Hamburger D, Rezzonico E, MacDonald-Comber Petetot J, Somerville C, Poirier Y: Identification and characterization of the Arabidopsis PHO1 gene involved in phosphate loading to the xylem. Plant Cell. 2002, 14 (4): 889-902. 10.1105/tpc.000745.
Article
CAS
PubMed Central
PubMed
Google Scholar
Poirier Y, Thoma S, Somerville C, Schiefelbein J: A mutant of Arabidopsis deficient in xylem loading of phosphate. Plant Physiol. 1991, 97: 1087-1093. 10.1104/pp.97.3.1087.
Article
CAS
PubMed Central
PubMed
Google Scholar
Chen YF, Li LQ, Xu Q, Kong YH, Wang H, Wu WH: The WRKY6 transcription factor modulates PHOSPHATE1 expression in response to low Pi stress in Arabidopsis. Plant Cell. 2009, 21 (11): 3554-3566. 10.1105/tpc.108.064980.
Article
CAS
PubMed Central
PubMed
Google Scholar
Rouached H, Stefanovic A, Secco D, Arpat AB, Gout E, Bligny R, Poirier Y: Uncoupling phosphate deficiency from its major effects on growth and transcriptome via PHO1 expression in Arabidopsis. Plant J. 2011, 65 (4): 557-570. 10.1111/j.1365-313X.2010.04442.x.
Article
CAS
PubMed
Google Scholar
Stefanovic A, Arpat AB, Bligny R, Gout E, Vidoudez C, Bensimon M, Poirier Y: Over-expression of PHO1 in Arabidopsis leaves reveals its role in mediating phosphate efflux. Plant J. 2011, 66 (4): 689-699. 10.1111/j.1365-313X.2011.04532.x.
Article
CAS
PubMed
Google Scholar
Arpat AB, Magliano P, Wege S, Rouached H, Stefanovic A, Poirier Y: Functional expression of PHO1 to the Golgi and trans-Golgi network and its role in export of inorganic phosphate. Plant J. 2012, 71 (3): 479-491.
CAS
PubMed
Google Scholar
Wang Y, Ribot C, Rezzonico E, Poirier Y: Structure and expression profile of the Arabidopsis PHO1 gene family indicates a broad role in inorganic phosphate homeostasis. Plant Physiol. 2004, 135 (1): 400-411. 10.1104/pp.103.037945.
Article
CAS
PubMed Central
PubMed
Google Scholar
Stefanovic A, Ribot C, Rouached H, Wang Y, Chong J, Belbahri L, Delessert S, Poirier Y: Members of the PHO1 gene family show limited functional redundancy in phosphate transfer to the shoot, and are regulated by phosphate deficiency via distinct pathways. Plant J. 2007, 50 (6): 982-994. 10.1111/j.1365-313X.2007.03108.x.
Article
CAS
PubMed
Google Scholar
Secco D, Baumann A, Poirier Y: Characterization of the rice PHO1 gene family reveals a key role for OsPHO1; 2 in phosphate homeostasis and the evolution of a distinct clade in dicotyledons. Plant Physiol. 2010, 152 (3): 1693-1704. 10.1104/pp.109.149872.
Article
CAS
PubMed Central
PubMed
Google Scholar
Wang Y, Secco D, Poirier Y: Characterization of the PHO1 gene family and the responses to phosphate deficiency of Physcomitrella patens. Plant Physiol. 2008, 146 (2): 646-656.
Article
CAS
PubMed Central
PubMed
Google Scholar
Kang X, Ni M: Arabidopsis SHORT HYPOCOTYL UNDER BLUE1 contains SPX and EXS domains and acts in cryptochrome signaling. Plant Cell. 2006, 18 (4): 921-934. 10.1105/tpc.105.037879.
Article
CAS
PubMed Central
PubMed
Google Scholar
Zhou Y, Ni M: SHB1 plays dual roles in photoperiodic and autonomous flowering. Dev Biol. 2009, 331 (1): 50-57. 10.1016/j.ydbio.2009.04.023.
Article
CAS
PubMed
Google Scholar
Zhou Y, Zhao XY, Kang X, Zhang XS, Ni M: SHORTHYPOCOTYL UNDER BLUE1 associates with MINISEED3 and HAIKU2 promoters in vivo to regulate Arabidopsis seed development. Plant Cell. 2009, 21 (1): 1-12. 10.1105/tpc.109.210180.
Article
CAS
Google Scholar
Zhou Y, Ni M: SHORT HYPOCOTYL UNDER BLUE1 truncations and mutations alter its association with a signaling protein complex in Arabidopsis. Plant Cell. 2010, 22 (3): 703-715. 10.1105/tpc.109.071407.
Article
CAS
PubMed Central
PubMed
Google Scholar
Ribot C, Zimmerli C, Farmer E, Reymond P, Poirier Y: Induction of the Arabidopsis PHO1; H10 gene by 12-oxo-phytodienoic acid but not jasmonic acid via a CORONATINE INSENSITIVE1-dependent pathway. Plant Physiol. 2008, 147 (2): 696-706. 10.1104/pp.108.119321.
Article
CAS
PubMed Central
PubMed
Google Scholar
Ribot C, Wang Y, Poirier Y: Expression analyses of three members of the AtPHO1 family reveal differential interactions between signaling pathways involved in phosphate deficiency and the responses to auxin, cytokinin, and abscisic acid. Planta. 2008, 227 (5): 1025-1036. 10.1007/s00425-007-0677-x.
Article
CAS
PubMed
Google Scholar
Zimmerli C, Ribot C, Vavasseur A, Bauer H, Hedrich R, Poirier Y: PHO1 expression in guard cells mediates the stomatal response to abscisic acid in Arabidopsis. Plant J. 2012, 72 (2): 199-211. 10.1111/j.1365-313X.2012.05058.x.
Article
CAS
PubMed
Google Scholar
Battini JL, Rasko JEJ, Miller AD: A human cell surface receptor for xenotropic and polytropic murine leukemia viruses: possible role in G protein-coupled signal transduction. Proc Natl Acad Sci USA. 1999, 96: 1385-1390. 10.1073/pnas.96.4.1385.
Article
CAS
PubMed Central
PubMed
Google Scholar
Spain BH, Koo D, Ramakrishnan M, Dzudzor B, Colicelli J: Truncated forms of a novel yeast protein suppress the lethality of a G protein subunit deficiency by interacting with the subunit. J Biol Chem. 1995, 270: 25435-25444. 10.1074/jbc.270.43.25435.
Article
CAS
PubMed
Google Scholar
Clemente TE, Cahoon EB: Soybean oil: genetic approaches for modification of functionality and total content. Plant Physiol. 2009, 151 (3): 1030-1040. 10.1104/pp.109.146282.
Article
CAS
PubMed Central
PubMed
Google Scholar
Shoemaker RC, Polzin K, Labate J, Specht J, Brummer EC, Olson T, Young N, Concibido V, Wilcox J, Tamulonis JP, Kochert G, Boerma HR: Genome duplication in soybean (Glycine subgenus soja). Genetics. 1996, 144 (1): 329-338.
CAS
PubMed Central
PubMed
Google Scholar
Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang XC, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA: Genome sequence of the palaeopolyploid soybean. Nature. 2010, 463 (7278): 178-183. 10.1038/nature08670.
Article
CAS
PubMed
Google Scholar
Adams KL, Wendel JF: Polyploidy and genome evolution in plants. Curr Opin Plant Biol. 2005, 8 (2): 135-141. 10.1016/j.pbi.2005.01.001.
Article
CAS
PubMed
Google Scholar
Blanc G, Wolfe KH: Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Plant Cell. 2004, 16 (7): 1667-1678. 10.1105/tpc.021345.
Article
CAS
PubMed Central
PubMed
Google Scholar
Proost S, Pattyn P, Gerats T, van de Peer Y: Journey through the past: 150 million years of plant genome evolution. Plant J. 2011, 66 (1): 58-65. 10.1111/j.1365-313X.2011.04521.x.
Article
CAS
PubMed
Google Scholar
Chiou TJ, Lin SI: Signaling network in sensing phosphate availability in plants. Annu Rev Plant Biol. 2011, 62: 185-206. 10.1146/annurev-arplant-042110-103849.
Article
CAS
PubMed
Google Scholar
Duan K, Yi K, Dang L, Huang H, Wu W, Wu P: Characterization of a sub-family of Arabidopsis genes with the SPX domain reveals their diverse functions in plant tolerance to phosphorus starvation. Plant J. 2008, 54: 965-975. 10.1111/j.1365-313X.2008.03460.x.
Article
CAS
PubMed
Google Scholar
Secco D, Wang C, Arpat AB, Wang Z, Poirier Y, Tyerman SD, Wu P, Shou H, Whelan J: The emerging importance of the SPX domain-containing proteins in phosphate homeostasis. New Phytol. 2012, 193 (4): 842-851. 10.1111/j.1469-8137.2011.04002.x.
Article
CAS
PubMed
Google Scholar
Schlueter JA, Scheffler BE, Schlueter SD, Shoemaker RC: Sequence conservation of homeologous bacterial artificial chromosomes and transcription of homeologous genes in soybean (Glycine max L. Merr.). Genetics. 2006, 174 (2): 1017-1028. 10.1534/genetics.105.055020.
Article
CAS
PubMed Central
PubMed
Google Scholar
Innan H, Kondrashov F: The evolution of gene duplications: classifying and distinguishing between models. Nat Rev Genet. 2010, 2 (11): 97-108.
Google Scholar
Lynch M, Conery S: The evolutionary fate and consequences of duplicate genes. Science. 2000, 290: 1151-1155. 10.1126/science.290.5494.1151.
Article
CAS
PubMed
Google Scholar
Prince VE, Pickett FB: Splitting pairs: the diverging fates of duplicated genes. Nat Rev Genet. 2002, 3 (11): 827-837. 10.1038/nrg928.
Article
CAS
PubMed
Google Scholar
Hanada K, Zou C, Lehti-Shiu MD, Shinozaki K, Shiu SH: Importance of lineage-specific expansion of plant tandem duplicates in the adaptive response to environmental stimuli. Plant Physiol. 2008, 148: 993-1003. 10.1104/pp.108.122457.
Article
CAS
PubMed Central
PubMed
Google Scholar
Rodriguez-Trelles F, Tarrio R, Ayala FJ: Origins and evolution of spliceosomal introns. Annu Rev Genet. 2006, 40: 47-76. 10.1146/annurev.genet.40.110405.090625.
Article
CAS
PubMed
Google Scholar
Palmer JD, Logsdon JMJ: The recent origins of introns. Curr Opin Genet Dev. 1991, 1 (4): 470-477. 10.1016/S0959-437X(05)80194-7.
Article
CAS
PubMed
Google Scholar
Roy SW, Gilbert W: Rates of intron loss and gain: implications for early eukaryotic evolution. Proc Natl Acad Sci USA. 2005, 102 (16): 5773-5778. 10.1073/pnas.0500383102.
Article
CAS
PubMed Central
PubMed
Google Scholar
Rogozin IB, Lyons-Weiler J, Koonin EV: Intron sliding in conserved gene families. Trends Genet. 2000, 16 (10): 430-432. 10.1016/S0168-9525(00)02096-5.
Article
CAS
PubMed
Google Scholar
Rogozin IB, Carmel L, Csuros M, Koonin EV: Origin and evolution of spliceosomal introns. Biol Direct. 2012, 7: 11-10.1186/1745-6150-7-11.
Article
CAS
PubMed Central
PubMed
Google Scholar
Buchman R, Berg P: Comparison of intron-dependent and intron-independent gene expression. Mol Cell Biol. 1988, 8: 4395-4405.
Article
CAS
PubMed Central
PubMed
Google Scholar
Callis J, Fromm M, Walbot D: Introns increase gene expression in cultured maize cells. Genes Dev. 1987, 1: 1183-1200. 10.1101/gad.1.10.1183.
Article
CAS
PubMed
Google Scholar
Parra G, Bradnam K, Rose AB, Korf I: Comparative and functional analysis of intron-mediated enhancement signals reveals conserved features among plants. Nucleic Acids Res. 2011, 39 (13): 5328-5337. 10.1093/nar/gkr043.
Article
CAS
PubMed Central
PubMed
Google Scholar
Ren XY, Vorst O, Fiers MW, Stiekema WJ, Nap JP: In plants, highly expressed genes are the least compact. Trends Genet. 2006, 22: 528-532. 10.1016/j.tig.2006.08.008.
Article
CAS
PubMed
Google Scholar
Chaubet-Gigot N, Kapros T, Flenet M, Kahn K, Gigot C, Waterborg JH: Tissue-specific enhancement of transgene expression by introns of replacement histone H3 genes of Arabidopsis. Plant Mol Biol. 2001, 45: 17-30. 10.1023/A:1006487023926.
Article
CAS
PubMed
Google Scholar
Clancy M, Hannah LC: Splicing of the maize Sh1 first intron is essential for enhancement of gene expression, and a T-rich motif increases expression without affecting splicing. Plant Physiol. 2002, 130: 918-929. 10.1104/pp.008235.
Article
CAS
PubMed Central
PubMed
Google Scholar
Mun JH, Lee SY, Yu HJ, Jeong YM, Shin MY, Kim H, Lee I, Kim SG: Petunia actin depolymerizing factor is mainly accumulated in vascular tissue and its gene expression is enhanced by the first intron. Gene. 2002, 292: 233-243. 10.1016/S0378-1119(02)00646-7.
Article
CAS
PubMed
Google Scholar
Bolle C, Herrmann RG, Oelmuller R: Intron sequences are involved in the plastid- and light-dependent expression of the spinach PsaD gene. Plant J. 1996, 10: 919-924. 10.1046/j.1365-313X.1996.10050919.x.
Article
CAS
PubMed
Google Scholar
Deyholos MK, Sieburth LE: Separable whorl-specific expression and negative regulation by enhancer element within the AGAMOUS second intron. Plant Cell. 2000, 12: 1799-1810.
Article
CAS
PubMed Central
PubMed
Google Scholar
Sheldon CC, Conn AB, Dennis ES, Peacock WJ: Different regulatory regions are required for the vernalization-induced repression of FLOWERING LOCUS C and for the epigenetic maintenance of repression. Plant Cell. 2002, 14: 2527-2537. 10.1105/tpc.004564.
Article
CAS
PubMed Central
PubMed
Google Scholar
Penn O, Privman E, Ashkenazy H, Landan G, Graur D, Pupko T: GUIDANCE: a web server for assessing alignment confidence scores. Nucleic Acids Res. 2010, 38 (Web Server issue): W23-W28.
Article
CAS
PubMed Central
PubMed
Google Scholar
Castresana J: Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000, 17: 540-552. 10.1093/oxfordjournals.molbev.a026334.
Article
CAS
PubMed
Google Scholar
Talavera G, Castresana J: Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol. 2007, 56 (4): 564-577. 10.1080/10635150701472164.
Article
CAS
PubMed
Google Scholar
Abascal F, Zardoya R, Posada D: ProtTest: selection of best-fit models of protein evolution. Bioinformatics. 2005, 21 (9): 2104-2105. 10.1093/bioinformatics/bti263.
Article
CAS
PubMed
Google Scholar
Hall TA: BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser. 1999, 41: 95-98.
CAS
Google Scholar
Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O: New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol. 2010, 59 (3): 307-321. 10.1093/sysbio/syq010.
Article
CAS
PubMed
Google Scholar
Page RD: TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci. 1996, 12 (4): 357-358.
CAS
PubMed
Google Scholar
Chen K, Durand D, Farach-Colton M: NOTUNG: a program for dating gene duplications and optimizing gene family trees. J Comput Biol. 2000, 7: 429-447. 10.1089/106652700750050871.
Article
CAS
PubMed
Google Scholar
Durand D, Halldórsson BV, Vernot B: A hybrid micro-macroevolutionary approach to gene tree reconstruction. J Comput Biol. 2006, 13 (2): 320-335. 10.1089/cmb.2006.13.320.
Article
CAS
PubMed
Google Scholar
Maddison WP, Maddison DR: Mesquite: a modular system for evolutionary analysis. Version 2.7. 2008, http://mesquiteproject.org,
Google Scholar
Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods. 2001, 25: 402-408. 10.1006/meth.2001.1262.
Article
CAS
PubMed
Google Scholar