Lewontin RC: A natural selection. Nature. 1989, 339: 107-10.1038/339107a0.
Article
Google Scholar
Gould SJ, Lewontin RC: The spandrels of San Marco and the Panglossian paradigm: a critique of the adaptationist programme. Proc R Soc Lond B Biol Sci. 1979, 205: 581-598. 10.1098/rspb.1979.0086.
Article
PubMed
CAS
Google Scholar
Pribil S, Searcy WA: Experimental confirmation of the polygyny threshold model for red-winged blackbirds. Proc Biol Sci. 2001, 268: 1643-1646. 10.1098/rspb.2001.1720.
Article
PubMed
CAS
PubMed Central
Google Scholar
Frankino WA, Zwaan BJ, Stern DL, Brakefield PM: Natural selection and developmental constraints in the evolution of allometries. Science. 2005, 307: 718-720. 10.1126/science.1105409.
Article
PubMed
CAS
PubMed Central
Google Scholar
Jensen KH, Little T, Skorping A, Ebert D: Empirical Support for Optimal Virulence in a Castrating Parasite. PLoS Biol. 2006, 4: e197-10.1371/journal.pbio.0040197.
Article
PubMed
PubMed Central
Google Scholar
Roff DA, Heibo E, Vollestad LA: The importance of growth and mortality costs in the evolution of the optimal life history. J Evol Biol. 2006, 19: 1920-1930. 10.1111/j.1420-9101.2006.01155.x.
Article
PubMed
CAS
Google Scholar
Noblin X, Mahadevan L, Coomaraswamy IA, Weitz DA, Holbrook NM, Zwieniecki MA: Optimal vein density in artificial and real leaves. Proc Natl Acad Sci USA. 2008, 105: 9140-9144. 10.1073/pnas.0709194105.
Article
PubMed
CAS
PubMed Central
Google Scholar
Herre EA: Sex Ratio Adjustment in Fig Wasps. Science. 1985, 228: 896-898. 10.1126/science.228.4701.896.
Article
PubMed
CAS
Google Scholar
Carvalho AB, Sampaio MC, Varandas FR, Klaczko LB: An experimental demonstration of Fisher's principle: evolution of sexual proportion by natural selection. Genetics. 1998, 148: 719-731.
PubMed
CAS
PubMed Central
Google Scholar
West SA: Sex Allocation (Monographs in Population Biology). 2009, Princeton, NJ: Princeton University Press
Google Scholar
Hanifin CT, Brodie ED: Phenotypic mismatches reveal escape from arms-race coevolution. PLoS Biol. 2008, 6: e60-10.1371/journal.pbio.0060060.
Article
PubMed
PubMed Central
Google Scholar
Miller SP, Lunzer M, Dean AM: Direct demonstration of an adaptive constraint. Science. 2006, 314: 458-461. 10.1126/science.1133479.
Article
PubMed
CAS
Google Scholar
Dekel E, Alon U: Optimality and evolutionary tuning of the expression level of a protein. Nature. 2005, 436: 588-592. 10.1038/nature03842.
Article
PubMed
CAS
Google Scholar
Poelwijk FJ, Heyning PD, de Vos MG, Kiviet DJ, Tans SJ: Optimality and evolution of transcriptionally regulated gene expression. BMC Syst Biol. 2011, 5: 128-10.1186/1752-0509-5-128.
Article
PubMed
CAS
PubMed Central
Google Scholar
Wang IN: Lysis timing and bacteriophage fitness. Genetics. 2006, 172: 17-26.
Article
PubMed
CAS
PubMed Central
Google Scholar
Shao Y, Wang IN: Bacteriophage adsorption rate and optimal lysis time. Genetics. 2008, 180: 471-482. 10.1534/genetics.108.090100.
Article
PubMed
PubMed Central
Google Scholar
Heineman RH, Bull JJ: Testing optimality with experimental evolution: lysis time in a bacteriophage. Evolution Int J Org Evolution. 2007, 61: 1695-1709. 10.1111/j.1558-5646.2007.00132.x.
Article
Google Scholar
Hutchinson CA, Sinsheimer RL: The process of infection with bacteriophage phiX174. J Mol Biol. 1966, 18: 429-447. 10.1016/S0022-2836(66)80035-9.
Article
Google Scholar
Josslin R: The lysis mechanism of phage T4: mutants affecting lysis. Virology. 1970, 40: 719-726. 10.1016/0042-6822(70)90216-3.
Article
PubMed
CAS
Google Scholar
Heineman RH, Molineux IJ, Bull JJ: Evolutionary robustness of an optimal phenotype: Re-evolution of lysis in a bacteriophage deleted for its lysin gene. J Mol Evol. 2005, 61: 181-191. 10.1007/s00239-004-0304-4.
Article
PubMed
CAS
Google Scholar
Miyazaki JI, Ryo Y, Fujisawa H, Minagawa T: Mutation in bacteriophage T3 affecting host cell lysis. Virology. 1978, 89: 327-329. 10.1016/0042-6822(78)90067-3.
Article
PubMed
CAS
Google Scholar
Wang IN, Dykhuizen DE, Slobodkin LB: The evolution of phage lysis timing. Evol Ecol. 1996, 10: 545-558. 10.1007/BF01237884.
Article
Google Scholar
Bull JJ: Optimality models of phage life history and parallels in disease evolution. J Theor Biol. 2006, 241: 928-938. 10.1016/j.jtbi.2006.01.027.
Article
PubMed
CAS
Google Scholar
Charnov EL: Optimal foraging, the marginal value theorem. Theor Popul Biol. 1976, 9: 129-136. 10.1016/0040-5809(76)90040-X.
Article
PubMed
CAS
Google Scholar
Abedon ST, Hyman P, Thomas C: Experimental examination of bacteriophage latent-period evolution as a response to bacterial availability. Appl Environ Microbiol. 2003, 69: 7499-7506. 10.1128/AEM.69.12.7499-7506.2003.
Article
PubMed
CAS
PubMed Central
Google Scholar
Zheng Y, Struck DK, Dankenbring CA, Young R: Evolutionary dominance of holin lysis systems derives from superior genetic malleability. Microbiology. 2008, 154: 1710-1718. 10.1099/mic.0.2008/016956-0.
Article
PubMed
CAS
Google Scholar
Gillam S, Astell CR, Jahnke P, Hutchison CA: Smith M: Construction and properties of a ribosome-binding site mutation in gene E of phi X174 bacteriophage. J Virol. 1984, 52: 892-896.
PubMed
CAS
PubMed Central
Google Scholar
Rokyta DR, Burch CL, Caudle SB, Wichman HA: Horizontal gene transfer and the evolution of microvirid coliphage genomes. J Bacteriol. 2006, 188: 1134-1142. 10.1128/JB.188.3.1134-1142.2006.
Article
PubMed
CAS
PubMed Central
Google Scholar
Maratea D, Young K, Young R: Deletion and fusion analysis of the phage phi X174 lysis gene E. Gene. 1985, 40: 39-46. 10.1016/0378-1119(85)90022-8.
Article
PubMed
CAS
Google Scholar
Young KD, Young R: Lytic action of cloned phi X174 gene E. J Virol. 1982, 44: 993-1002.
PubMed
CAS
PubMed Central
Google Scholar
Dokland T, McKenna R, Ilag LL, Bowman BR, Incardona NL, Fane BA, Rossmann MG: Structure of a viral procapsid with molecular scaffolding. Nature. 1997, 389: 308-313. 10.1038/38537.
Article
PubMed
CAS
Google Scholar
Young R, Wang I, Roof WD: Phages will out: strategies of host cell lysis. Trends Microbiol. 2000, 8: 120-128. 10.1016/S0966-842X(00)01705-4.
Article
PubMed
CAS
Google Scholar
Bernhardt TG, Struck DK, Young R: The lysis protein E of phi X174 is a specific inhibitor of the MraY-catalyzed step in peptidoglycan synthesis. J Biol Chem. 2001, 276: 6093-6097. 10.1074/jbc.M007638200.
Article
PubMed
CAS
Google Scholar
Wang IN, Smith DL, Young R: Holins: the protein clocks of bacteriophage infections. Annu Rev Microbiol. 2000, 54: 799-825. 10.1146/annurev.micro.54.1.799.
Article
PubMed
CAS
Google Scholar
Bernhardt TG, Roof WD, Young R: Genetic evidence that the bacteriophage phi X174 lysis protein inhibits cell wall synthesis. Proc Natl Acad Sci USA. 2000, 97: 4297-4302. 10.1073/pnas.97.8.4297.
Article
PubMed
CAS
PubMed Central
Google Scholar
Zheng Y, Struck DK, Young R: Purification and functional characterization of phiX174 lysis protein E. Biochemistry. 2009, 48: 4999-5006. 10.1021/bi900469g.
Article
PubMed
CAS
PubMed Central
Google Scholar
Boyle DS, Donachie WD: mraY is an essential gene for cell growth in Escherichia coli. J Bacteriol. 1998, 180: 6429-6432.
PubMed
CAS
PubMed Central
Google Scholar
Roof WD, Young R: Phi X174 lysis requires slyD, a host gene which is related to the FKBP family of peptidyl-prolyl cis-trans isomerases. FEMS Microbiol Rev. 1995, 17: 213-218.
PubMed
CAS
Google Scholar
Roof WD, Horne SM, Young KD, Young R: slyD, a host gene required for phi X174 lysis, is related to the FK506-binding protein family of peptidyl-prolyl cis-trans-isomerases. J Biol Chem. 1994, 269: 2902-2910.
PubMed
CAS
Google Scholar
Bernhardt TG, Roof WD, Young R: The Escherichia coli FKBP-type PPIase SlyD is required for the stabilization of the E lysis protein of bacteriophage phi X174. Mol Microbiol. 2002, 45: 99-108. 10.1046/j.1365-2958.2002.02984.x.
Article
PubMed
CAS
Google Scholar
Bull JJ, Heineman RH, Wilke CO: The phenotype-fitness map in experimental evolution of phages. PLoS One. 2011, 6: e27796-10.1371/journal.pone.0027796.
Article
PubMed
CAS
PubMed Central
Google Scholar
Bull JJ, Badgett MR, Wichman HA: Big-benefit mutations in a bacteriophage inhibited with heat. Mol Biol Evol. 2000, 17: 942-950.
Article
PubMed
CAS
Google Scholar
Bull JJ, Badgett MR, Springman R, Molineux IJ: Genome properties and the limits of adaptation in bacteriophages. Evolution Int J Org Evolution. 2004, 58: 692-701.
Article
CAS
Google Scholar
Guyader S, Burch CL: Optimal foraging predicts the ecology but not the evolution of host specialization in bacteriophages. PLoS One. 2008, 3: e1946-10.1371/journal.pone.0001946.
Article
PubMed
PubMed Central
Google Scholar
Heineman RH, Springman R, Bull JJ: Optimal Foraging by Bacteriophages through Host Avoidance. Am Nat. 2008, 171: E149-E157. 10.1086/528962.
Article
PubMed
Google Scholar
Duffy S, Turner PE, Burch CL: Pleiotropic costs of niche expansion in the RNA bacteriophage deleted for its lysin gene. Genetics. 2006, 172: 751-757.
Article
PubMed
CAS
PubMed Central
Google Scholar
Fisher RA: The Genetical Theory of Natural Selection. 1930, Oxford: Oxford University Press
Book
Google Scholar
Orr HA: The evolutionary genetics of adaptation: a simulation study. Genet Res. 1999, 74: 207-214. 10.1017/S0016672399004164.
Article
PubMed
CAS
Google Scholar
Heineman RH, Bull JJ, Molineux IJ: Layers of evolvability in a bacteriophage life history trait. Mol Biol Evol. 2009, 26: 1289-1298. 10.1093/molbev/msp037.
Article
PubMed
CAS
PubMed Central
Google Scholar
Young R, Wang I: Phage Lysis. The Bacteriophage. Edited by: Calender R. 2005, Oxford: Oxford University Press, 104-125. 2
Google Scholar
Bowes JM, Dowell CE: Purification and some properties of bacteriophage ST-1. J Virol. 1974, 13: 53-61.
PubMed
CAS
PubMed Central
Google Scholar
Bradley DE: A comparative study of some properties of the phi-X174 type bacteriophages. Can J Microbiol. 1970, 16: 965-971. 10.1139/m70-165.
Article
PubMed
CAS
Google Scholar
Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H: Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol. 2006, 2: 2006.0008
Google Scholar
Scott JF, Eisenberg S, Bertsch LL, Kornberg A: A mechanism of duplex DNA replication revealed by enzymatic studies of phage phi X174: catalytic strand separation in advance of replication. Proc Natl Acad Sci USA. 1977, 74: 193-197. 10.1073/pnas.74.1.193.
Article
PubMed
CAS
PubMed Central
Google Scholar
Fane BA, Hayashi M: Second-site suppressors of a cold-sensitive prohead accessory protein of bacteriophage phi X174. Genetics. 1991, 128: 663-671.
PubMed
CAS
PubMed Central
Google Scholar
Uchiyama A, Heiman P, Fane BA: N-terminal deletions of the phiX174 external scaffolding protein affect the timing and fidelity of assembly. Virology. 2009, 386: 303-309. 10.1016/j.virol.2009.01.030.
Article
PubMed
CAS
Google Scholar
Dennehy JJ, Wang IN: Factors influencing lysis time stochasticity in bacteriophage lambda. BMC Microbiol. 2011, 11: 174-10.1186/1471-2180-11-174.
Article
PubMed
PubMed Central
Google Scholar
Fane BA, Brentlinger KL, Burch AD, Chen M, Hafenstein S, Moore E, Novak CR, Uchiyama A: phiX174 et al., the Microviridae. The Bacteriophages. Edited by: Abedon ST. 2006, New York: Oxford University Press (US), 129-145.
Google Scholar
Hayashi M, Aoyama A, Richardson DL, Hayashi MN: Biology of the Bacteriophage phiX174. The Bacteriophages. Edited by: Calender R. 1988, New York: Plenum Press, 2:
Google Scholar
Ewald PW: Evolution of Infectious Disease. 1996, Oxford: Oxford University Press
Google Scholar
Gandon S, Mackinnon M, Nee S, Read A: Imperfect vaccination: some epidemiological and evolutionary consequences. Proc Biol Sci. 2003, 270: 1129-1136. 10.1098/rspb.2003.2370.
Article
PubMed
PubMed Central
Google Scholar
Gandon S, Mackinnon MJ, Nee S, Read AF: Imperfect vaccines and the evolution of pathogen virulence. Nature. 2001, 414: 751-756. 10.1038/414751a.
Article
PubMed
CAS
Google Scholar
Mackinnon MJ, Gandon S, Read AF: Virulence evolution in response to vaccination: the case of malaria. Vaccine. 2008, 26 (Suppl 3): C42-C52.
Article
PubMed
CAS
Google Scholar