evaluating hypotheses of basal animal phylogeny using complete sequences of large and small subunit rRNA. Proc Natl Acad Sci U S A. 2001;98(18):9707–12.
Article
PubMed
PubMed Central
CAS
Google Scholar
De Rijk P, Van de Peer Y, Chapelle S, De Wachter R. Database on the structure of large ribosomal subunit RNA. Nucleic Acids Res. 1994;22(17):3495–501.
Article
PubMed
PubMed Central
Google Scholar
Hillis DM, Dixon MT. Ribosomal DNA: molecular evolution and phylogenetic inference. Q Rev Biol. 1991;66(4):411–46.
Article
PubMed
CAS
Google Scholar
Arnheim N, Krystal M, Schmickel R, Wilson G, Ryder O, Zimmer E. Molecular evidence for genetic exchanges among ribosomal genes on non-homologous chromosomes in man and apes. Proc Natl Acad Sci U S A Biol Sci. 1980;77(12):7323–7.
Article
CAS
Google Scholar
Wei NV, Wallace CC, Dai C-F, Pillay KRM, Chen CA. Analyses of the ribosomal Internal Transcribed Spacers (ITS) and 5.8S gene indicate that extremely high rDNA heterogeneity is a unique feature in the scleractinian coral genus Acropora (Scleractinia; Acroporidae). Zool Stud. 2006;45(3):404–18.
CAS
Google Scholar
Dorado D, Sánchez JA. Internal transcribed Spacer 2 (ITS2) variation in the gorgonian coral Pseudopterogorgia bipinnata in Belize and Panama. Smithson Contrib Mar Sci. 2009;38:173–9.
Google Scholar
Chen CA, Chang C-C, Wei NV, Chen C-H, Lein Y-T, Lin H-E, et al. Secondary structure and phylogenetic utility of the ribosomal Internal Transcribed Spacer 2 (ITS2) in scleractinian corals. Zool Stud. 2004;43(4):759–71.
CAS
Google Scholar
Herrera S, Baco A, Sánchez JA. Molecular systematics of the bubblegum coral genera (Paragorgiidae, Octocorallia) and description of a new deep-sea species. Mol Phylogenet Evol. 2010;55:123–55.
Article
PubMed
Google Scholar
Grajales A, Aguilar C, Sanchez J. Phylogenetic reconstruction using secondary structures of Internal Transcribed Spacer 2 (ITS2, rDNA): finding the molecular and morphological gap in Caribbean gorgonian corals. BMC Evol Biol. 2007;7(1):90. doi:10.1186/1471-2148-7-90.
Article
PubMed
PubMed Central
CAS
Google Scholar
Dueñas LF, Sánchez JA. Character lability in deep-sea bamboo corals (Octocorallia, Isididae, Keratoisidinae). Mar Ecol Prog Ser. 2009;397:11–23.
Article
CAS
Google Scholar
Vollmer SV, Palumbi SR. Testing the utility of Internally Transcribed Spacer sequences in coral phylogenetics. Mol Ecol. 2004;13:2763–72. doi:10.1111/j.1365-294X.2004.02265.x.
Article
PubMed
CAS
Google Scholar
Coleman AW, van Oppen MJH. Secondary structure of the rRNA ITS2 region reveals key evolutionary patterns in Acroporid corals. J Mol Evol. 2008;67:389–96.
Article
PubMed
CAS
Google Scholar
Forsman ZH, Barshis DJ, Hunter CL, Toonen RJ. Shape-shifting corals: molecular markers show morphology is evolutionarily plastic in Porites. BMC Evol Biol. 2009;9(1):45. doi:10.1186/1471-2148-9-45.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yasuda N, Taquet C, Nagai S, Fortes M, Fan T-Y, Harii S, et al. Genetic diversity, paraphyly and incomplete lineage sorting of mtDNA, ITS2 and microsatellite flanking region in closely related Heliopora species (Octocorallia). Mol Phylogenet Evol. 2015;93:161–71.
Article
PubMed
Google Scholar
Baird HP, Miller KJ, Stark JS. Evidence of hidden biodiversity, ongoing speciation and diverse patterns of genetic structure in giant Antarctic amphipods. Mol Ecol. 2011;20(16):3439–54.
Article
PubMed
Google Scholar
Grundmann M, Ansell SW, Russell SJ, Koch MA, Vogel JC. Genetic structure of the widespread and common Mediterranean bryophyte Pleurochaete squarrosa (Brid.) Lindb. (Pottiaceae)- evidence from nuclear and plastidic DNA sequence variation and allozymes. Mol Ecol. 2007;16(4):709–22.
Article
PubMed
CAS
Google Scholar
Oh HK, Yoon HJ, Kim MJ, Jeong HU, Kim SR, Hwang JS, et al. ITS2 ribosomal DNA sequence variation of the bumblebee, Bombus ardens (Hymenoptera: Apidae). Genes Genomics. 2009;31(4):293–303.
Article
CAS
Google Scholar
Prada C, DeBiasse MB, Neigel JE, Yednock B, Stake JL, Forsman ZH, et al. Genetic species delineation among branching Caribbean Porites corals. Coral Reefs. 2014;33(4):1019–30. doi:10.1007/s00338-014-1179-5.
Article
Google Scholar
Aguilar C, Sánchez JA. Phylogenetic hypothesis of gorgoniid octocorals according to ITS2 and their predicted RNA secondary structures. Mol Phylogenet Evol. 2007;43(3):774–86. doi:10.1016/j.ympev.2006.11.005.
Article
PubMed
CAS
Google Scholar
Medina M, Weil E, Szmant AM. Examination of the Montastraea annularis species complex (Cnidaria: Scleractinia) using ITS and COI sequences. Mar Biotechnol. 1999;1:89–97.
Article
PubMed
CAS
Google Scholar
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28(12):1647–9.
Article
PubMed
PubMed Central
Google Scholar
Edgar R. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792–7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30(12):2725–9.
Article
PubMed
PubMed Central
CAS
Google Scholar
Guindon S, Delsuc F, Dufayard J-F, Gascuel O. Estimating maximum likelihood phylogenies with PhyML. In: Posada D, editor. Bioinformatics for DNA Sequence Analysis. Methods in Molecular Biology. New York City: Humana Press; 2009. p. 113–37.
Chapter
Google Scholar
Zwickl DJ. Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Austin: The University of Texas at Austin; 2006.
Google Scholar
Miller MA, Pfeiffer W, Schwartz T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees, Proceedings of the Gateway Computing Environments Workshop (GCE). New Orleans: IEEE; 2010.
Book
Google Scholar
Darriba D, Taboada GL, Doallo R, Posada D. jModelTest 2: more models, new heuristics and parallel computing. Nat Methods. 2012;9(8):722.
Article
CAS
Google Scholar
Drummond AJ, Suchard MA, Xie D, Rambaut A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol. 2012;29:1969–73.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rambaut A, Drummond AJ. Tracer v.1.4. 2007. http://beast.bio.ed.ac.uk/Tracer. Accessed Nov 2007.
Kass RE, Raftery AE. Bayes Factors. J Am Stat Assoc. 1995;90(430):773–95.
Article
Google Scholar
Beerli P, Palczewski M. Unified framework to evaluate panmixia and migration direction among multiple sampling locations. Genetics. 2010;185:313–26.
Article
PubMed
PubMed Central
Google Scholar
Leigh JW, Bryant D. POPART: full-feature software for haplotype network construction. Methods Ecol Evol. 2015;6(9):1110–6. doi:10.1111/2041-210X.12410.
Article
Google Scholar
Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009;25(11):1451–2. doi:10.1093/bioinformatics/btp187.
Article
PubMed
CAS
Google Scholar
Nei M, Li WH. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci. 1979;76(10):5269–73.
Article
PubMed
PubMed Central
CAS
Google Scholar
Watterson GA. On the number of segregating sites in genetical models without recombination. Theor Popul Biol. 1975;7(2):256–76.
Article
PubMed
CAS
Google Scholar
Excoffier L, Smouse PE, Quattro JM. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics. 1992;131:479–91.
PubMed
PubMed Central
CAS
Google Scholar
Excoffier L, Lischer HEL. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour. 2010;10(3):564–7. doi:10.1111/j.1755-0998.2010.02847.x.
Article
PubMed
Google Scholar
Lynch M, Crease TJ. The analysis of population survey data on DNA sequence variation. Mol Biol Evol. 1990;7(4):377–94.
PubMed
CAS
Google Scholar
Raymond M, Rousset F. An Exact Test for Population Differentiation. Evolution. 1995;49(6):1280–3. doi:10.2307/2410454.
Article
Google Scholar
McFadden CS, France SC, Sánchez JA, Alderslade P. A molecular phylogenetic analysis of the Octocorallia (Cnidaria: Anthozoa) based on mitochondrial protein-coding sequences. Mol Phylogenet Evol. 2006;41:513–27.
Article
PubMed
CAS
Google Scholar
Hayward BW. Lower Miocene corals from the Waitakere Ranges, North Auckland, New Zealand. J R Soc N Z. 1977;7(1):99–111.
Article
Google Scholar
Ho SYW. Calibrating molecular estimates of substitution rates and divergence times in birds. J Avian Biol. 2007;38:409–14.
Article
Google Scholar
Ho SYW, Phillips MJ. Accounting for calibration uncertainty in phylogenetic estimation of evolutionary divergence times. Syst Biol. 2009;58(3):367–80. doi:10.1093/sysbio/syp035.
Article
PubMed
Google Scholar
Heath TA. A hierarchical Bayesian model for calibrating estimates of species divergence times. Syst Biol. 2012;61(5):793–809.
Article
PubMed
PubMed Central
Google Scholar
Nowak MD, Smith AB, Simpson C, Zwickl DJ. A simple method for estimating informative node age priors for the fossil calibration of molecular divergence time analyses. PLoS One. 2013;8(6):e66245. doi:10.1371/journal.pone.0066245.
Article
PubMed
PubMed Central
CAS
Google Scholar
Donoghue PCJ, Benton MJ. Rocks and clocks: calibrating the Tree of Life using fossils and molecules. Trends Ecol Evol. 2007;22(8):424–31.
Article
PubMed
Google Scholar
Ardila NE, Giribet G, Sánchez JA. A time-calibrated molecular phylogeny of the precious corals: reconciling discrepancies in the taxonomic classification and insights into their evolutionary history. BMC Evol Biol. 2012;12:246. doi:10.1186/1471-2148-12-246.
Article
PubMed
PubMed Central
Google Scholar
McGuire JA, Witt CC, Remsen JV, Corl A, Rabosky DL, Altshuler DL, et al. Molecular phylogenetics and the diversification of hummingbirds. Curr Biol. 2014;24:910–6.
Article
PubMed
CAS
Google Scholar
Thorne JL, Kishino H. Divergence time and evolutionary rate estimation with multilocus data. Syst Biol. 2002;51(5):689–702.
Article
PubMed
Google Scholar
Wood HM, Matzke NJ, Gillespie RG, Griswold CE. Treating fossils as terminal taxa in divergence time estimation reveals ancient vicariance patterns in the Palpimanoid spiders. Syst Biol. 2013;62(2):264–84.
Article
PubMed
Google Scholar
Paradis E, Claude J, Strimmer K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics. 2004;20(2):289–90.
Article
PubMed
CAS
Google Scholar
Revell LJ. Phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol Evol. 2012;3:217–23.
Article
Google Scholar
Harmon LJ, Weir JT, Brock CD, Glor RE, Challenger W. GEIGER: investigating evolutionary radiations. Bioinformatics. 2008;24:129–31.
Article
PubMed
CAS
Google Scholar
Sokolov S, Rintoul SR. Circumpolar structure and distribution of the Antarctic Circumpolar Current fronts: Variability and relationship to sea surface height. Journal of Geophysical Research. 2009;114:C11019. doi:10.1029/2008JC005248.
Article
Google Scholar