Brock PM, Murdock CC, Martin LB: The history of ecoimmunology and its integration with disease ecology. Integr Comp Biol. 2014, 54 (3): 353-362. 10.1093/icb/icu046.
Article
PubMed
PubMed Central
Google Scholar
Delves PJ, Martin SJ, Burton DR: Essentials : Roitt’s Essential Immunology (12th Edition). 2011, Wiley-Blackwell, Hoboken, NJ, USA
Google Scholar
King AE, Paltoo A, Kelly RW, Sallenave JM, Bocking AD, Challis JRG: Expression of natural antimicrobials by human placenta and fetal membranes. Placenta. 2007, 28 (2–3): 161-169. 10.1016/j.placenta.2006.01.006.
Article
PubMed
CAS
Google Scholar
Rolff J, Reynolds SE: Insect Infection and Immunity; Evolution, Ecology and Mechanisms. 2009, Oxford University Press, Oxford, UK
Book
Google Scholar
Hasselquist D, Nilsson J-Å: Maternal transfer of antibodies in vertebrates: trans-generational effects on offspring immunity. Philos Trans R Soc B Biol Sci. 2009, 364 (1513): 51-60. 10.1098/rstb.2008.0137.
Article
Google Scholar
D’Alba L, Shawkey M, Korsten P, Vedder O, Kingma S, Komdeur J, Beissinger S: Differential deposition of antimicrobial proteins in blue tit (Cyanistes caeruleus) clutches by laying order and male attractiveness. Behav Ecol Sociobiol. 2010, 64 (6): 1037-1045. 10.1007/s00265-010-0919-y.
Article
PubMed
PubMed Central
Google Scholar
Hathaway JJ, Adema CM, Stout BA, Mobarak CD, Loker ES: Identification of protein components of egg masses indicates parental investment in immunoprotection of offspring by Biomphalaria glabrata (gastropoda, mollusca). Dev Comp Immunol. 2010, 34 (4): 425-435. 10.1016/j.dci.2009.12.001.
Article
PubMed
CAS
PubMed Central
Google Scholar
Trauer U, Hilker M: Parental legacy in insects: variation of transgenerational immune priming during offspring development. PLoS One. 2013, 8 (5): e63392-10.1371/journal.pone.0063392.
Article
PubMed
CAS
PubMed Central
Google Scholar
Freitak D, Schmidtberg H, Dickel F, Lochnit G, Vogel H, Vilcinskas A: The maternal transfer of bacteria can mediate trans-generational immune priming in insects. Virulence. 2014, 5 (4): 547-554. 10.4161/viru.28367.
Article
PubMed
PubMed Central
Google Scholar
Zanchi C, Troussard JP, Moreau J, Moret Y: Relationship between maternal transfer of immunity and mother fecundity in an insect. Proc Biol Sci. 2012, 279 (1741): 3223-3230. 10.1098/rspb.2012.0493.
Article
PubMed
CAS
PubMed Central
Google Scholar
Hernández López J, Schuehly W, Crailsheim K, Riessberger-Gallé U: Trans-generational immune priming in honeybees. Proc Biol Sci. 2014, 281 (1785): 20140454-10.1098/rspb.2014.0454.
Article
PubMed
PubMed Central
Google Scholar
Moreau J, Martinaud G, Troussard J-P, Zanchi C, Moret Y: Trans-generational immune priming is constrained by the maternal immune response in an insect. Oikos. 2012, 121 (11): 1828-1832. 10.1111/j.1600-0706.2011.19933.x.
Article
Google Scholar
Roth O, Joop G, Eggert H, Hilbert J, Daniel J, Schmid-Hempel P, Kurtz J: Paternally derived immune priming for offspring in the red flour beetle, Tribolium castaneum. J Animal Ecol. 2010, 79 (2): 403-413. 10.1111/j.1365-2656.2009.01617.x.
Article
Google Scholar
Gorman MJ, Kankanala P, Kanost MR: Bacterial challenge stimulates innate immune responses in extra-embryonic tissues of tobacco hornworm eggs. Insect Mol Biol. 2004, 13 (1): 19-24. 10.1111/j.1365-2583.2004.00454.x.
Article
PubMed
CAS
Google Scholar
Jacobs CGC, van der Zee M: Immune competence in insect eggs depends on the extraembryonic serosa. Dev Comp Immunol. 2013, 41 (2): 263-269. 10.1016/j.dci.2013.05.017.
Article
PubMed
CAS
Google Scholar
Rozen DE, Engelmoer DJP, Smiseth PT: Antimicrobial strategies in burying beetles breeding on carrion. Proc Natl Acad Sci. 2008, 105 (46): 17890-17895. 10.1073/pnas.0805403105.
Article
PubMed
CAS
PubMed Central
Google Scholar
Scott MP: The ecology and behavior of burying beetles. Annu Rev Entomol. 1998, 43 (1): 595-618. 10.1146/annurev.ento.43.1.595.
Article
PubMed
CAS
Google Scholar
Smiseth PT, Ward RJS, Moore AJ: Asynchronous hatching in Nicrophorus vespilloides, an insect in which parents provide food for their offspring. Funct Ecol. 2006, 20 (1): 151-156. 10.1111/j.1365-2435.2006.01072.x.
Article
Google Scholar
Lock JE, Smiseth PT, Moore AJ: Selection, inheritance, and the evolution of parent-offspring interactions. Am Nat. 2004, 164 (1): 13-24. 10.1086/421444.
Article
PubMed
Google Scholar
Arce AN, Johnston PR, Smiseth PT, Rozen DE: Mechanisms and fitness effects of antibacterial defences in a carrion beetle. J Evol Biol. 2012, 25 (5): 930-937. 10.1111/j.1420-9101.2012.02486.x.
Article
PubMed
CAS
Google Scholar
Reavey CE, Warnock ND, Vogel H, Cotter SC: Trade-offs between personal immunity and reproduction in the burying beetle, Nicrophorus vespilloides. Behav Ecol. 2014, doi:10.1093/beheco/art127
Hall CL, Wadsworth NK, Howard DR, Jennings EM, Farrell LD, Magnuson TS, Smith RJ: Inhibition of microorganisms on a carrion breeding resource: the antimicrobial peptide activity of burying beetle (Coleoptera: Silphidae) oral and anal secretions. Environ Entomol. 2011, 40 (3): 669-678. 10.1603/EN10137.
Article
PubMed
Google Scholar
Cotter SC, Kilner RM: Sexual division of antibacterial resource defence in breeding burying beetles, Nicrophorus vespilloides. J Animal Ecol. 2010, 79 (1): 35-43. 10.1111/j.1365-2656.2009.01593.x.
Article
Google Scholar
Arce AN, Smiseth PT, Rozen DE: Antimicrobial secretions and social immunity in larval burying beetles, Nicrophorus vespilloides. Animal Behaviour. 2013, 86 (4): 741-745. 10.1016/j.anbehav.2013.07.008.
Article
Google Scholar
Reavey CE, Beare L, Cotter SC: Parental care influences social immunity in burying beetle larvae. Ecol Entomol. 2014, 39 (3): 395-398. 10.1111/een.12099.
Article
Google Scholar
Urbański A, Czarniewska E, Baraniak E, Rosiński G: Developmental changes in cellular and humoral responses of the burying beetle Nicrophorus vespilloides (Coleoptera, Silphidae). J Insect Physiol. 2014, 60: 98-103. 10.1016/j.jinsphys.2013.11.009.
Article
PubMed
Google Scholar
Cotter SC, Topham E, Price AJP, Kilner RM: Fitness costs associated with mounting a social immune response. Ecol Lett. 2010, 13 (9): 1114-1123. 10.1111/j.1461-0248.2010.01500.x.
Article
PubMed
CAS
Google Scholar
Steiger S, Gershman SN, Pettinger AM, Eggert A-K, Sakaluk SK: Sex differences in immunity and rapid upregulation of immune defence during parental care in the burying beetle, Nicrophorus orbicollis. Functional Ecology. 2011, 25 (6): 1368-1378. 10.1111/j.1365-2435.2011.01895.x.
Article
Google Scholar
Vogel H, Badapanda C, Vilcinskas A: Identification of immunity-related genes in the burying beetle Nicrophorus vespilloides by suppression subtractive hybridization. Insect Mol Biol. 2011, 20 (6): 787-800. 10.1111/j.1365-2583.2011.01109.x.
Article
PubMed
CAS
Google Scholar
Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001, 25 (4): 402-408. 10.1006/meth.2001.1262.
Article
PubMed
CAS
Google Scholar
Jacobs CGC, Rezende GL, Lamers GEM, Van Der Zee M: The extraembryonic serosa protects the insect egg against desiccation. Proc Biol Sci. 2013, 280 (1764): 20131082-10.1098/rspb.2013.1082.
Article
PubMed
PubMed Central
Google Scholar
Rafiqi AM, Lemke S, Ferguson S, Stauber M, Schmidt-Ott U: Evolutionary origin of the amnioserosa in cyclorrhaphan flies correlates with spatial and temporal expression changes of zen. Proc Natl Acad Sci U S A. 2008, 105 (1): 234-239. 10.1073/pnas.0709145105.
Article
PubMed
CAS
PubMed Central
Google Scholar
Schmidt-Ott U: The amnioserosa is an apomorphic character of cyclorrhaphan flies. Dev Genes Evol. 2000, 210 (7): 373-376. 10.1007/s004270000068.
Article
PubMed
CAS
Google Scholar
Roth S: Gastrulation in other insects. Gastrulation: From Cells to Embryos. 2004, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 105-121.
Google Scholar
Carter DO, Yellowlees D, Tibbett M: Cadaver decomposition in terrestrial ecosystems. Naturwissenschaften. 2007, 94 (1): 12-24. 10.1007/s00114-006-0159-1.
Article
PubMed
CAS
Google Scholar
McLean AHC, Arce AN, Smiseth PT, Rozen DE: Late-life and intergenerational effects of larval exposure to microbial competitors in the burying beetle Nicrophorus vespilloides. J Evol Biol. 2014, 27 (6): 1205-1216. 10.1111/jeb.12394.
Article
PubMed
CAS
Google Scholar
Degenkolb T, During RA, Vilcinskas A: Secondary metabolites released by the burying beetle Nicrophorus vespilloides: chemical analyses and possible ecological functions. J Chem Ecol. 2011, 37 (7): 724-735. 10.1007/s10886-011-9978-4.
Article
PubMed
CAS
Google Scholar
Wilson DS, Fudge J: Burying beetles: intraspecific interactions and reproductive success in the field. Ecol Entomol. 1984, 9 (2): 195-203. 10.1111/j.1365-2311.1984.tb00715.x.
Article
Google Scholar
Ward RJS, Cotter SC, Kilner RM: Current brood size and residual reproductive value predict offspring desertion in the burying beetle Nicrophorus vespilloides. Behav Ecol. 2009, 20 (6): 1274-1281. 10.1093/beheco/arp132.
Article
Google Scholar
Trumbo ST: Regulation of brood size in a burying beetle, nicrophorus-tomentosus (SILPHIDAE). J Insect Behavior. 1990, 3 (4): 491-500. 10.1007/BF01052013.
Article
Google Scholar
Trumbo ST, Fernandez AG: Regulation of brood size by male parents and cues employed to assess resource size by burying beetles. Ethol Ecol Evol. 1995, 7 (4): 313-322. 10.1080/08927014.1995.9522939.
Article
Google Scholar
Boos S, Meunier J, Pichon S, Kölliker M: Maternal care provides antifungal protection to eggs in the European earwig. Behav Ecol. 2014, 25 (4): 754-761. 10.1093/beheco/aru046.
Article
Google Scholar
Zeh DW, Zeh JA, Smith RL: Ovipositors, Amnions and eggshell architecture in the diversification of terrestrial arthropods. Q Rev Biol. 1989, 64 (2): 147-168. 10.1086/416238.
Article
Google Scholar
Royle NJ, Smiseth PT, Kölliker M: The Evolution of Parental Care. 2012, Oxford University Press, Oxford
Book
Google Scholar
Abasa RO: Effects of temperature, relative humidity, lipid and water content on post-oviposition development of eggs of Stomoxys calcitrans. Entomol Exp Appl. 1983, 33 (3): 259-262. 10.1111/j.1570-7458.1983.tb03266.x.
Article
Google Scholar
Howe RW: The effect of temperature and humidity on the rate of development and mortality of Tribolium Castaneum (Herbst) (Coleoptera, Tenebrionidae). Ann Appl Biol. 1956, 44 (2): 356-368. 10.1111/j.1744-7348.1956.tb02128.x.
Article
Google Scholar
Kingsolver JG, Nagle A: Evolutionary divergence in thermal sensitivity and diapause of field and laboratory populations of manduca sexta. Physiol Biochem Zool. 2007, 80 (5): 473-479. 10.1086/519962.
Article
PubMed
Google Scholar
Urbanski JM, Benoit JB, Michaud MR, Denlinger DL, Armbruster P: The molecular physiology of increased egg desiccation resistance during diapause in the invasive mosquito, Aedes albopictus. Proc Biol Sci. 2010, 277 (1694): 2683-2692. 10.1098/rspb.2010.0362.
Article
PubMed
CAS
PubMed Central
Google Scholar
Lozano-Durán R, Macho AP, Boutrot F, Segonzac C, Somssich IE, Zipfel C, Nürnberger T: The transcriptional regulator BZR1 mediates trade-off between plant innate immunity and growth. eLife. 2013, 2: e00983-10.7554/eLife.00983.
Article
PubMed
PubMed Central
Google Scholar
Brommer JE: Immunocompetence and its costs during development: an experimental study in blue tit nestlings. Proc Biol Sci. 2004, 271: S110-S113. 10.1098/rsbl.2003.0103.
Article
PubMed
PubMed Central
Google Scholar
Siva-Jothy MT, Moret Y, Rolff J: Insect Immunity: An Evolutionary Ecology Perspective. Advances in Insect Physiology. Edited by: Simpson SJ. 2005, Academic Press, London, UK, 1-48. 32
Google Scholar
Diamond SE, Kingsolver JG: Host plant quality, selection history and trade-offs shape the immune responses of Manduca sexta. Proc Biol Sci. 2011, 278 (1703): 289-297. 10.1098/rspb.2010.1137.
Article
PubMed
PubMed Central
Google Scholar