Rask-Andersen M, Almen MS, Schioth HB: Trends in the exploitation of novel drug targets. Nat Rev Drug Discov. 2011, 10 (8): 579-590. 10.1038/nrd3478.
Article
PubMed
CAS
Google Scholar
Lagerström MC, Schiöth HB: Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat Rev Drug Discov. 2008, 7 (4): 339-357. 10.1038/nrd2518.
Article
PubMed
Google Scholar
Schioth HB, Fredriksson R: The GRAFS classification system of G-protein coupled receptors in comparative perspective. Gen Comp Endocrinol. 2005, 142 (1–2): 94-101. 10.1016/j.ygcen.2004.12.018.
Article
PubMed
Google Scholar
Fredriksson R, Lagerstrom MC, Lundin LG, Schioth HB: The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol. 2003, 63 (6): 1256-1272. 10.1124/mol.63.6.1256.
Article
PubMed
CAS
Google Scholar
Brody T, Cravchik A: Drosophila melanogaster G protein-coupled receptors. J Cell Biol. 2000, 150 (2): F83-F88. 10.1083/jcb.150.2.F83.
Article
PubMed
CAS
Google Scholar
Krishnan A, Almen MS, Fredriksson R, Schioth HB: Remarkable similarities between the hemichordate (Saccoglossus kowalevskii) and vertebrate GPCR repertoire. Gene. 2013, 526 (2): 122-133. 10.1016/j.gene.2013.05.005.
Article
PubMed
CAS
Google Scholar
Nordstrom KJ, Fredriksson R, Schioth HB: The amphioxus (Branchiostoma floridae) genome contains a highly diversified set of G protein-coupled receptors. BMC Evol Biol. 2008, 8: 9-10.1186/1471-2148-8-9.
Article
PubMed
PubMed Central
Google Scholar
Kamesh N, Aradhyam GK, Manoj N: The repertoire of G protein-coupled receptors in the sea squirt Ciona intestinalis. BMC Evol Biol. 2008, 8: 129-10.1186/1471-2148-8-129.
Article
PubMed
CAS
PubMed Central
Google Scholar
Krishnan A, Almén MS, Fredriksson R, Schiöth HB: The origin of GPCRs: identification of mammalian like Rhodopsin, Adhesion, Glutamate and Frizzled GPCRs in fungi. PLoS ONE. 2012, 7 (1): e29817-10.1371/journal.pone.0029817.
Article
PubMed
CAS
PubMed Central
Google Scholar
de Mendoza A, Sebe-Pedros A, Ruiz-Trillo I: The evolution of the GPCR signaling system in eukaryotes: modularity, conservation, and the transition to metazoan multicellularity. Genome Biol Evol. 2014, 6 (3): 606-619. 10.1093/gbe/evu038.
Article
PubMed
CAS
PubMed Central
Google Scholar
Srivastava M, Simakov O, Chapman J, Fahey B, Gauthier MEA, Mitros T, Richards GS, Conaco C, Dacre M, Hellsten U, Larroux C, Putnam NH, Stanke M, Adamska M, Darling A, Degnan SM, Oakley TH, Plachetzki DC, Zhai Y, Adamski M, Calcino A, Cummins SF, Goodstein DM, Harris C, Jackson DJ, Leys SP, Shu S, Woodcroft BJ, Vervoort M, Kosik KS, et al: The Amphimedon queenslandica genome and the evolution of animal complexity. Nature. 2010, 466 (7307): 720-726. 10.1038/nature09201.
Article
PubMed
CAS
PubMed Central
Google Scholar
Conaco C, Neveu P, Zhou H, Arcila ML, Degnan SM, Degnan BM, Kosik KS: Transcriptome profiling of the demosponge Amphimedon queenslandica reveals genome-wide events that accompany major life cycle transitions. BMC Genomics. 2012, 13: 209-10.1186/1471-2164-13-209.
Article
PubMed
CAS
PubMed Central
Google Scholar
Sakarya O, Armstrong KA, Adamska M, Adamski M, Wang IF, Tidor B, Degnan BM, Oakley TH, Kosik KS: A post-synaptic scaffold at the origin of the animal kingdom. PLoS One. 2007, 2 (6): e506-10.1371/journal.pone.0000506.
Article
PubMed
PubMed Central
Google Scholar
Adamska M, Larroux C, Adamski M, Green K, Lovas E, Koop D, Richards GS, Zwafink C, Degnan BM: Structure and expression of conserved Wnt pathway components in the demosponge Amphimedon queenslandica. Evol Dev. 2010, 12 (5): 494-518. 10.1111/j.1525-142X.2010.00435.x.
Article
PubMed
CAS
Google Scholar
King N, Westbrook MJ, Young SL, Kuo A, Abedin M, Chapman J, Fairclough S, Hellsten U, Isogai Y, Letunic I, Marr M, Pincus D, Putnam N, Rokas A, Wright KJ, Zuzow R, Dirks W, Good M, Goodstein D, Lemons D, Li W, Lyons JB, Morris A, Nichols S, Richter DJ, Salamov A, Sequencing JG, Bork P, Lim WA, Manning G, et al: The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature. 2008, 451 (7180): 783-788. 10.1038/nature06617.
Article
PubMed
CAS
PubMed Central
Google Scholar
Suga H, Chen Z, de Mendoza A, Sebe-Pedros A, Brown MW, Kramer E, Carr M, Kerner P, Vervoort M, Sanchez-Pons N, Torruella G, Derelle R, Manning G, Lang BF, Russ C, Haas BJ, Roger AJ, Nusbaum C, Ruiz-Trillo I: The Capsaspora genome reveals a complex unicellular prehistory of animals. Nat Commun. 2013, 4: 2325-10.1038/ncomms3325.
Article
PubMed
PubMed Central
Google Scholar
Srivastava M, Begovic E, Chapman J, Putnam NH, Hellsten U, Kawashima T, Kuo A, Mitros T, Salamov A, Carpenter ML, Signorovitch AY, Moreno MA, Kamm K, Grimwood J, Schmutz J, Shapiro H, Grigoriev IV, Buss LW, Schierwater B, Dellaporta SL, Rokhsar DS: The Trichoplax genome and the nature of placozoans. Nature. 2008, 454 (7207): 955-960. 10.1038/nature07191.
Article
PubMed
CAS
Google Scholar
Nordstrom KJ, Sallman Almen M, Edstam MM, Fredriksson R, Schioth HB: Independent HHsearch, Needleman–Wunsch-based, and motif analyses reveal the overall hierarchy for most of the G protein-coupled receptor families. Mol Biol Evol. 2011, 28 (9): 2471-2480. 10.1093/molbev/msr061.
Article
PubMed
Google Scholar
Degnan BM, Adamska M, Craigie A, Degnan SM, Fahey B, Gauthier M, Hooper JN, Larroux C, Leys SP, Lovas E, Richards GS: The demosponge amphimedon queenslandica: reconstructing the ancestral metazoan genome and deciphering the origin of animal multicellularity. CSH Protoc. 2008, 2008: pdb emo108-
PubMed
Google Scholar
Leys SP, Hill A: The physiology and molecular biology of sponge tissues. Adv Mar Biol. 2012, 62: 1-56. 10.1016/B978-0-12-394283-8.00001-1.
Article
PubMed
Google Scholar
Fahey B, Degnan BM: Origin of animal epithelia: insights from the sponge genome. Evol Dev. 2010, 12 (6): 601-617. 10.1111/j.1525-142X.2010.00445.x.
Article
PubMed
CAS
Google Scholar
Miller DJ, Ball EE: Animal evolution: the enigmatic phylum placozoa revisited. Curr Biol. 2005, 15 (1): R26-R28. 10.1016/j.cub.2004.12.016.
Article
PubMed
CAS
Google Scholar
Technau U, Steele RE: Evolutionary crossroads in developmental biology: Cnidaria. Development. 2011, 138 (8): 1447-1458. 10.1242/dev.048959.
Article
PubMed
CAS
PubMed Central
Google Scholar
Watanabe H, Fujisawa T, Holstein TW: Cnidarians and the evolutionary origin of the nervous system. Dev Growth Differ. 2009, 51 (3): 167-183. 10.1111/j.1440-169X.2009.01103.x.
Article
PubMed
CAS
Google Scholar
Harmar AJ: Family-B G-protein-coupled receptors. Genome Biol. 2001, 2 (12): REVIEWS3013-10.1186/gb-2001-2-12-reviews3013.
Article
PubMed
CAS
PubMed Central
Google Scholar
Nordström KJV, Lagerström MC, Wallér LMJ, Fredriksson R, Schiöth HB: The Secretin GPCRs Descended from the Family of Adhesion GPCRs. Mol Biol Evol. 2009, 26 (1): 71-84. 10.1093/molbev/msn228.
Article
PubMed
Google Scholar
Cardoso JC, Pinto VC, Vieira FA, Clark MS, Power DM: Evolution of secretin family GPCR members in the metazoa. BMC Evol Biol. 2006, 6: 108-10.1186/1471-2148-6-108.
Article
PubMed
PubMed Central
Google Scholar
Fredriksson R, Schioth HB: The repertoire of G-protein-coupled receptors in fully sequenced genomes. Mol Pharmacol. 2005, 67 (5): 1414-1425. 10.1124/mol.104.009001.
Article
PubMed
CAS
Google Scholar
Resnick D, Pearson A, Krieger M: The SRCR superfamily: a family reminiscent of the Ig superfamily. Trends Biochem Sci. 1994, 19 (1): 5-8. 10.1016/0968-0004(94)90165-1.
Article
PubMed
CAS
Google Scholar
Sarrias MR, Gronlund J, Padilla O, Madsen J, Holmskov U, Lozano F: The Scavenger Receptor Cysteine-Rich (SRCR) domain: an ancient and highly conserved protein module of the innate immune system. Crit Rev Immunol. 2004, 24 (1): 1-37. 10.1615/CritRevImmunol.v24.i1.10.
Article
PubMed
CAS
Google Scholar
Riesgo A, Farrar N, Windsor PJ, Giribet G, Leys SP: The analysis of eight transcriptomes from all poriferan classes reveals surprising genetic complexity in sponges. Mol Biol Evol. 2014, 31 (5): 1102-1120. 10.1093/molbev/msu057.
Article
PubMed
CAS
Google Scholar
Martindale MQ: The evolution of metazoan axial properties. Nat Rev Genet. 2005, 6 (12): 917-927. 10.1038/nrg1725.
Article
PubMed
CAS
Google Scholar
Muller WE: The origin of metazoan complexity: porifera as integrated animals. Integr Comp Biol. 2003, 43 (1): 3-10. 10.1093/icb/43.1.3.
Article
PubMed
Google Scholar
Jekely G: Global view of the evolution and diversity of metazoan neuropeptide signaling. Proc Natl Acad Sci U S A. 2013, 110 (21): 8702-8707. 10.1073/pnas.1221833110.
Article
PubMed
CAS
PubMed Central
Google Scholar
Strotmann R, Schrock K, Boselt I, Staubert C, Russ A, Schoneberg T: Evolution of GPCR: change and continuity. Mol Cell Endocrinol. 2011, 331 (2): 170-178. 10.1016/j.mce.2010.07.012.
Article
PubMed
CAS
Google Scholar
Mirabeau O, Joly JS: Molecular evolution of peptidergic signaling systems in bilaterians. Proc Natl Acad Sci U S A. 2013, 110 (22): E2028-E2037. 10.1073/pnas.1219956110.
Article
PubMed
CAS
PubMed Central
Google Scholar
Anctil M: Chemical transmission in the sea anemone Nematostella vectensis: a genomic perspective. Comp Biochem Physiol Part D Genomics Proteomics. 2009, 4 (4): 268-289. 10.1016/j.cbd.2009.07.001.
Article
PubMed
Google Scholar
Ryan JF, Pang K, Schnitzler CE, Nguyen AD, Moreland RT, Simmons DK, Koch BJ, Francis WR, Havlak P, Smith SA, Putnam NH, Haddock SH, Dunn CW, Wolfsberg TG, Mullikin JC, Martindale MQ, Baxevanis AD: The genome of the ctenophore Mnemiopsis leidyi and its implications for cell type evolution. Science. 2013, 342 (6164): 1242592-10.1126/science.1242592.
Article
PubMed
PubMed Central
Google Scholar
Holland LZ, Carvalho JE, Escriva H, Laudet V, Schubert M, Shimeld SM, Yu JK: Evolution of bilaterian central nervous systems: a single origin?. Evodevo. 2013, 4 (1): 27-10.1186/2041-9139-4-27.
Article
PubMed
PubMed Central
Google Scholar
Brooke NM, Holland PW: The evolution of multicellularity and early animal genomes. Curr Opin Genet Dev. 2003, 13 (6): 599-603. 10.1016/j.gde.2003.09.002.
Article
PubMed
CAS
Google Scholar
Abedin M, King N: Diverse evolutionary paths to cell adhesion. Trends Cell Biol. 2010, 20 (12): 734-742. 10.1016/j.tcb.2010.08.002.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ruiz-Trillo I, Burger G, Holland PW, King N, Lang BF, Roger AJ, Gray MW: The origins of multicellularity: a multi-taxon genome initiative. Trends Genet. 2007, 23 (3): 113-118. 10.1016/j.tig.2007.01.005.
Article
PubMed
CAS
Google Scholar
Lange M, Norton W, Coolen M, Chaminade M, Merker S, Proft F, Schmitt A, Vernier P, Lesch KP, Bally-Cuif L: The ADHD-susceptibility gene lphn3.1 modulates dopaminergic neuron formation and locomotor activity during zebrafish development. Mol Psychiatry. 2012, 17 (9): 946-954. 10.1038/mp.2012.29.
Article
PubMed
CAS
Google Scholar
Arcos-Burgos M, Jain M, Acosta MT, Shively S, Stanescu H, Wallis D, Domene S, Velez JI, Karkera JD, Balog J, Berg K, Kleta R, Gahl WA, Roessler E, Long R, Lie J, Pineda D, Londoño AC, Palacio JD, Arbelaez A, Lopera F, Elia J, Hakonarson H, Johansson S, Knappskog PM, Haavik J, Ribases M, Cormand B, Bayes M, Casas M, et al: A common variant of the latrophilin 3 gene, LPHN3, confers susceptibility to ADHD and predicts effectiveness of stimulant medication. Mol Psychiatry. 2010, 15 (11): 1053-1066. 10.1038/mp.2010.6.
Article
PubMed
CAS
Google Scholar
Langenhan T, Aust G, Hamann J: Sticky signaling--adhesion class G protein-coupled receptors take the stage. Sci Signal. 2013, 6 (2): re3-
PubMed
Google Scholar
Silva JP, Lelianova VG, Ermolyuk YS, Vysokov N, Hitchen PG, Berninghausen O, Rahman MA, Zangrandi A, Fidalgo S, Tonevitsky AG, Dell A, Volynski KE, Ushkaryov YA: Latrophilin 1 and its endogenous ligand Lasso/teneurin-2 form a high-affinity transsynaptic receptor pair with signaling capabilities. Proc Natl Acad Sci U S A. 2011, 108 (29): 12113-12118. 10.1073/pnas.1019434108.
Article
PubMed
CAS
PubMed Central
Google Scholar
Boucard AA, Ko J, Sudhof TC: High affinity neurexin binding to cell adhesion G-protein-coupled receptor CIRL1/latrophilin-1 produces an intercellular adhesion complex. J Biol Chem. 2012, 287 (12): 9399-9413. 10.1074/jbc.M111.318659.
Article
PubMed
CAS
PubMed Central
Google Scholar
O’Sullivan ML, de Wit J, Savas JN, Comoletti D, Otto-Hitt S, Yates JR, Ghosh A: FLRT proteins are endogenous latrophilin ligands and regulate excitatory synapse development. Neuron. 2012, 73 (5): 903-910. 10.1016/j.neuron.2012.01.018.
Article
PubMed
PubMed Central
Google Scholar
Aumailley M: The laminin family. Cell Adh Migr. 2013, 7 (1): 48-55. 10.4161/cam.22826.
Article
PubMed
PubMed Central
Google Scholar
van Roy F, Berx G: The cell-cell adhesion molecule E-cadherin. Cell Mol Life Sci. 2008, 65 (23): 3756-3788. 10.1007/s00018-008-8281-1.
Article
PubMed
CAS
Google Scholar
Halbleib JM, Nelson WJ: Cadherins in development: cell adhesion, sorting, and tissue morphogenesis. Genes Dev. 2006, 20 (23): 3199-3214. 10.1101/gad.1486806.
Article
PubMed
CAS
Google Scholar
Paavola KJ, Hall RA: Adhesion G protein-coupled receptors: signaling, pharmacology, and mechanisms of activation. Mol Pharmacol. 2012, 82 (5): 777-783. 10.1124/mol.112.080309.
Article
PubMed
CAS
PubMed Central
Google Scholar
DeLorey RWOaTM,: GABA Synthesis, Uptake and Release. 1999, Lippincott-Raven, Philadelphia, 6
Google Scholar
Eichinger L, Pachebat JA, Glockner G, Rajandream MA, Sucgang R, Berriman M, Song J, Olsen R, Szafranski K, Xu Q, Tunggal B, Kummerfeld S, Madera M, Konfortov BA, Rivero F, Bankier AT, Lehmann R, Hamlin N, Davies R, Gaudet P, Fey P, Pilcher K, Chen G, Saunders D, Sodergren E, Davis P, Kerhornou A, Nie X, Hall N, Anjard C, et al: The genome of the social amoeba Dictyostelium discoideum. Nature. 2005, 435 (7038): 43-57. 10.1038/nature03481.
Article
PubMed
CAS
PubMed Central
Google Scholar
Prabhu Y, Muller R, Anjard C, Noegel AA: GrlJ, a Dictyostelium GABAB-like receptor with roles in post-aggregation development. BMC Dev Biol. 2007, 7: 44-10.1186/1471-213X-7-44.
Article
PubMed
PubMed Central
Google Scholar
Skerry TM, Genever PG: Glutamate signalling in non-neuronal tissues. Trends Pharmacol Sci. 2001, 22 (4): 174-181. 10.1016/S0165-6147(00)01642-4.
Article
PubMed
CAS
Google Scholar
Elliott GRD, Leys SP: Evidence for glutamate, GABA and NO in coordinating behaviour in the sponge, Ephydatia muelleri (Demospongiae, Spongillidae). J Exp Biol. 2010, 213 (13): 2310-2321. 10.1242/jeb.039859.
Article
PubMed
CAS
Google Scholar
Moroz LL, Kocot KM, Citarella MR, Dosung S, Norekian TP, Povolotskaya IS, Grigorenko AP, Dailey C, Berezikov E, Buckley KM, Ptitsyn A, Reshetov D, Mukherjee K, Moroz TP, Bobkova Y, Yu F, Kapitonov VV, Jurka J, Bobkov YV, Swore JJ, Girardo DO, Fodor A, Gusev F, Sanford R, Bruders R, Kittler E, Mills CE, Rast JP, Derelle R, Solovyev VV, et al: The ctenophore genome and the evolutionary origins of neural systems. Nature. 2014, 510 (7503): 109-114. 10.1038/nature13400.
Article
PubMed
CAS
PubMed Central
Google Scholar
Nedergaard M, Takano T, Hansen AJ: Beyond the role of glutamate as a neurotransmitter. Nat Rev Neurosci. 2002, 3 (9): 748-755. 10.1038/nrn916.
Article
PubMed
CAS
Google Scholar
Niimura Y: On the origin and evolution of vertebrate olfactory receptor genes: comparative genome analysis among 23 chordate species. Genome Biol Evol. 2009, 1: 34-44. 10.1093/gbe/evp003.
Article
PubMed
PubMed Central
Google Scholar
Krishnan A, Almen MS, Fredriksson R, Schioth HB: Insights into the origin of nematode chemosensory GPCRs: putative orthologs of the Srw family are found across several phyla of protostomes. PLoS One. 2014, 9 (3): e93048-10.1371/journal.pone.0093048.
Article
PubMed
PubMed Central
Google Scholar
Nikitin M: Bioinformatic prediction of Trichoplax adhaerens regulatory peptides. Gen Comp Endocrinol 2014, pii: S0016-6480(14)00126-9.
Kersey PJ, Staines DM, Lawson D, Kulesha E, Derwent P, Humphrey JC, Hughes DS, Keenan S, Kerhornou A, Koscielny G, Langridge N, McDowall MD, Megy K, Maheswari U, Nuhn M, Paulini M, Pedro H, Toneva I, Wilson D, Yates A, Birney E: Ensembl Genomes: an integrative resource for genome-scale data from non-vertebrate species. Nucleic Acids Res. 2012, 40 (Database issue): D91-D97. 10.1093/nar/gkr895.
Article
PubMed
CAS
PubMed Central
Google Scholar
Grigoriev IV, Nordberg H, Shabalov I, Aerts A, Cantor M, Goodstein D, Kuo A, Minovitsky S, Nikitin R, Ohm RA, Otillar R, Poliakov A, Ratnere I, Riley R, Smirnova T, Rokhsar D, Dubchak I: The genome portal of the Department of Energy Joint Genome Institute. Nucleic Acids Res. 2012, 40 (Database issue): D26-D32. 10.1093/nar/gkr947.
Article
PubMed
CAS
PubMed Central
Google Scholar
Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, Heger A, Holm L, Sonnhammer ELL, Eddy SR, Bateman A, Finn RD: The Pfam protein families database. Nucleic Acids Res. 2011, 40 (D1): D290-D301. 10.1093/nar/gkr1065.
Article
PubMed
PubMed Central
Google Scholar
Eddy SR: Accelerated profile HMM searches. PLoS Comput Biol. 2011, 7 (10): e1002195-10.1371/journal.pcbi.1002195.
Article
PubMed
CAS
PubMed Central
Google Scholar
Finn RD, Tate J, Mistry J, Coggill PC, Sammut SJ, Hotz HR, Ceric G, Forslund K, Eddy SR, Sonnhammer ELL, Bateman A: The Pfam protein families database. Nucleic Acids Res. 2007, 36 (Database): D281-D288. 10.1093/nar/gkm960.
Article
PubMed
PubMed Central
Google Scholar
Käll L, Krogh A, Sonnhammer ELL: A combined transmembrane topology and signal peptide prediction method. J Mol Biol. 2004, 338 (5): 1027-1036. 10.1016/j.jmb.2004.03.016.
Article
PubMed
Google Scholar
Tusnády GE, Simon I: The HMMTOP transmembrane topology prediction server. Bioinformatics. 2001, 17 (9): 849-850. 10.1093/bioinformatics/17.9.849.
Article
PubMed
Google Scholar
Katoh K, Toh H: Recent developments in the MAFFT multiple sequence alignment program. Brief Bioinform. 2008, 9 (4): 286-298. 10.1093/bib/bbn013.
Article
PubMed
CAS
Google Scholar
Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 2003, 19 (12): 1572-1574. 10.1093/bioinformatics/btg180.
Article
PubMed
CAS
Google Scholar
Stamatakis A: RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006, 22 (21): 2688-2690. 10.1093/bioinformatics/btl446.
Article
PubMed
CAS
Google Scholar
Darriba D, Taboada GL, Doallo R, Posada D: ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics. 2011, 27 (8): 1164-1165. 10.1093/bioinformatics/btr088.
Article
PubMed
CAS
Google Scholar
Whelan S, Goldman N: A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol. 2001, 18 (5): 691-699. 10.1093/oxfordjournals.molbev.a003851.
Article
PubMed
CAS
Google Scholar
Krishnan A, Dnyansagar R, Almén MS, Williams MJ, Fredriksson R, Narayanan M, Schiöth HB: Data from: The GPCR repertoire in the demosponge Amphimedon queenslandica: insights into the GPCR system at the early divergence of animals. Dryad Data Repository. doi: 10.5061/dryad.43t7r.