Pennycuick CJ. Modelling the flying bird. Amsterdam: Academic; 2008.
Google Scholar
Rayner JV. Form and function in avian flight. In: Johnston R, editor. Current ornithology, vol. 5. New York: Plenum Press; 1988. p. 1–66.
Chapter
Google Scholar
Swartz SM, Iriarte-Díaz J, Riskin DK, Breuer KS. A bird? a plane? No, it's a bat: an introduction to the biomechanics of bat flight. In: Gunnell GF, Simmons NB, editors. Evolutionary history of bats. New York: Cambridge University Press; 2012. p. 318–52.
Google Scholar
Taylor GK, Thomas A. Evolutionary biomechanics. Oxford: Oxford University Press; 2014.
Book
Google Scholar
Taylor GK, Nudds RL, Thomas ALR. Flying and swimming animals cruise at a strouhal number tuned for high power efficiency. Nature. 2003;425(6959):707–11.
Article
CAS
PubMed
Google Scholar
Hutchinson J, Allen V. The evolutionary continuum of limb function from early theropods to birds. Naturwissenschaften. 2009;96(4):423–48.
Article
CAS
PubMed
Google Scholar
Moran AL. Egg size evolution in tropical American bivalves: the fossil record and the comparative method. Evolution. 2004;58:2718.
Article
PubMed
Google Scholar
Finarelli JA, Flynn JJ. Ancestral state reconstruction of body size in the caniformia (Carnivora, Mammalia): the effects of incorporating data from the fossil record. Syst Biol. 2006;55(2):301–13.
Article
PubMed
Google Scholar
Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO. The global diversity of birds in space and time. Nature. 2012;491:444–8.
Article
CAS
PubMed
Google Scholar
Rayner JMV, Dyke GJ. Origins and evolution of diversity in the avian wing. In: Vertebrate Biomechanics and Evolution. Bios Scientific; 2003. p. 297–314.
Google Scholar
Nudds RL, Kaiser GW, Dyke GJ. Scaling of avian primary feather length. PLoS One. 2011;6(2):e15665.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wang X, McGowan AJ, Dyke GJ. Avian wing proportions and flight styles: first step towards predicting the flight modes of Mesozoic birds. PLoS One. 2011;6:e28672.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chan NR, Dyke GJ, Benton MJ. Primary feather lengths may not be important for inferring the flight styles of Mesozoic birds. Lethaia. 2013;46(2):146–53.
Article
Google Scholar
Habib MB, Ruff CB. The effects of locomotion on the structural characteristics of avian limb bones. Zool J Linn Soc. 2008;153:601–24.
Article
Google Scholar
Simons ELR, Hieronymus TL, O'Connor PM. Cross sectional geometry of the forelimb skeleton and flight mode in pelecaniform birds. J Morphol. 2011;272(8):958–71.
Article
PubMed
Google Scholar
De Margerie E, Sanchez S, Cubo J, Castanet J. Torsional resistance as a principal component of the structural design of long bones: comparative multivariate evidence in birds. Anat Rec A Discov Mol Cell Evol Biol. 2005;282A:49–66.
Google Scholar
Simons ELR, O'Connor PM. Bone laminarity in the avian forelimb skeleton and its relationship to flight mode: testing functional interpretations. Anat Rec. 2012;295(3):386–96.
Article
Google Scholar
Elgin RA, Hone DWE, Frey E. The extent of the pterosaur flight membrane. Acta Palaeontol Pol. 2011;56(1):99–111.
Article
Google Scholar
Hedenstrom A, Johansson LC, Spedding GR. Bird or bat: comparing airframe design and flight performance. Bioinspir Biomim. 2009;4(1):015001.
Article
PubMed
Google Scholar
Owen R. On the anatomy of vertebrates, vol. 2. London: Longmans, Green and Co; 1866.
Google Scholar
Alix E. Éssai sur l'appareil locomoteur des oiseaux. Paris: G. Masson; 1874.
Book
Google Scholar
Pelissier M. L'appareil ligamentaire des rémiges des oiseaux. Arch Anat Hist Embryol. 1923;2:3–5.
Google Scholar
Sy M. Funktionell-anatomische Untersuchungen am Vogelflügel. J Ornithol. 1936;84:199–296.
Article
Google Scholar
Edington G, Miller AE. The avian ulna: its quill knobs. Proc R Soc Edinb B Biol. 1941;61:138–48.
Article
Google Scholar
Turner AH, Makovicky PJ, Norell MA. Feather quill knobs in the dinosaur velociraptor. Science. 2007;317:1721–1.
Article
CAS
PubMed
Google Scholar
Stegmann B. Der Processus internus indicis im Skelett des Vogelflügels. J Ornithol. 1963;104:413–23.
Article
Google Scholar
Stegmann BC. Relationships of the superorders alectoromorphae and charadriomorphae (Aves): a comparative study of the avian hand. Cambridge, Mass: Nuttall ornithological club; 1978.
Google Scholar
Usherwood JR. The aerodynamic forces and pressure distribution of a revolving pigeon wing. Exp Fluids. 2009;46(5):991–1003.
Article
PubMed Central
PubMed
Google Scholar
Legendre P, Anderson MJ. Distance-based redundancy analysis: testing multispecies responses in multifactorial ecological experiments. Ecol Monogr. 1999;69(1):1–24.
Article
Google Scholar
Cooper LN, Hieronymus TL, Vinyard CJ, Bajpai S, Thewissen JGM. New applications for constrained ordination: reconstructing feeding behaviors in fossil remingtonocetinae (Cetacea: Mammalia). In: Hembree DI, Platt BF, Smith JJ, editors. Experimental approaches to understanding fossil organisms. Dordrecht: Springer Netherlands; 2014. p. 89–107.
Chapter
Google Scholar
Desdevises Y, Legendre P, Azouzi L, Morand S. Quantifying phylogenetically structured environmental variation. Evolution. 2003;57:2647–52.
Article
PubMed
Google Scholar
Cubo J, Legendre P, De Ricqlès A, Montes L, De Margerie E, Castanet J, et al. Phylogenetic, functional, and structural components of variation in bone growth rate of amniotes. Evol Dev. 2008;10:217–27.
Article
PubMed
Google Scholar
Garland T, Dickerman AW, Janis CM, Jones JA. Phylogenetic analysis of covariance by computer simulation. Syst Biol. 1993;42:265–92.
Article
Google Scholar
Livezey BC, Zusi RL. Higher-order phylogeny of modern birds (Theropoda, Aves: Neornithes) based on comparative anatomy: I. Methods and characters. Bull Carnegie Museum of Natural History. 2006;37:544.
Article
Google Scholar
Stegmann B. Funktionell bedingte Eigenheiten am Metacarpus des Vogelflügels. J Ornithol. 1965;106(2):179–89.
Article
Google Scholar
Baumel JJ, Raikow RJ. Arthrologia. In: Baumel JJ, editor. Nomina anatomica avium. Cambridge, Massachusetts: Nuttall Ornithological Club; 1993. p. 133–218.
Google Scholar
Mayr G. A new Eocene swift‐like bird with a peculiar feathering. Ibis. 2003;145(3):382–91.
Article
Google Scholar
Ksepka DT, Clarke JA, Nesbitt SJ, Kulp FB, Grande L. Fossil evidence of wing shape in a stem relative of swifts and hummingbirds (Aves, Pan-Apodiformes). Proc R Soc B: Biological Sciences. 2013;280(1761):20130580.
Article
PubMed Central
PubMed
Google Scholar
Clarke JA. Morphology, phylogenetic taxonomy, and systematics of Ichthyornis and Apatornis (Aviale: Ornithurae). Bull Am Mus Nat Hist. 2004;286(1):1–179.
Article
Google Scholar
R Core Team. R: A language and environment for statistical computing. In: http://www.r-project.org. Vienna, Austria: R Foundation for Statistical Computing; 2012.
Google Scholar
Legendre P, Legendre L. Numerical ecology. Amsterdam: Elsevier; 1998.
Google Scholar
Hertel F, Ballance LT. Wing Ecomorphology of Seabirds from Johnston Atoll. Condor. 1999;101:549–56.
Article
Google Scholar
Warham J. Wing loadings, wing shapes, and flight capabilities of procellariiformes. New Zealand J Zoology. 1977;4:73–83.
Article
Google Scholar
Martins EP, Hansen TF. Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data. Am Nat. 1997;149:646–67.
Article
Google Scholar
Paradis E, Claude J, Strimmer K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics. 2004;20:289–90.
Article
CAS
PubMed
Google Scholar
Revell LJ. phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution. 2012;3(2):217–23.
Article
Google Scholar
Revell LJ. Size-correction and principal components for interspecific comparative studies. Evolution. 2009;63(12):3258–68.
Article
PubMed
Google Scholar
Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H: vegan: Community Ecology Package. In:
http://cran.r-project.org/web/packages/vegan/index.html; 2013.
O'Connor PM. Evolution of archosaurian body plans: skeletal adaptations of an air-sac-based breathing apparatus in birds and other archosaurs. J Exp Zool A Ecol Genet Physiol. 2009;311A:629–46.
Article
Google Scholar
Nudds RL, Dyke GJ, Rayner JMV. Forelimb proportions and the evolutionary radiation of Neornithes. Proc R Soc Lond Series B: Biol Sci. 2004;271:S324–7.
Article
Google Scholar
Wainwright PC, Alfaro ME, Bolnick DI, Hulsey CD. Many-to-One mapping of form to function: a general principle in organismal design? Integr Comp Biol. 2005;45:256–62.
Article
PubMed
Google Scholar
Wang X, Clarke JA. Phylogeny and forelimb disparity in waterbirds. Evolution. 2014;68:2847–60.
Article
PubMed
Google Scholar