Kozłowski J, Gawelczyk AT. Why are species’ body size distributions usually skewed to the right? Funct Ecol. 2002;16:419–32.
Article
Google Scholar
Maurer BA. The evolution of body size in birds. I. Evidence for non-random diversification. Evol Ecol. 1998;12:925–34.
Article
Google Scholar
Gardezi T, da Silva J. Diversity in relation to body size in mammals: A comparative study. Am Nat. 1999;153:110–23.
Article
Google Scholar
Allen C, Garmestani AS, Havlicek TD, Marquet PA, Peterson GD. Patterns in body size distributions: sifting among alternative hypotheses. Ecol Lett. 2006;9:630–43.
Article
PubMed
CAS
Google Scholar
Orme CDL, Isaac NJB, Purvis A. Are most species small? Not within species–level phylogenies. Proc R Soc Lond B Biol Sci. 2002;269:1279–87.
Article
Google Scholar
Orme CDL, Quicke DLJ, Cook JM, Purvis A. Body size does not predict species richness among the metazoan phyla. J Evol Biol. 2002;15:235–47.
Article
Google Scholar
McClain CR, Boyer AG. Biodiversity and body size are linked across metazoans. Proc R Soc Lond B Biol Sci. 2009;276:2209–15.
Article
Google Scholar
Hutchinson GE, MacArthur RH. A theoretical ecological model of size distributions among species of animals. Am Nat. 1959;93:117–25.
Article
Google Scholar
Morse DR, Lawton JH, Dodson MM, Williamson MH. Fractal dimension of vegetation and the distribution of arthropod body lengths. Nature. 1985;314:731–3.
Article
Google Scholar
Vogel S. Life in moving fluids: The physical biology of flow. Princeton: Princeton University Press; 1994.
Google Scholar
Brown JH, Gillooly JF, Allen AP, Savage VM, West GB. Towards a metabolic theory of ecology. Ecology. 2004;85:1771–89.
Article
Google Scholar
Harrison JF, Kaiser A, VandenBrooks JM. Atmospheric oxygen level and the evolution of insect body size. Proc R Soc B Biol Sci. 2010;277:1937–46.
Article
Google Scholar
Chown SL, Gaston KJ. Body size variation in insects: a macroecological perspective. Biol Rev. 2010;85:139–69.
Article
PubMed
Google Scholar
Davis RB, Õunap E, Javoiš J, Gerhold P, Tammaru T. Degree of specialization is related to body size in herbivorous insects: a phylogenetic confirmation. Evolution. 2013;67:583–9.
Article
PubMed
Google Scholar
Gaston KJ, Chown SL. Macroecological patterns in insect body size. In: Smith F, Lyons SK, editors. Animal body size: linking pattern and process across space time and taxonomic group. Chicago: University of Chicago Press; 2013. p. 13–61.
Chapter
Google Scholar
McKinney ML. Trends in body size evolution. In: McNamara KJ, editor. Evolutionary trends. Tucson: University of Arizona Press; 1990. p. 75–118.
Google Scholar
Sokolovska N, Rowe L, Johansson F. Fitness and body size in mature odonates. Ecol Entomol. 2000;25:239–48.
Article
Google Scholar
Hone DWE, Benton MJ. The evolution of large size: how does Cope’s Rule work? Trends Ecol Evol. 2005;20:4–6.
Article
PubMed
Google Scholar
Monroe MJ, Bokma F. Mass extinctions do not explain skew in interspecific body size distributions. J Zool Syst Evol Res. 2013;51:13–8.
Article
Google Scholar
Harmon LJ, Losos JB, Jonathan Davies T, Gillespie RG, Gittleman JL, Bryan Jennings W, et al. Early bursts of body size and shape evolution are rare in comparative data. Evolution. 2010;64:2385–96.
PubMed
Google Scholar
Mayhew PJ. Why are there so many insect species? Perspectives from fossils and phylogenies. Biol Rev. 2007;82:425–54.
Article
PubMed
Google Scholar
Polilov AA. Small is beautiful: features of the smallest insects and limits to miniaturization. Annu Rev Entomol. 2015;60:103–21.
Article
PubMed
CAS
Google Scholar
Poulin R, Morand S. Parasite body size distributions: interpreting patterns of skewness. Int J Parasitol. 1997;27:959–64.
Article
PubMed
CAS
Google Scholar
Ulrich W. Body weight distributions of European Hymenoptera. Oikos. 2006;114:518–28.
Article
Google Scholar
Ulrich W. Body weight distributions of central European Coleoptera. Eur J Entomol. 2007;104:769–76.
Article
Google Scholar
Finlay BJ, Thomas JA, McGavin GC, Fenchel T, Clarke RT. Self-similar patterns of nature: insect diversity at local to global scales. Proc R Soc B Biol Sci. 2006;273:1935–41.
Article
Google Scholar
Katzourakis A, Purvis A, Azmeh S, Rotheray G, Gilbert F. Macroevolution of hoverflies (Diptera: Syrphidae): the effect of using higher-level taxa in studies of biodiversity, and correlates of species richness. J Evol Biol. 2001;14:219–27.
Article
Google Scholar
Misof B. Diversity of Anisoptera (Odonata): Inferring speciation processes from patterns of morphological diversity. Zool. 2002;105:355–65.
Article
Google Scholar
Mitter C, Farrell B, Wiegmann B. The phylogenetic study of adaptive zones: has phytophagy promoted insect diversification? Am Nat. 1988;132:107–28.
Article
Google Scholar
Rainford JL, Hofreiter M, Nicholson DB, Mayhew PJ. Phylogenetic distribution of extant richness suggests metamorphosis is a key innovation driving diversification in insects. PLoS One. 2014;9:e109085.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yang AS. Modularity, evolvability, and adaptive radiations: a comparison of the hemi‐ and holometabolous insects. Evol Dev. 2001;3:59–72.
Article
PubMed
CAS
Google Scholar
Grimaldi DA, Engel MS. Evolution of the Insects. Cambridge: Cambridge University Press; 2005.
Google Scholar
Nel A, Roques P, Nel P, Prokin AA, Bourgoin T, Prokop J, et al. The earliest known holometabolous insects. Nature. 2013;503:257–61.
PubMed
CAS
Google Scholar
Trautwein MD, Wiegmann BM, Beutel RG, Kjer KM, Yeates DK. Advances in insect phylogeny at the dawn of the postgenomic era. Annu Rev Entomol. 2012;57:449–68.
Article
PubMed
CAS
Google Scholar
Misof B, Liu S, Meusemann K, Peters RS, Donath A, Mayer C, et al. Phylogenomics resolves the timing and pattern of insect evolution. Science. 2014;346:763–7.
Article
PubMed
CAS
Google Scholar
Cooper N, Purvis A. Body size evolution in mammals: complexity in tempo and mode. Am Nat. 2010;175:727–38.
Article
PubMed
Google Scholar
Pagel M. Inferring evolutionary processes from phylogenies. Zool Scr. 1997;26:331–48.
Article
Google Scholar
Agapow P-M, Isaac NJB. MacroCAIC: revealing correlates of species richness by comparative analysis. Divers Distrib. 2002;8:41–3.
Article
Google Scholar
Isaac NJB, Agapow P-M, Harvey PH, Purvis A. Phylogenetically nested comparisons for testing correlates of species richness: a simulation study of continuous variables. Evolution. 2003;57:18–26.
Article
PubMed
Google Scholar
Freckleton RP, Phillimore AB, Pagel M. Relating traits to diversification: a simple test. Am Nat. 2008;172:102–15.
Article
PubMed
Google Scholar
Whitman DW. The significance of body size in the Orthoptera: a review. J Orthoptera Res. 2008;17:117–34.
Article
Google Scholar
Mouillot D, George-Nascimento M, Poulin R. How parasites divide resources: a test of the niche apportionment hypothesis. J Anim Ecol. 2003;72:757–64.
Article
Google Scholar
Nyman T. To speciate, or not to speciate? Resource heterogeneity, the subjectivity of similarity, and the macroevolutionary consequences of niche-width shifts in plant-feeding insects. Biol Rev. 2010;85:393–411.
Article
PubMed
Google Scholar
Klingenberg CP, Spence J. On the role of body size for life-history evolution. Ecol Entomol. 1997;22:55–68.
Article
Google Scholar
Blanckenhorn W. The evolution of body size: what keeps organisms small? Q Rev Biol. 2000;75:385–407.
Article
PubMed
CAS
Google Scholar
Nekola J, Barker G, Cameron R, Pokrysko B. Latitudinal Variation of Body Size in Land Snail Populations and Communities. In: Smith F, Lyons SK, editors. Animal body size: linking pattern and process across space time and taxonomic group. Chicago: University of Chicago Press; 2013. p. 62–94.
Chapter
Google Scholar
Woodward G, Ebenman B, Emmerson M, Montoya JM, Olesen JM, Valido A, et al. Body size in ecological networks. Trends Ecol Evol. 2005;20:402–9.
Article
PubMed
Google Scholar
Dudley R. The biomechanics of insect flight: form, function, evolution. Princeton: Princeton University Press; 2002.
Google Scholar
Ricklefs RE. Cladogenesis and morphological diversification in passerine birds. Nature. 2004;430:338–41.
Article
PubMed
CAS
Google Scholar
Purvis A. Evolution: how do characters evolve? Nature. 2004;432.
Ricklefs RE. Time, species, and the generation of trait variance in clades. Syst Biol. 2006;55:151–9.
Article
PubMed
Google Scholar
Bokma F. Time, species, and separating their effects on trait variance in clades. Syst Biol. 2010;59:602–7.
Article
PubMed
Google Scholar
Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Med Res Methodol. 2005;5:13.
Article
PubMed
PubMed Central
Google Scholar
Pagel M. Inferring the historical patterns of biological evolution. Nature. 1999;401:877–84.
Article
PubMed
CAS
Google Scholar
Regier JC, Mitter C, Zwick A, Bazinet AL, Cummings MP, Kawahara AY. e al. A large-scale, higher-level, molecular phylogenetic study of the insect order Lepidoptera (moths and butterflies). PLoS One. 2013;8:e58568.
Article
PubMed
CAS
PubMed Central
Google Scholar
Marshall S. Flies: the natural history and diversity of Diptera. New York: Firefly books; 2012.
Google Scholar
McAlpine JF, Peterson BV, Shewell GE, Teskey HJ, Vockeroth JR, Wood DM. Manual of nearctic Diptera. Volume 1. Ottawa: Research Branch, Agriculture Canada; 1981.
McAlpine JF, Peterson BV, Shewell GE, Teskey HJ, Vockeroth JR, Wood DM. Manual of nearctic Diptera. Volume 2. Ottawa: Research Branch, Agriculture Canada; 1987.
Brown BV, Borkent A, Cumming JM, Wood DM, Woodley NE, Zumbado M, editors. Manual of Central American Diptera, vol. 1. Ottawa: NRC Research Press; 2009.
Google Scholar
Wiegmann BM, Trautwein MD, Winkler IS, Barr NB, Kim J-W, Lambkin C, et al. Episodic radiations in the fly tree of life. Proc Natl Acad Sci. 2011;108:5690–5.
Article
PubMed
CAS
PubMed Central
Google Scholar
Caravas J, Friedrich M. Shaking the Diptera tree of life: performance analysis of nuclear and mitochondrial sequence data partitions. Syst Entomol. 2013;38:93–103.
Article
Google Scholar
Gaston KJ. The magnitude of global insect species richness. Conserv Biol. 1991;5:283–96.
Article
Google Scholar
Nicholson DB, Ross AJ, Mayhew PJ. Fossil evidence for key innovations in the evolution of insect diversity. Proc R Soc Lond B Biol Sci. 2014;281:20141823.
Article
Google Scholar
Clapham ME, Karr JA. Environmental and biotic controls on the evolutionary history of insect body size. Proc Natl Acad Sci U S A. 2012;109:10927–30.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ingram T, Harmon LJ, Shurin JB. When should we expect early bursts of trait evolution in comparative data? Predictions from an evolutionary food web model. J Evol Biol. 2012;25:1902–10.
Article
PubMed
CAS
Google Scholar
Costello MJ, Wilson S, Houlding B. Predicting total global species richness using rates of species description and estimates of taxonomic effort. Syst Biol. 2012;61:871–83.
Article
PubMed
Google Scholar
Loder N. Insect species body size distributions. PhD dissertation, University of Sheffield; 1997.
Gaston KJ. Body size and probability of description: the beetle fauna of Britain. Ecol Entomol. 1991;16:505–8.
Article
Google Scholar
Blackburn TM, Gaston KJ. The distribution of body sizes of the world’s bird species. Oikos. 1994;70:127–30.
Article
Google Scholar
Gaston KJ, Blackburn TM. Are newly described bird species small-bodied? Biodivers Lett. 1994;2:16–20.
Article
Google Scholar
Poulin R. Parasite biodiversity revisited: frontiers and constraints. Int J Parasitol. 2014;44:581–9.
Article
PubMed
Google Scholar
Gouws EJ, Gaston KJ, Chown SL. Intraspecific body size frequency distributions of insects. PLoS One. 2011;6:e16606.
Article
PubMed
PubMed Central
CAS
Google Scholar
Cohen JE, Jonsson T, Müller CB, Godfray HCJ, Savage VM. Body sizes of hosts and parasitoids in individual feeding relationships. Proc Natl Acad Sci. 2005;102:684–9.
Article
PubMed
CAS
PubMed Central
Google Scholar
Revell LJ, Reynolds RG. A new bayesian method for fitting evolutionary models to comparative data with intraspecific variation. Evolution. 2012;66:2697–707.
Article
PubMed
Google Scholar
Ives AR, Midford PE, Garland T. Within-species variation and measurement error in phylogenetic comparative methods. Syst Biol. 2007;56:252–70.
Article
PubMed
Google Scholar
Felsenstein J. Comparative methods with sampling error and within-species variation: contrasts revisited and revised. Am Nat. 2008;171:713–25.
Article
PubMed
Google Scholar
Slater GJ, Harmon LJ, Wegmann D, Joyce P, Revell LJ, Alfaro ME. Fitting models of continuous trait evolution to incompletely sampled comparative data using approximate bayesian computation. Evolution. 2012;66:752–62.
Article
PubMed
Google Scholar
Dorrington GE. On flying insect size and Phanerozoic atmospheric oxygen. Proc Natl Acad Sci. 2012;109:E3393.
Article
PubMed
CAS
PubMed Central
Google Scholar
Finarelli JA, Goswami A. Potential pitfalls of reconstructing deep time evolutionary history with only extant data, a case study using the Canidae (Mammalia, Carnivora). Evolution. 2013;67:3678–85.
Article
PubMed
Google Scholar
Arnett RH, Thomas MC, Skelley PE, Frank JH. American beetles, Volume II: Polyphaga: Scarabaeoidea through Curculionoidea. Boca Raton: CRC Press; 2010.
Google Scholar
Arnett RH. American insects: A handbook of the insects of America north of Mexico. Boca Raton: CRC Press; 2000.
Google Scholar
Arnett RH, Thomas MC. American beetles, Volume I: Archostemata, Myxophaga, Adephaga, Polyphaga: Staphyliniformia. Boca Raton: CRC Press; 2000.
Google Scholar
Bae Y, McCafferty WP. Phylogenetic systematics and biogeography of the Neoephemeridae (Ephemeroptera: Pannota). Aquat Insects. 1998;20:35–68.
Article
Google Scholar
Bailey PT. Pests of field crops and pastures: identification and control. Collingwood: CSIRO Publishing; 2007.
Google Scholar
Barnes JK. Revision of the Helosciomyzidae (Diptera). J Roy Soc NZ. 1981;11:45–72.
Article
Google Scholar
Bechev D, Chandler P. Catalogue of the Bolitophilidae and Diadocidiidae of the world (Insecta: Diptera). Zootaxa. 2011;2741:38–58.
Google Scholar
Berenbaum M. Lend me your earwigs. Am Entomol. 2007;53:196–7.
Article
Google Scholar
Beutel RG, Leschen R. editors. Handbook of zoology. Volume IV. Arthropoda: Insecta. Part 38. Coleoptera. Beetles. Volume 1: Morphology and Systematics (Archostemata, Adephaga, Myxophaga, Polyphaga partim). Berlin: Walter de Gruyter; 2005.
Book
Google Scholar
Boeseman M. The Dermaptera in the museums at Leiden and Amsterdam. Leiden: Brill Academic Publishing; 1954.
Google Scholar
Bouček Z, Noyes JS. Rotoitidae, a curious new family of Chalcidoidea (Hymenoptera) from New Zealand. Syst Entomol. 1987;12:407–12.
Article
Google Scholar
Brake I, Mathis WN. Revision of the genus Australimyza Harrison (Diptera: Australimyzidae). Syst Entomol. 2007;32:252–75.
Article
Google Scholar
Brock PD, Hasenpusch JW. The complete field guide to stick and leaf insects of Australia. Collingwood: CSIRO Publishing; 2009.
Google Scholar
Buder G, Klass K-D. The morphology of tarsal processes in Mantophasmatodea. Deutsche Entomol Zeitschr. 2013;60:5–23.
Google Scholar
Byers GW. Brachypanorpa sacajawea n. sp. (Mecoptera: Panorpodidae) from the Rocky Mountains. J Kansas Entomol Soc. 1990;63:211–7.
Google Scholar
Byers GW. The Nannochoristidae of South America (Mecoptera). Univ Kans Sci Bull. 1989;54:25–34.
Google Scholar
Cambra R, Oliveira A. First Central American record of Clystopsenella longiventris (Hymenoptera: Scolebythidae) with comments on the variation of the species. Entomotropica. 2003;18:147–8.
Google Scholar
Capinera JL, editor. Encyclopedia of entomology. 2nd ed. Dordrecht: Springer; 2008.
Google Scholar
Colless D. The genus Perissomma (Diptera : Perissommatidae) with new species from Australia and Chile. Aust J Zool. 1969;17:719–28.
Article
Google Scholar
Darilmaz MC, Kiyak S. A study of the family Spercheidae (Coleoptera) from Turkey. Turk J Zool. 2011;35:441–4.
Google Scholar
Deitz LL, Wallace MS (team leaders). Treehoppers: Aetalionidae, Melizoderidae, and Membracidae (Hemiptera). 2010. http://treehoppers.insectmuseum.org. Accessed 1st Oct 2012.
Doganler M. Notes on the species of Tetracampidae with descriptions of some new species from Turkey. Entomofauna. 2003;24:381–96.
Google Scholar
Domínguez E, Adis J, Arias JR, Hubbard MD, Molineri C, Nieto C, et al. Ephemeroptera de América Del Sur. Sofia: Pensoft Publishers; 2006.
Google Scholar
Early JW, Masner L, Naumann ID, Austin AD. Maamingidae, a new family of proctotrupoid wasp (Insecta : Hymenoptera) from New Zealand. Invertebr Syst. 2001;15:341–52.
Article
Google Scholar
Edmunds GF, Jensen SL, Berner L. The mayflies of North and Central America. Minneapolis: University of Minnesota Press; 1976.
Google Scholar
Espinasa L, Botelho M, Socci K. A new species of genus Squamigera (Insecta: Zygentoma: Nicoletiidae) from the Mayan ruins of Palenque, Chiapas, Mexico. J Entomol Nematol. 2013;52:24–8.
Article
Google Scholar
Esquivel C. The families of insects of Costa Rica- Odonata. In Solís A, editor, Las familias de insectos de Costa Rica. 1997. http://www.inbio.ac.cr/papers/insectoscr/Texto228.html. Accessed 1st Jan 2014.
Evans JW. The leafhoppers and froghoppers of Australia and New Zealand (Homoptera: Cicadelloidea and Cercopoidea). Aust Mus Memoir. 1966;12:1–347.
Article
Google Scholar
Evenhuis NL. Family Xenasteiidae. In: Evenhuis NL, editor. Catalog of the Diptera of the Australasian and Oceanian Regions. 2011. http://hbs.bishopmuseum.org/aocat/hybotidae.html. Accessed 1st Jan 2013.
Fleck G, Li J, Schorr M, Nel A, Zhang X, Lin L, et al. Epiophlebia sinensis Li & Nel 2011 in Li et al. (2012) (Odonata) newly recorded in North Korea. Int Dragonfly Fund Rep. 2013;61:1–4.
Google Scholar
Foottit RG, Adler PH. Insect biodiversity: science and society. Oxford: John Wiley & Sons; 2009.
Book
Google Scholar
Garrison RW, von Ellenrieder N, Louton JA. Dragonfly genera of the New World: an illustrated and annotated key to the Anisoptera. Baltimore: Johns Hopkins University Press; 2006.
Google Scholar
Gibson GAP, Read J, Huber JT. Diversity, classification and higher relationships of Mymarommatoidea (Hymenoptera). J Hym Res. 2007;16:51–146.
Google Scholar
Gillies MT. The african Euthyplociidae (Ephemeroptera), (Exeuthyplociinae subfam. n.). Aquat Insects. 1980;2:217–24.
Article
Google Scholar
Greenhalgh M, Ovenden D. The flyfisher’s handbook. Machynleth: Coch Y Bonddu Books; 2004.
Google Scholar
Günther KK. Revision der Familie Cylindrachetidae Giglio-Tos, 1914 (Orthoptera, Tridactyloidea). Deutsche Entomol Zeitschr. 1992;39:233–91.
Article
Google Scholar
Hayashi F. Convergence of insular dwarfism in damselflies (Euphaea) and dobsonflies (Protohermes). Freshw Biol. 1990;23:219–31.
Article
Google Scholar
Heckman CW. Encyclopedia of South American aquatic insects: Ephemeroptera: illustrated keys to known families, genera, and species in South America. Dordrecht: Springer; 2002.
Book
Google Scholar
Hennemann FH, Conle OV. Revision of Oriental Phasmatodea: The tribe Pharnaciini Günther, 1953, including the description of the world’s longest insect, and a survey of the family Phasmatidae Gray, 1835 with keys to the subfamilies and tribes (Phasmatodea: “Anareolatae”: Phasmatidae). Zootaxa. 1906;2008:1–316.
Google Scholar
Hisamatsu S. A review of the Japanese Kateretidae fauna (Coleoptera: Cucujoidea). Acta Entomologica Musei Nationalis Pragae. 2011;51:551–85.
Google Scholar
Hitchings TR, Staniczek AH. Nesameletidae (Insecta: Ephemeroptera). Fauna NZ. 2003;46:1–72.
Google Scholar
Hogue CL. Latin american insects and entomology. Berkeley: University of California Press; 1993.
Google Scholar
Holzenthal RW, Flint Jr OS. Studies of Neotropical caddisflies, LI: systematics of the Neotropical caddisfly genus Contulma (Trichoptera: Anomalopsychidae). Smithson Contrib Zool. 1995;575:1–59.
Article
Google Scholar
Hopkin SP. Biology of the springtails : (Insecta: Collembola). Oxford: Oxford University Press; 1997.
Google Scholar
Houghton DC. Biological diversity of the Minnesota caddisflies (Insecta, Trichoptera). ZooKeys. 2012;189:1–389.
Article
PubMed
Google Scholar
Houston TF. A revision of the bee genus Ctenocolletes (Hymenoptera: Stenotritidae). Rec West Aust Mus. 1983;10:269–306.
Google Scholar
Howarth FG, Mull WP. Hawaiian insects and their kin. Honolulu: University of Hawaii Press; 1992.
Google Scholar
Ivanov VD, Menshutkina T. Endemic Caddisflies of Lake Baikal (Trichoptera Apataniidae). Braueria. 1996;23:13–28.
Google Scholar
Jäch MA, Balke M. Key to the adults of Chinese water beetle families. In: Jäch MA, Ji L, editors. Water beetles of China Vol III. Wien: Zoologisch-Botanische Gesellschaft in Österreich and Wiener Coleopterologenverein; 2003. p. 21–36.
Google Scholar
Jin Y, Bae Y. The wingless stonefly family Scopuridae (Plecoptera) in Korea. Aquat Insects. 2005;27:21–34.
Article
Google Scholar
Karpa A. Revision of the Chloropidae of the collection of B.A. Gimmerthal and a check list of Latvian Chloropidae (Diptera). Latvijas Entomol. 2001;38:44–9.
Google Scholar
Kristensen NP, Scoble M, Karsholt O. Lepidoptera phylogeny and systematics: the state of inventorying moth and butterfly diversity. Zootaxa. 2007;1668:699–747.
Google Scholar
Lenhart P, Dash ST, Mackay WP. A revision of the giant Amazonian ants of the genus Dinoponera (Hymenoptera, Formicidae). J Hym Res. 2013;31:119–64.
Google Scholar
Leschen RAB, Beutel RG, Lawrence JF. Handbook of zoology. Arthropoda: Insecta. Coleoptera. Beetles. Volume 2: Morphology and Systematics (Elateroidea, Bostrichiformia, Cucujiformia partim). Berlin: Walter de Gruyter; 2010.
Google Scholar
Lewis T. Thrips: their biology, ecology and economic importance. London: Academic; 1973.
Google Scholar
Marsh N. Trout stream insects of New Zealand. Aukland: The Halcyon Books; 2004.
Google Scholar
Mathis WN. World catalog and conspectus on the family Helcomyzidae (Diptera: Schizophora). Myia. 2011;12:267–80.
Google Scholar
Mathis WN. World catalog and conspectus on the family Heterocheilidae (Diptera: Schizophora). Myia. 2011;12:281–9.
Google Scholar
Mathis WN, Sueyoshi M. World catalog and conspectus on the family Dryomyzidae. Myia. 2011;12:207–33.
Google Scholar
McAlpine DK. Marginidae a new afrotropical family of Diptera (Schizophora: ? Opomyzoidea). Ann Natal Mus. 1991;32:167–78.
Google Scholar
McAlpine DK. Review of the Upside-down Flies (Diptera: Neurochaetidae) of Madagascar and Africa, and evolution of neurochaetid host plant associations. Rec Aust Mus. 1993;45:221–39.
Article
Google Scholar
Mercado M, Elliot S. Taxonomic revision of the genus Chiloporter Lestage (Ameletopsidae: Ephemeroptera) with notes on its biology and distribution. Stud Neotropical Fauna Environ. 2005;40:229–36.
Article
Google Scholar
Messer AC. Chalicodoma pluto: the world’s largest bee rediscovered living communally in termite nests (Hymenoptera: Megachilidae). J Kansas Entomol Soc. 1984;57:165–8.
Google Scholar
Michaelis FB, Yule C, Calder A. Family Gripopterygidae. In: Australian Faunal Directory. Australian Biological Resources Study, Canberra. 2011. http://archive.is/Ckwa#selection-249.0-249.22. Accessed 1st Jan 2014.
Morse JC. New caddisflies (Trichoptera) from Southern Africa. J Kansas Entomol Soc. 1974;47:328–44.
Google Scholar
Morton IV KJ. A remarkable new genus and new species of Odonata, of the legion Podagrion, Selys, from North Queensland. Trans R Entomol Soc Lond. 1914;62:169–72.
Article
Google Scholar
Munoz-Quesada F, Holzenthal RW. A new species of Xiphoncentron (Antillotrichia) from Costa Rica with semiterrestrial immature stages (Trichoptera Xiphoncentronidae). Proceedings of the 8th International Symposium on Trichoptera 1997:355–363.
Nagatomi A, Saigusa T, Nagatomi H, Lynebord L. Apsilocephalidae, a new family of orthorrhaphous Brachycera (Insecta, Diptera). Zool Sci (Tokyo). 1991;8:579–91.
Google Scholar
Nagatomi A, Nagatomi H. The genus Austroleptis from South Chile and Patagonia (Diptera, Rhagionidae). Mem Kagoshima Univ Res Cent S Pac. 1987;8:139–56.
Google Scholar
Naskrecki P. Grasshoppers and their relatives. In: Levine SA, editor. Encyclopedia of Biodiversity 3. San Diego: Academic; 2001. p. 247–64.
Chapter
Google Scholar
Neboiss A. Atlas of Trichoptera of the SW Pacific-Australian region. Dordrecht: W. Junk; 1986.
Book
Google Scholar
Nelson LA, Scheffer SJ, Yeates DK. Two new species of sympatric Fergusonina Malloch flies (Diptera: Fergusoninidae) from bud galls on high-elevation snow gums (Eucalyptus pauciflora Sieb. ex Spreng. complex) in the Australian Alps. Aust J Entomol. 2011;50:356–64.
Article
Google Scholar
New T, Lienhard C. The Psocoptera of tropical South East Asia. Leiden: Brill Academic Publishing; 2007.
Book
Google Scholar
Ng PKL, Corlett R, Tan HTW. Singapore biodiversity: an encyclopedia of the natural environment and sustainable development. Singapore: Editions Didier Millet; 2011.
Google Scholar
Ohl M, Thiele K. Estimating body size in apoid wasps: the significance of linear variables in a morphologically diverse taxon (Hymenoptera, Apoidea). Zool Syst Evol. 2007;83:110–24.
Google Scholar
Olah J, Johanson KA. Contributions to the systematics of the genera Dipseudopsis, Hyalopsyche and Pseudoneureclipsis (Trichoptera: Dipseudopsidae), with descriptions of 19 new species from the Oriental Region. Zootaxa. 2010;2658:1–37.
Google Scholar
Oosterbroek P. The families of Diptera of the malay archipelago. Leiden: Brill Academic Publishing; 1998.
Google Scholar
Otte D, Alexander RD. Australian crickets (Orthoptera: Gryllidae). Philadelphia: Academy of Natural Sciences of Philadelphia; 1983.
Google Scholar
Palaczyk A, Klasa A, Slowinska-Krysiak I. The family Strongylophthalmyiidae of Poland with catalog of European species (Insecta: Diptera). Genus. 2013;24:425–38.
Google Scholar
Palmer CM, Siebke K. Cold hardiness of Apteropanorpa tasmanica Carpenter (Mecoptera: Apteropanorpidae). J Insect Physiol. 2008;54:1148–56.
Article
PubMed
CAS
Google Scholar
Papp L. A study on Hesperinus (Walker) with description of a new species (Diptera: Hesperinidae). Acta Zool Acad Sci Hung. 2010;56:347–70.
Google Scholar
Parker C. A review of Goerita (Trichoptera: Goeridae), with description of a new species. Insecta Mundi. 1998;12:227–38.
Google Scholar
Parker SP. Synopsis and classification of living organisms. New York: Mc-Graw Hill Book Company; 1982.
Google Scholar
Pearson RG, Penridge LK. First records of Prosopistoma sedlaceki in Australia (Ephemeroptera Prosopistomatidae). J Aust Entomol Soc. 1979;18:362.
Article
Google Scholar
Penniket JG. Notes on New Zealand Ephemeroptera III. A new family genus and species. Rec Canterbury Mus. 1962;7:389–98.
Google Scholar
Penniket JG. Notes on New Zealand Ephemeroptera IV. A new Siphlonurid subfamily; Rallidentinae. Rec Canterbury Mus. 1966;8:163–75.
Google Scholar
Phillips JS. A revision of New Zealand Ephemeroptera Part 1. Transactions and Proceedings of the Royal Society of New Zealand 1930, 61:271–334.
Picker M, Griffiths C, Weaving A. Field guide to insects of South Africa. Cape Town: Struik Nature; 2004.
Google Scholar
Pohl G, Anweiler GC, Schmidt BC, Kondla NG. Annotated list of the Lepidoptera of Alberta, Canada. Zookeys. 2010;38:1–549.
Article
Google Scholar
Pratt RC, Morgan-Richards M, Trewick SA. Diversification of New Zealand weta (Orthoptera: Ensifera: Anostostomatidae) and their relationships in Australasia. Phil Trans R Soc B. 2008;363:3427–37.
Article
PubMed
PubMed Central
Google Scholar
Prete FR. The praying mantids. Baltimore: Johns Hopkins University Press; 1999.
Google Scholar
Rentz D. A guide to the katydids of Australia. Collingwood: CSIRO Publishing; 2010.
Google Scholar
Resh VH, Cardé RT. Encyclopedia of insects. 2nd ed. San Diego: Elsevier; 2009.
Google Scholar
Retana-Salazar A. Species of Heterothrips Hood (Terebrantia: Heterothripidae) from Central America. Ceiba. 2009;50:10–7.
Google Scholar
Richards A. Revision of the Rhaphidophoridae (Orthopera) of New Zealand Part IV: The Raphidophoridae of Thames Gold Mines. Trans R Soc NZ. 1959;87:27–33.
Google Scholar
Richards A. The Raphidophoridae (Orthopera) or Australia: Part 6 Two New Species from Northern Tasmania. Pac Insects. 1968;10:167–76.
Google Scholar
Riek EF. A Revision of Australian scorpion flies of the family Choristidae (Mecoptera). Aust J Entomol. 1973;12:103–12.
Article
Google Scholar
Rivera AC. Behaviour and ecology of Hemiphlebia mirabilis (Odonata: Hemiphlebiidae). 2014. http://natureglenelg.org.au/wp-content/uploads/2014/02/Behaviour-and-ecology-of-Hemiphlebia-mirabilis-by-Adolfo-Cordero-Rivera-2014.pdf. Accessed 1st July 2014.
Robinson WH. Urban insects and arachnids: a handbook of urban entomology. Cmabridge: Cambridge University Press; 2005.
Book
Google Scholar
Scali V, Milani L, Passmonti M. Revision of the stick insect genus Leptynia : description of new taxa, speciation mechanism and phylogeography. Contrib Zool. 2012;81:25–42.
Google Scholar
Schneeberg K, Krause K, Beutel RG. The adult head of Axymyia furcata (Insecta: Diptera: Axymyiidae). Arthropod Syst Phylogeny. 2013;71:91–102.
Google Scholar
Schuh RT, Slater JA. True bugs of the world (Hemiptera:Heteroptera): classification and natural history. Ithaca: Cornell University Press; 1995.
Google Scholar
Serrano-Meneses MA, Córdoba-Aguilar A, Azpilicueta-Amorín M, González-Soriano E, Székely T. Sexual selection, sexual size dimorphism and Rensch’s rule in Odonata. J Evol Biol. 2008;21:1259–73.
Article
PubMed
CAS
Google Scholar
Shockley FW. Alexiidae Imhoff 1856. Sphaerosoma Samouelle 1819. 2008. http://tolweb.org/Sphaerosoma/65850/2008.06.2. Accessed 1st July 2014.
Shockley FW, Hartley CS, Lord N. Latridiidae. Minute brown scavenger beetles. 2011. http://tolweb.org/Latridiidae/9172/2011.03.23. Accessed 1st July 2014.
Silsby J. Dragonflies of the world. Collingwood: CSIRO Publishing; 2001.
Google Scholar
Stewart W. The Australian genus Diphlebia Selys (Odonata : Amphipterygidae). I. Taxonomic revision of the adults. Aust J Zool Suppl Ser. 1980;28:1–57.
Article
Google Scholar
Tojo K, Matsukawa K. A description of the second species of the family Dipteromimidae (Insecta, Ephemeroptera), and genetic relationship of two Dipteromimid mayflies inferred from mitochondrial 16S rRNA gene sequences. Zoolog Sci. 2003;20:1249–59.
Article
PubMed
Google Scholar
Treherne RC. Notes on the Aeolothripidae. J Entomol Soc B C. 1919;12:27–33.
Google Scholar
Walker T. Family Prophalangopsidae (hump-winged grigs) in North America north of Mexico. 2013. In Encyclopedia of life. Available at: http://eol.org/pages/991/overview. Accessed 1st July 2014.
Wall R, Shearer D. Veterinary ectoparasites: biology, pathology and control. Oxford: John Wiley & Sons; 2008.
Google Scholar
Watson JAL. The distributions of the Australian dragonflies (Odonata). J Aust Entomol Soc. 1974;13:137–49.
Article
Google Scholar
Whiting MF, Whiting AS, Hastriter MW, Dittmar K. A molecular phylogeny of fleas (Insecta: Siphonaptera): origins and host associations. Cladistics. 2008;24:677–707.
Article
Google Scholar
Wiegmann BM. A phylogenetic revision of the family Atelestidae (Diptera: Empidoidea) and its implications for the origin of the Cyclorrhaphous Diptera, MSc Thesis, University of Maryland; 1989.
Wiggins GB. The caddisfly family Phryganeidae (Trichoptera). Toronto: University of Toronto Press; 1998.
Google Scholar
Wiggins GB. The Kitagamiidae, a family of caddisflies new to North America (Trichoptera). Contrib R ON Mus Zool Palaeontol. 1956;44:1–10.
Google Scholar
Wilson KD. Dragonfly groups of conservation interest confined to the Oriental Region. https://www.yumpu.com/en/document/view/39638885/dragonfly-groups-of-conservation-interest-confined-asia-dragonfly. Accessed 1st July 2014.
Zborowski P, Edwards T. A guide to australian moths. Collingwood: CSIRO Publishing; 2007.
Google Scholar
Zloty J, Pritchard G. Larvae and adults of Ameletus mayflies (Ephemeroptera Ameletidae) from Alberta. Can Entomol. 1997;129:251–89.
Article
Google Scholar
Zompro O. Microphasma, a new stick insect genus from Sri Lanka. (Phasmatodea: Pachymorphinae). Entomol J. 1999;109:124–7.
Google Scholar
Zompro O. New phasmids from Venezuela and Ecuador Phasmatodea Neue Phasmiden aus Venezuela und Ecuador Phasmatodea. Entomol Z. 1998;10811:456–9.
Google Scholar
Zompro O. Philippine phasmids from the collection of the Staatliches Museums für Tierkunde, Dresden (Insecta: Phasmatodea). Reichenbachia. 2001;34:49–56.
Google Scholar
Zompro O. Revision of the genera of the Areolatae, including the status of Timema and Agathemera (Insecta, Phasmatodea). Keltern-Weiler: Goecke & Evers; 2004.
Google Scholar
Wardhaugh CW. Estimation of biomass from body length and width for tropical rainforest canopy invertebrates: invertebrate biomass measures. Aust J Entomol. 2013;52:291–8.
Article
Google Scholar
Novotny V, Kindlmann P. Distribution of body sizes in arthropod taxa and communities. Oikos. 1996;75:75–82.
Article
Google Scholar
Hodkinson ID, Casson DS. Patterns within patterns: abundance-size relationships within the Hemiptera of tropical rain forest or why phylogeny matters. Oikos. 2000;88:509–14.
Article
Google Scholar
D’Agostino RB. Transformation to normality of the null Distribution of g1. Biometrika. 1970;57:679–81.
Google Scholar
R Development Core Team. R: A Language and Environment for Statistical Computing. 2011.
Google Scholar
Komsta L, Novomestky F. moments: Moments, cumulants, skewness, kurtosis and related tests. R package version 0.13. 2012.
Revell LJ. Two new graphical methods for mapping trait evolution on phylogenies. Methods Ecol Evol. 2013;4:754–9.
Article
Google Scholar
Revell LJ. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol. 2012;3:217–23.
Article
Google Scholar
Blomberg SP, Garland T, Ives AR. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution. 2003;57:717–45.
Article
PubMed
Google Scholar
Orme CDL, Freckleton RP, Thomas GH, Petzoldt T, Fritz SA, Isaac NJB, Pearse W. caper: Comparative Analyses of Phylogenetics and Evolution in R. 2012.
Harmon LJ, Weir JT, Brock CD, Glor RE, Challenger W. GEIGER: investigating evolutionary radiations. Bioinformatics. 2008;24:129–31.
Article
PubMed
CAS
Google Scholar
Pennell MW, Eastman JM, Slater GJ, Brown JW, Uyeda JC, FitzJohn RG, et al. geiger v2.0: an expanded suite of methods for fitting macroevolutionary models to phylogenetic trees. Bioinformatics. 2014;30:2216–8.
Article
PubMed
CAS
Google Scholar
Butler MA, King AA. Phylogenetic comparative analysis: a modeling approach for adaptive evolution. Am Nat. 2004;164:683–95.
Article
Google Scholar
Rabosky DL. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS One. 2014;9:e89543.
Article
PubMed
PubMed Central
CAS
Google Scholar