Agrawal AA, Conner JK, Rasmann S: Trade-offs and negative correlations in evolutionary ecology. Evolution After Darwin: the First 150 Years. Edited by: Levinton J, Futuyma D, Eanes W, Bell M. 2010, Sunderland: Sinauer Associates, 243-268.
Google Scholar
Novak M, Pfeiffer T, Lenski RE, Sauer U, Bonhoeffer S: Experimental tests for an evolutionary trade-off between growth rate and yield in E. coli. Am Nat. 2006, 168 (2): 242-251. 10.1086/506527.
Article
PubMed
Google Scholar
Edwards KF, Klausmeier CA, Litchman E: Evidence for a three-way trade-off between nitrogen and phosphorus competitive abilities and cell size in phytoplankton. Ecology. 2011, 92 (11): 2085-2095. 10.1890/11-0395.1.
Article
PubMed
Google Scholar
Collins S: Competition limits adaptation and productivity in a photosynthetic alga at elevated CO2. Proc Biol Sci. 2011, 278: 247-255. 10.1098/rspb.2010.1173.
Article
PubMed
PubMed Central
Google Scholar
Frank SA: The trade-off between rate and yield in the design of microbial metabolism. J Evol Biol. 2010, 23 (3): 609-613. 10.1111/j.1420-9101.2010.01930.x.
Article
PubMed
CAS
Google Scholar
Gudelj I, Beardmore R, Arkin SS, MacLean RC: Constraints on microbial metabolism drive evolutionary diversification in homogeneous environments. J Evol Biol. 2007, 20 (5): 1882-1889. 10.1111/j.1420-9101.2007.01376.x.
Article
PubMed
CAS
Google Scholar
Monod J: The growth of bacterial cultures. Annu Rev Microbiol. 1949, 3: 371-394. 10.1146/annurev.mi.03.100149.002103.
Article
CAS
Google Scholar
Kopp M, Hermisson J: Competitive speciation and costs of choosiness. 2008, J Evol Biol (21): 1005-1023.
Google Scholar
Gavrilets S, Waxman D: Sympatric speciation by sexual conflict. Proc Natl Acad Sci U S A. 2002, 99 (16): 10533-10538. 10.1073/pnas.152011499.
Article
PubMed
CAS
PubMed Central
Google Scholar
Kondrashov AS, Kondrashov FA: Interactions among quantitative traits in the course of sympatric speciation. Nature. 1999, 400: 351-354. 10.1038/22514.
Article
PubMed
CAS
Google Scholar
MacLean RC, Dickson A, Bell G: Resource competition and adaptive radiation in a microbial microcosm. Ecol Lett. 2005, 8: 38-46.
Article
Google Scholar
Rainey PB, Travisano M: Adaptive radiation in a heterogeneous environment. Nature. 1998, 394: 69-72. 10.1038/27900.
Article
PubMed
CAS
Google Scholar
Hall AR, Colegrave N: How does resource supply affect evolutionary diversification?. Proc Biol Sci. 2007, 274: 73-78. 10.1098/rspb.2006.3703.
Article
PubMed
CAS
PubMed Central
Google Scholar
Hutchinson G: The paradox of the plankton. Am Nat. 1961, 95: 137-145. 10.1086/282171.
Article
Google Scholar
Kolesov Y: The paradox of plankton is explained. Biofizika. 1992, 37 (6): 1113-1114.
Google Scholar
Horn J, Cattron J: The paradox of the plankton: Oscillations and chaos in multispecies evolution. Genetic and Evolutionary Computation - GECCO. 2003, vol. 2723. Lecture notes in computer science. Springer-Verlag: Berlin Heidelberg; 2003, pp.298–309, , Pt I, Proceedings,
Google Scholar
Petersen R: Paradox of plankton - equilibrium hypothesis. Am Nat. 1975, 109 (965): 35-49. 10.1086/282972.
Article
Google Scholar
Roy S, Chattopadhyay J: Towards a resolution of ‘the paradox of the plankton’: a brief overview of the proposed mechanisms. Ecol Complex. 2007, 4: 26-33. 10.1016/j.ecocom.2007.02.016.
Article
Google Scholar
Schippers P, Verschoor A, Vos M, Mooij W: Does “supersaturated coexistence” resolve the “paradox of the plankton”?. Ecol Lett. 2001, 4 (5): 404-407. 10.1046/j.1461-0248.2001.00239.x.
Article
Google Scholar
Shoresh N, Hegreness M, Kishony R: Evolution exacerbates the paradox of the plankton. Proc Natl Acad Sci U S A. 2008, 105 (34): 12365-12369. 10.1073/pnas.0803032105.
Article
PubMed
CAS
PubMed Central
Google Scholar
Sommer U: The paradox of the plankton: fluctuations of phosphorous availability maintain diversity of phytoplankton in flow-through cultures. Limnol Oceanogr. 1984, 29 (3): 633-636. 10.4319/lo.1984.29.3.0633.
Article
Google Scholar
Van Valen L: Ecological species, multispecies, and oaks. Taxon. 1976, 25: 233-239. 10.2307/1219444.
Article
Google Scholar
Konstantinidis KT, Ramette A, Tiedje JM: The bacterial species definition in the genomic era. Phil Trans Roy Soc Lond B. 2006, 361 (1475): 1929-1940. 10.1098/rstb.2006.1920.
Article
Google Scholar
Wilkins JS: The concept and causes of microbial species. Stud Hist Philos Life Sci. 2007, 28 (3): 389-408.
Google Scholar
Pennell MW, Harmon LJ, Uyeda JC: Is there room for punctuated equilibrium in macroevolution?. Trends Ecol Evol. 2014, 29 (1): 23-32. 10.1016/j.tree.2013.07.004.
Article
PubMed
Google Scholar
Chow S, Wilke C, Ofria C, Lenski R, Adami C: Adaptive radiation from resource competition in digital organisms. Science. 2004, 305: 84-86. 10.1126/science.1096307.
Article
PubMed
CAS
Google Scholar
Gillespie J: Population Genetics: A Concise Guide, Second Edition. 2004, Baltimore and London: Johns Hopkins University Press
Google Scholar
Tilman D: Resource Competition and Community Structure. 1982, Princeton: Princeton University Press
Google Scholar
Ostrowski E, Ofria C, Lenski R: Ecological specialization and adaptive decay in digital organisms. Am Nat. 2007, 169 (1): 1-20. 10.1086/509938.
Article
Google Scholar
Rosenzweig ML: Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science. 1971, 171 (3969): 385-387. 10.1126/science.171.3969.385.
Article
PubMed
CAS
Google Scholar
Heilmann C, Schweitzer O, Gerke C, Vanittanakom N, Mack D, Götz F: Molecular basis of intercellular adhesion in the biofilm-forming Staphylococcus epidermidis. Mol Microbiol. 1996, 20 (5): 1083-1091. 10.1111/j.1365-2958.1996.tb02548.x.
Article
PubMed
CAS
Google Scholar
Oakley TH, Østman B, Wilson ACV: Repression and loss of gene expression outpaces activation and gain in recently duplicated fly genes. Proc Natl Acad Sci U S A. 2006, 103 (31): 11637-11641. 10.1073/pnas.0600750103.
Article
PubMed
CAS
PubMed Central
Google Scholar
Hottes AK, Freddolino PL, Khare A, Donnell ZN, Liu JC, Tavazoie S: Bacterial adaptation through loss of function. PLoS Genet. 2013, 9 (7): 003617-
Article
Google Scholar
Boyer H, Englesberg E, Weinberg R: Direct selection of L-arabinose negative mutants ofEscherichia colistrain B/r. Genetics. 1962, 47: 417-425.
PubMed
CAS
PubMed Central
Google Scholar
Bausch C, Peekhaus N, Utz C, Blais T, Murray E, Lowary T, Conway T: Sequence analysis of the GntII (Subsidiary) system for gluconate metabolism reveals a novel pathway for l-Idonic acid catabolism in Escherichia coli. J Bacteriol. 1998, 180 (14): 3704-3710.
PubMed
CAS
PubMed Central
Google Scholar
Boos W, Shuman H: Maltose/maltodextrin system of Escherichia coli: transport, metabolism, and regulation. Microbiol Mol Biol Rev. 1998, 61 (1): 204-229.
Google Scholar
Kitano H: Biological robustness. Nat Rev Genet. 2004, 5 (11): 826-837. 10.1038/nrg1471.
Article
PubMed
CAS
Google Scholar
Plucain J, Hindre T, Le Gac M, Tenaillon O, Cruveiller S, Medigue C, Leiby N, Harcombe WR, Marx CJ, Lenski RE, Schneider D: Epistasis and allele specificity in the emergence of a stable polymorphism in Escherichia coli. Science. 2014, 343 (6177): 1366-1369. 10.1126/science.1248688.
Article
PubMed
CAS
Google Scholar
Weissing FJ, Edelaar P, van Dorn GS: Adaptive speciation theory: a conceptual review. Behav Ecol Sociobiology. 2011, 65 (3): 461-10.1007/s00265-010-1125-7.
Article
Google Scholar
de Aguiar MAM, Baranger M, Baptestini EM, Kaufman L, Bar-Yam Y: Global patterns of speciation and diversity. Nature. 2009, 460 (7253): 384-387. 10.1038/nature08168.
Article
PubMed
CAS
Google Scholar
Østman B, Hintze A, Adami C: Impact of epistasis and pleiotropy on evolutionary adaptation. Proc Biol Sci. 2012, 279: 247-256. 10.1098/rspb.2011.0870.
Article
PubMed
PubMed Central
Google Scholar
Orr HA, Turelli M: The evolution of postzygotic isolation: accumulating Dobzhansky-Muller incompatibilities. Evolution. 2001, 55 (6): 1085-1094. 10.1111/j.0014-3820.2001.tb00628.x.
Article
PubMed
CAS
Google Scholar
Adami C, Hintze A: Evolutionary instability of zero-determinant strategies demonstrates that winning is not everything. Nat Commun. 2013, 4 (2193): http://www.nature.com/ncomms/2013/130801/ncomms3193/full/ncomms3193.html.,
Google Scholar
Huisman J, Weissing F: Biodiversity of plankton by species oscillations and chaos. Nature. 1999, 402: 407-410. 10.1038/46540.
Article
Google Scholar
Kacser H, Burns JA: The molecular basis of dominance. Genetics. 1981, 97 (34): 639-666.
PubMed
CAS
PubMed Central
Google Scholar
Chou H-H, Chiu H-C, Delaney NF, Marx CJ, Segrè D: Diminishing returns epistasis among beneficial mutations decelerates adaptation. Science. 2011, 332 (6034): 1190-1192. 10.1126/science.1203799.
Article
PubMed
CAS
PubMed Central
Google Scholar
Leiby N, Marx CJ: Metabolic erosion primarily through mutation accumulation, and not trade-offs, drives limited evolution of substrate specificity in escherichia coli. PLoS Biol. 2014, 12 (2): 001789-
Article
Google Scholar
Skovran E, Crowther GJ, Guo X, Yang S, Lidstrom ME: A systems biology approach uncovers cellular strategies used by methylobacterium extorquens am1 during the switch from multi- to single-carbon growth. PLoS ONE. 2010, 5 (11): 14091-10.1371/journal.pone.0014091.
Article
Google Scholar
Blount ZD, Barrick JE, Davidson CJ, Lenski RE: Genomic analysis of a key innovation in an experimental Escherichia coli population. Nature. 2012, 489 (7417): 513-518. 10.1038/nature11514.
Article
PubMed
CAS
PubMed Central
Google Scholar
Devictor V, Clavel J, Julliard R, Lavergne S, Mouillot D, Thuiller W, Venail P, Villeger S, Mouquet N: Defining and measuring ecological specialization. J Appl Ecol. 2010, 47 (1): 15-25. 10.1111/j.1365-2664.2009.01744.x.
Article
Google Scholar
Østman B, Lin R, Adami C: Data from: Trade-offs drive resource specialization and the gradual establishment of ecotypes. Dryad Digit Repository. doi:10.5061/dryad.6n660. http://dx.doi.org/10.5061/dryad.6n660,