Chen X: microRNA biogenesis and function in plants. FEBS Lett. 2005, 579: 5923-5931. 10.1016/j.febslet.2005.07.071.
Article
PubMed
Google Scholar
Millar AA, Waterhouse PM: Plant and animal microRNAs: similarities and differences. Funct Integr Genomics. 2005, 5: 129-135. 10.1007/s10142-005-0145-2.
Article
PubMed
Google Scholar
Sullivan CS, Ganem D: MicroRNAs and viral infection. Mol Cell. 2005, 20: 3-7. 10.1016/j.molcel.2005.09.012.
Article
PubMed
Google Scholar
Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004, 116: 281-297. 10.1016/S0092-8674(04)00045-5.
Article
PubMed
Google Scholar
Kim VN: MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol. 2005, 6: 376-385. 10.1038/nrm1644.
Article
PubMed
Google Scholar
Ambros V: The functions of animal microRNAs. Nature. 2004, 431: 350-355. 10.1038/nature02871.
Article
PubMed
Google Scholar
Gregory RI, Shiekhattar R: MicroRNA biogenesis and cancer. Cancer Res. 2005, 65: 3509-3512. 10.1158/0008-5472.CAN-05-0298.
Article
PubMed
Google Scholar
Kidner CA, Martienssen RA: The developmental role of microRNA in plants. Curr Opin Plant Biol. 2005, 8: 38-44. 10.1016/j.pbi.2004.11.008.
Article
PubMed
Google Scholar
Chen X, Liu J, Cheng Y, Jia D: HEN1 functions pleiotropically in Arabidopsis development and acts in C function in the flower. Development. 2002, 129: 1085-1094. 10.1242/dev.00114.
Article
PubMed
Google Scholar
Park W, Li J, Song R, Messing J, Chen X: CARPEL FACTORY, a Dicer homolog, and HEN1, a novel protein, act in microRNA metabolism in Arabidopsis thaliana. Curr Biol. 2002, 12: 1484-1495. 10.1016/S0960-9822(02)01017-5.
Article
PubMed
Google Scholar
Yu B, Yang Z, Li J, Minakhina S, Yang M, Padgett RW, Steward R, Chen X: Methylation as a crucial step in plant microRNA biogenesis. Science. 2005, 307: 932-935. 10.1126/science.1107130.
Article
PubMed
Google Scholar
Li J, Yang Z, Yu B, Liu J, Chen X: Methylation protects miRNAs and siRNAs from a 3'-end uridylation activity in Arabidopsis. Curr Biol. 2005, 15: 1501-1507. 10.1016/j.cub.2005.07.029.
Article
PubMed
Google Scholar
Dunin-Horkawicz S, Czerwoniec A, Gajda MJ, Feder M, Grosjean H, Bujnicki JM: MODOMICS: a database of RNA modification pathways. Nucleic Acids Res. 2006, 34: D145-9. 10.1093/nar/gkj084.
Article
PubMed Central
PubMed
Google Scholar
Anantharaman V, Koonin EV, Aravind L: Comparative genomics and evolution of proteins involved in RNA metabolism. Nucleic Acids Res. 2002, 30: 1427-1464. 10.1093/nar/30.7.1427.
Article
PubMed Central
PubMed
Google Scholar
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997, 25: 3389-3402. 10.1093/nar/25.17.3389.
Article
PubMed Central
PubMed
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol. 1990, 215: 403-410. 10.1006/jmbi.1990.9999.
Article
PubMed
Google Scholar
Marchler-Bauer A, Anderson JB, DeWeese-Scott C, Fedorova ND, Geer LY, He S, Hurwitz DI, Jackson JD, Jacobs AR, Lanczycki CJ, Liebert CA, Liu C, Madej T, Marchler GH, Mazumder R, Nikolskaya AN, Panchenko AR, Rao BS, Shoemaker BA, Simonyan V, Song JS, Thiessen PA, Vasudevan S, Wang Y, Yamashita RA, Yin JJ, Bryant SH: CDD: a curated Entrez database of conserved domain alignments. Nucleic Acids Res. 2003, 31: 383-387. 10.1093/nar/gkg087.
Article
PubMed Central
PubMed
Google Scholar
Kurowski MA, Bujnicki JM: GeneSilico protein structure prediction meta-server. Nucleic Acids Res. 2003, 31: 3305-3307. 10.1093/nar/gkg557.
Article
PubMed Central
PubMed
Google Scholar
Stefano JE: Purified lupus antigen La recognizes an oligouridylate stretch common to the 3' termini of RNA polymerase III transcripts. Cell. 1984, 36: 145-154. 10.1016/0092-8674(84)90083-7.
Article
PubMed
Google Scholar
Gothel SF, Marahiel MA: Peptidyl-prolyl cis-trans isomerases, a superfamily of ubiquitous folding catalysts. Cell Mol Life Sci. 1999, 55: 423-436. 10.1007/s000180050299.
Article
PubMed
Google Scholar
Kuzuhara T, Horikoshi M: A nuclear FK506-binding protein is a histone chaperone regulating rDNA silencing. Nat Struct Mol Biol. 2004, 11: 275-283. 10.1038/nsmb733.
Article
PubMed
Google Scholar
Stebbins CE, Borukhov S, Orlova M, Polyakov A, Goldfarb A, Darst SA: Crystal structure of the GreA transcript cleavage factor from Escherichia coli. Nature. 1995, 373: 636-640. 10.1038/373636a0.
Article
PubMed
Google Scholar
Laptenko O, Lee J, Lomakin I, Borukhov S: Transcript cleavage factors GreA and GreB act as transient catalytic components of RNA polymerase. Embo J. 2003, 22: 6322-6334. 10.1093/emboj/cdg610.
Article
PubMed Central
PubMed
Google Scholar
Edgar RC: MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32: 1792-1797. 10.1093/nar/gkh340.
Article
PubMed Central
PubMed
Google Scholar
Soding J: Protein homology detection by HMM-HMM comparison. Bioinformatics. 2005, 21: 951-960. 10.1093/bioinformatics/bti125.
Article
PubMed
Google Scholar
Tatusov RL, Galperin MY, Natale DA, Koonin EV: The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 2000, 28: 33-36. 10.1093/nar/28.1.33.
Article
PubMed Central
PubMed
Google Scholar
Frickey T, Lupas A: CLANS: a Java application for visualizing protein families based on pairwise similarity. Bioinformatics. 2004, 20: 3702-3704.
Article
PubMed
Google Scholar
Bandelt HJ, Dress AW: Split decomposition: a new and useful approach to phylogenetic analysis of distance data. Mol Phylogenet Evol. 1992, 1: 242-252. 10.1016/1055-7903(92)90021-8.
Article
PubMed
Google Scholar
Bujnicki JM, Rychlewski L: Reassignment of specificities of two cap methyltransferase domains in the reovirus lambda 2 protein. Genome Biol. 2001, 2: RESEARCH0038-10.1186/gb-2001-2-9-research0038.
Article
PubMed Central
PubMed
Google Scholar
Bujnicki JM, Rychlewski L: Sequence analysis and structure prediction of aminoglycoside-resistance 16S rRNA:m7G methyltransferases. Acta Microbiol Pol. 2001, 50: 7-17.
PubMed
Google Scholar
Feder M, Pas J, Wyrwicz LS, Bujnicki JM: Molecular phylogenetics of the RrmJ/fibrillarin superfamily of ribose 2'-O-methyltransferases. Gene. 2003, 302: 129-138. 10.1016/S0378-1119(02)01097-1.
Article
PubMed
Google Scholar
Rychlewski L, Jaroszewski L, Li W, Godzik A: Comparison of sequence profiles. Strategies for structural predictions using sequence information. Protein Sci. 2000, 9: 232-241.
Article
PubMed Central
PubMed
Google Scholar
Jones DT: GenTHREADER: an efficient and reliable protein fold recognition method for genomic sequences. J Mol Biol. 1999, 287: 797-815. 10.1006/jmbi.1999.2583.
Article
PubMed
Google Scholar
Zhou H, Zhou Y: Single-body residue-level knowledge-based energy score combined with sequence-profile and secondary structure information for fold recognition. Proteins. 2004, 55: 1005-1013. 10.1002/prot.20007.
Article
PubMed
Google Scholar
Lundstrom J, Rychlewski L, Bujnicki JM, Elofsson A: Pcons: a neural-network-based consensus predictor that improves fold recognition. Protein Sci. 2001, 10: 2354-2362. 10.1110/ps.08501.
Article
PubMed Central
PubMed
Google Scholar
Kosinski J, Cymerman IA, Feder M, Kurowski MA, Sasin JM, Bujnicki JM: A "FRankenstein's monster" approach to comparative modeling: merging the finest fragments of Fold-Recognition models and iterative model refinement aided by 3D structure evaluation. Proteins. 2003, 53 Suppl 6: 369-379. 10.1002/prot.10545.
Article
PubMed
Google Scholar
Ward JJ, McGuffin LJ, Bryson K, Buxton BF, Jones DT: The DISOPRED server for the prediction of protein disorder. Bioinformatics. 2004, 20: 2138-2139. 10.1093/bioinformatics/bth195.
Article
PubMed
Google Scholar
Peng K, Vucetic S, Radivojac P, Brown CJ, Dunker AK, Obradovic Z: Optimizing long intrinsic disorder predictors with protein evolutionary information. J Bioinform Comput Biol. 2005, 3: 35-60. 10.1142/S0219720005000886.
Article
PubMed
Google Scholar
Sasin JM, Bujnicki JM: COLORADO3D, a web server for the visual analysis of protein structures. Nucleic Acids Res. 2004, 32: W586-9. 10.1093/nar/gkh032.
Article
PubMed Central
PubMed
Google Scholar
Simons KT, Kooperberg C, Huang E, Baker D: Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. J Mol Biol. 1997, 268: 209-225. 10.1006/jmbi.1997.0959.
Article
PubMed
Google Scholar
Rohl CA, Strauss CE, Chivian D, Baker D: Modeling structurally variable regions in homologous proteins with ROSETTA. Proteins. 2004, 55: 656-677. 10.1002/prot.10629.
Article
PubMed
Google Scholar
Fauman EB, Blumenthal RM, Cheng X: Structure and evolution of AdoMet-dependent methyltransferases. S-Adenosylmethionine-dependent methyltransferases: structures and functions. Edited by: Cheng X and Blumenthal RM. 1999, NJ, World Scientific Publishing, 1-38.
Chapter
Google Scholar
Glaser F, Pupko T, Paz I, Bell RE, Bechor-Shental D, Martz E, Ben-Tal N: ConSurf: identification of functional regions in proteins by surface-mapping of phylogenetic information. Bioinformatics. 2003, 19: 163-164. 10.1093/bioinformatics/19.1.163.
Article
PubMed
Google Scholar
Bujnicki JM: Phylogenomic analysis of 16S rRNA:(guanine-N2) methyltransferases suggests new family members and reveals highly conserved motifs and a domain structure similar to other nucleic acid amino-methyltransferases. Faseb J. 2000, 14: 2365-2368. 10.1096/fj.00-0076com.
Article
PubMed
Google Scholar
Hager J, Staker BL, Bugl H, Jakob U: Active site in RrmJ, a heat shock-induced methyltransferase. J Biol Chem. 2002, 277: 41978-41986. 10.1074/jbc.M205423200.
Article
PubMed
Google Scholar
Li C, Xia Y, Gao X, Gershon PD: Mechanism of RNA 2'-O-methylation: evidence that the catalytic lysine acts to steer rather than deprotonate the target nucleophile. Biochemistry. 2004, 43: 5680-5687. 10.1021/bi0359980.
Article
PubMed
Google Scholar
Nureki O, Watanabe K, Fukai S, Ishii R, Endo Y, Hori H, Yokoyama S: Deep knot structure for construction of active site and cofactor binding site of tRNA modification enzyme. Structure (Camb). 2004, 12: 593-602. 10.1016/j.str.2004.03.003.
Article
Google Scholar
Mosbacher TG, Bechthold A, Schulz GE: Structure and function of the antibiotic resistance-mediating methyltransferase AviRb from Streptomyces viridochromogenes. J Mol Biol. 2005, 345: 535-545. 10.1016/j.jmb.2004.10.051.
Article
PubMed
Google Scholar
Watanabe K, Nureki O, Fukai S, Ishii R, Okamoto H, Yokoyama S, Endo Y, Hori H: Roles of conserved amino acid sequence motifs in the SpoU (TrmH) RNA methyltransferase family. J Biol Chem. 2005, 280: 10368-10377. 10.1074/jbc.M411209200.
Article
PubMed
Google Scholar
Bujnicki JM, Feder M, Radlinska M, Rychlewski L: mRNA:guanine-N7 cap methyltransferases: identification of novel members of the family, evolutionary analysis, homology modeling, and analysis of sequence-structure-function relationships. BMC Bioinformatics. 2001, 2: 2-10.1186/1471-2105-2-2.
Article
PubMed Central
PubMed
Google Scholar
Purta E, van Vliet F, Tricot C, De Bie LG, Feder M, Skowronek K, Droogmans L, Bujnicki JM: Sequence-structure-function relationships of a tRNA (m(7)G46) methyltransferase studied by homology modeling and site-directed mutagenesis. Proteins. 2005, 59: 482-488. 10.1002/prot.20454.
Article
PubMed
Google Scholar
Bujnicki JM, Blumenthal RM, Rychlewski L: Sequence analysis and structure prediction of 23S rRNA:m1G methyltransferases reveals a conserved core augmented with a putative Zn-binding domain in the N-terminus and family-specific elaborations in the C-terminus. J Mol Microbiol Biotechnol. 2002, 4: 93-99.
PubMed
Google Scholar
Jackman JE, Montange RK, Malik HS, Phizicky EM: Identification of the yeast gene encoding the tRNA m1G methyltransferase responsible for modification at position 9. Rna. 2003, 9: 574-585. 10.1261/rna.5070303.
Article
PubMed Central
PubMed
Google Scholar
Christian T, Evilia C, Williams S, Hou YM: Distinct origins of tRNA(m1G37) methyltransferase. J Mol Biol. 2004, 339: 707-719. 10.1016/j.jmb.2004.04.025.
Article
PubMed
Google Scholar
Bujnicki JM, Leach RA, Debski J, Rychlewski L: Bioinformatic analyses of the tRNA: (guanine:26, N2,N2)-dimethyltransferase (Trm1) family. J Mol Microbiol Biotechnol. 2002, 4: 405-415.
PubMed
Google Scholar
Armengaud J, Urbonavicius J, Fernandez B, Chaussinand G, Bujnicki JM, Grosjean H: N2-methylation of guanosine at position 10 in tRNA is catalyzed by a THUMP domain-containing, S-adenosylmethionine-dependent methyltransferase, conserved in Archaea and Eukaryota. J Biol Chem. 2004, 279: 37142-37152. 10.1074/jbc.M403845200.
Article
PubMed
Google Scholar
Hodel AE, Gershon PD, Quiocho FA: Structural basis for sequence-nonspecific recognition of 5'-capped mRNA by a cap-modifying enzyme. Mol Cell. 1998, 1: 443-447. 10.1016/S1097-2765(00)80044-1.
Article
PubMed
Google Scholar
Bugl H, Fauman EB, Staker BL, Zheng F, Kushner SR, Saper MA, Bardwell JC, Jakob U: RNA methylation under heat shock control. Mol Cell. 2000, 6: 349-360. 10.1016/S1097-2765(00)00035-6.
Article
PubMed
Google Scholar
Altschul SF, Lipman DJ: Protein database searches for multiple alignments. Proc Natl Acad Sci U S A. 1990, 87: 5509-5513.
Article
PubMed Central
PubMed
Google Scholar
Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K, Church DM, DiCuccio M, Edgar R, Federhen S, Helmberg W, Kenton DL, Khovayko O, Lipman DJ, Madden TL, Maglott DR, Ostell J, Pontius JU, Pruitt KD, Schuler GD, Schriml LM, Sequeira E, Sherry ST, Sirotkin K, Starchenko G, Suzek TO, Tatusov R, Tatusova TA, Wagner L, Yaschenko E: Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2005, 33: D39-45. 10.1093/nar/gki062.
Article
PubMed Central
PubMed
Google Scholar
Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, Koonin EV, Krylov DM, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS, Smirnov S, Sverdlov AV, Vasudevan S, Wolf YI, Yin JJ, Natale DA: The COG database: an updated version includes eukaryotes. BMC Bioinformatics. 2003, 4: 41-10.1186/1471-2105-4-41.
Article
PubMed Central
PubMed
Google Scholar
Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, Khanna A, Marshall M, Moxon S, Sonnhammer EL, Studholme DJ, Yeats C, Eddy SR: The Pfam protein families database. Nucleic Acids Res. 2004, 32: D138-41. 10.1093/nar/gkh121.
Article
PubMed Central
PubMed
Google Scholar
Deshpande N, Addess KJ, Bluhm WF, Merino-Ott JC, Townsend-Merino W, Zhang Q, Knezevich C, Xie L, Chen L, Feng Z, Green RK, Flippen-Anderson JL, Westbrook J, Berman HM, Bourne PE: The RCSB Protein Data Bank: a redesigned query system and relational database based on the mmCIF schema. Nucleic Acids Res. 2005, 33 Database Issue: D233-7.
Google Scholar
The home site of HHsearch at the the Department of Developmental Biology (MPI): http://protevo.eb.tuebingen.mpg.de/toolkit/index.php?view=hhpred.
Huson DH: SplitsTree: analyzing and visualizing evolutionary data. Bioinformatics. 1998, 14: 68-73. 10.1093/bioinformatics/14.1.68.
Article
PubMed
Google Scholar
Jones DT, Taylor WR, Thornton JM: The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci. 1992, 8: 275-282.
PubMed
Google Scholar
website NCBICDS: http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi.
GeneSilico protein structure prediction MetaServer website: http://genesilico.pl/meta/.
McGuffin LJ, Bryson K, Jones DT: The PSIPRED protein structure prediction server. Bioinformatics. 2000, 16: 404-405. 10.1093/bioinformatics/16.4.404.
Article
PubMed
Google Scholar
Rost B, Yachdav G, Liu J: The PredictProtein server. Nucleic Acids Res. 2004, 32: W321-6.
Article
PubMed Central
PubMed
Google Scholar
Ouali M, King RD: Cascaded multiple classifiers for secondary structure prediction. Protein Sci. 2000, 9: 1162-1176.
Article
PubMed Central
PubMed
Google Scholar
Adamczak R, Porollo A, Meller J: Accurate prediction of solvent accessibility using neural networks-based regression. Proteins. 2004, 56: 753-767. 10.1002/prot.20176.
Article
PubMed
Google Scholar
Cuff JA, Barton GJ: Application of multiple sequence alignment profiles to improve protein secondary structure prediction. Proteins. 2000, 40: 502-511. 10.1002/1097-0134(20000815)40:3<502::AID-PROT170>3.0.CO;2-Q.
Article
PubMed
Google Scholar
Meiler J, Baker D: Coupled prediction of protein secondary and tertiary structure. Proc Natl Acad Sci U S A. 2003, 100: 12105-12110. 10.1073/pnas.1831973100.
Article
PubMed Central
PubMed
Google Scholar
Karplus K, Karchin R, Draper J, Casper J, Mandel-Gutfreund Y, Diekhans M, Hughey R: Combining local-structure, fold-recognition, and new fold methods for protein structure prediction. Proteins. 2003, 53 Suppl 6: 491-496. 10.1002/prot.10540.
Article
PubMed
Google Scholar
Romero P, Obradovic Z, Dunker AK: Natively disordered proteins : functions and predictions. Appl Bioinformatics. 2004, 3: 105-113. 10.2165/00822942-200403020-00005.
Article
PubMed
Google Scholar
Cuff JA, Clamp ME, Siddiqui AS, Finlay M, Barton GJ: JPred: a consensus secondary structure prediction server. Bioinformatics. 1998, 14: 892-893. 10.1093/bioinformatics/14.10.892.
Article
PubMed
Google Scholar
Kelley LA, MacCallum RM, Sternberg MJ: Enhanced genome annotation using structural profiles in the program 3D-PSSM. J Mol Biol. 2000, 299: 499-520. 10.1006/jmbi.2000.3741.
Article
PubMed
Google Scholar
Fischer D: Hybrid fold recognition: combining sequence derived properties with evolutionary information. Pacific Symp Biocomp. 2000, 119-130.
Google Scholar
Shi J, Blundell TL, Mizuguchi K: FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties. J Mol Biol. 2001, 310: 243-257. 10.1006/jmbi.2001.4762.
Article
PubMed
Google Scholar
Fiser A, Sali A: Modeller: generation and refinement of homology-based protein structure models. Methods Enzymol. 2003, 374: 461-491.
Article
PubMed
Google Scholar
Luthy R, Bowie JU, Eisenberg D: Assessment of protein models with three-dimensional profiles. Nature. 1992, 356: 83-85. 10.1038/356083a0.
Article
PubMed
Google Scholar
Pintard L, Lecointe F, Bujnicki JM, Bonnerot C, Grosjean H, Lapeyre B: Trm7p catalyses the formation of two 2'-O-methylriboses in yeast tRNA anticodon loop. Embo J. 2002, 21: 1811-1820. 10.1093/emboj/21.7.1811.
Article
PubMed Central
PubMed
Google Scholar
Mouaikel J, Bujnicki JM, Tazi J, Bordonne R: Sequence-structure-function relationships of Tgs1, the yeast snRNA/snoRNA cap hypermethylase. Nucleic Acids Res. 2003, 31: 4899-4909. 10.1093/nar/gkg656.
Article
PubMed Central
PubMed
Google Scholar
Bujnicki JM, Feder M, Ayres CL, Redman KL: Sequence-structure-function studies of tRNA:m5C methyltransferase Trm4p and its relationship to DNA:m5C and RNA:m5U methyltransferases. Nucleic Acids Res. 2004, 32: 2453-2463. 10.1093/nar/gkh564.
Article
PubMed Central
PubMed
Google Scholar
Roovers M, Wouters J, Bujnicki JM, Tricot C, Stalon V, Grosjean H, Droogmans L: A primordial RNA modification enzyme: the case of tRNA (m1A) methyltransferase. Nucleic Acids Res. 2004, 32: 465-476. 10.1093/nar/gkh191.
Article
PubMed Central
PubMed
Google Scholar
Purushothaman SK, Bujnicki JM, Grosjean H, Lapeyre B: Trm11p and Trm112p are both required for the formation of 2-methylguanosine at position 10 in yeast tRNA. Mol Cell Biol. 2005, 25: 4359-4370. 10.1128/MCB.25.11.4359-4370.2005.
Article
PubMed Central
PubMed
Google Scholar
Kosinski J, Gajda MJ, Cymerman IA, Kurowski MA, Pawlowski M, Boniecki M, Obarska A, Papaj G, Sroczynska-Obuchowicz P, Tkaczuk KL, Sniezynska P, Sasin JM, Augustyn A, Bujnicki JM, Feder M: FRankenstein becomes a cyborg: the automatic recombination and realignment of Fold-Recognition models in CASP6. Proteins. 2005, 61 Suppl 7: 106-113. 10.1002/prot.20726.
Article
PubMed
Google Scholar
Comments
View archived comments (1)