White IM, Elson-Harris MM: Fruit flies of economic significance: their identification and bionomics. 1992, CAB International, Wallingford UK
Google Scholar
Clarke AR, Armstrong KF, Carmichael AE, Milne JR, Roderick GK, Yeates DK: Invasive phytophagous pests arising through a recent tropical evolutionary radiation : the Bactrocera dorsalis complex of fruit flies. Annu Rev Entomol. 2005, 50: 293-319. 10.1146/annurev.ento.50.071803.130428.
Article
PubMed
CAS
Google Scholar
Fletcher BS: Life history strategies of Tephritid fruit flies. Fruit flies: their biology, natural enemies and control. Edited by: Robinson AS, Hooper G. 1989, Elsevier, New York, 195-208.
Google Scholar
Drew RAI, Hancock DL: The Bactrocera dorsalis complex of fruit flies (Diptera: Tephritidae: Dacinae) in Asia. Bull Entomol Res Suppl. 1994, 2 (i-iii): 1-68.
Article
Google Scholar
Iwahashi O: Aedeagal length of the Oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae), and its sympatric species in Thailand and the evolution of a longer and shorter aedeagus in the parapatric species of B. dorsalis. Appl Entomol Zool. 2001, 36 (3): 289-297. 10.1303/aez.2001.289.
Article
Google Scholar
Armstrong KF, Ball SL: DNA barcodes for biosecurity: invasive species identification. Phil Trans R Soc B. 2005, 360 (1462): 1813-1823. 10.1098/rstb.2005.1713.
Article
PubMed
CAS
PubMed Central
Google Scholar
Yong HS: Genetic differentiation and relationships in five taxa of the Bactrocera dorsalis complex (Insecta: Diptera: Tephritidae). Bull Entomol Res. 1995, 85: 431-435. 10.1017/S0007485300036166.
Article
Google Scholar
Muraji M, Nakahara S: Phylogenetic relationships among fruit flies, Bactrocera (Diptera, Tephritidae), based on the mitochondrial rDNA sequences. Insect Mol Biol. 2001, 10 (6): 549-559. 10.1046/j.0962-1075.2001.00294.x.
Article
PubMed
CAS
Google Scholar
Smith PT, Kambhampati S, Armstrong KA: Phylogenetic relationships among Bactrocera species (Diptera: Tephritidae) inferred from mitochondrial DNA sequences. Mol Phylogenet Evol. 2003, 26: 8-17. 10.1016/S1055-7903(02)00293-2.
Article
PubMed
CAS
Google Scholar
Fletcher MT, Kitching W: Chemistry of fruit flies. Chem Rev. 1995, 95 (4): 789-828. 10.1021/cr00036a001.
Article
CAS
Google Scholar
Tan KH: Interbreeding and DNA analysis of sibling species within the Bactrocera dorsalis complex. Recent trends on sterile insect technique and area-wide integrated pest management - economic feasibility, control projects, farmer organization and Bactrocera dorsalis complex control study. 2003, 113-122.
Google Scholar
Medina FIS, Carillo PAV, Gregorio JS, Aguilar CP: The mating compatibility between Bactrocera philippinensis and Bactrocera dorsalis. Abstracts, 5th International Symposium on Fruit Flies of Economic Importance: 1–5 June. Edited by: Tan KH. 1998, Penang, Malaysia, 155-
Google Scholar
Sites-Jnr JW, Marshall JC: Delimiting species: a Renaissance issue in systematic biology. Trends Ecol Evol. 2003, 18: 462-470. 10.1016/S0169-5347(03)00184-8.
Article
Google Scholar
Edwards SV, Kingan SB, Calkins JD, Balakrishnan CN, Jennings WB, Swanson WJ, Sorenson MD: Speciation in birds: genes, geography, and sexual selection. Proc Natl Acad Sci USA. 2005, 102: 6550-6557. 10.1073/pnas.0501846102.
Article
PubMed
CAS
PubMed Central
Google Scholar
Fitzpatrick BM, Fordyce JA, Gavrilets S: Pattern, process and geographic modes of speciation. J Evolution Biol. 2009, 22: 2342-2347. 10.1111/j.1420-9101.2009.01833.x.
Article
CAS
Google Scholar
Aketarawong N, Bonizzoni M, Thanaphum S, Gomulski LM, Gasperi G, Malacrida AR, Gugliemino CR: Inferences on the population structure and colonization process of the invasive oriental fruit fly, Bactrocera dorsalis (Hendel). Mol Ecol. 2007, 16: 3522-3532. 10.1111/j.1365-294X.2007.03409.x.
Article
PubMed
CAS
Google Scholar
Chen P, Ye H: Relationship among five populations of Bactrocera dorsalis based on mitochondrial DNA sequences in western Yunnan, China. J Appl Entomol. 2008, 132: 530-537. 10.1111/j.1439-0418.2008.01302.x.
Article
Google Scholar
Li Y, Wu Y, Chen H, Wu J, Li Z: Population structure and colonization of Bactrocera dorsalis (Diptera: Tephritidae) in China, inferred from mtDNA COI sequences. J Appl Entomol. 2012, 136: 241-251. 10.1111/j.1439-0418.2011.01636.x.
Article
Google Scholar
Liu J, Shi W, Ye H: Population genetics analysis of the origin of the Oriental fruit fly, Bactrocera dorsalis Hendel (Diptera: Tephritidae), in northern Yunnan Province, China. Entomol Sci. 2007, 10: 11-19. 10.1111/j.1479-8298.2006.00194.x.
Article
Google Scholar
Shi W, Kerdelhue C, Ye H: Population genetics of the Oriental Fruit Fly, Bactrocera dorsalis (Diptera: Tephritidae), in Yunnan (China) based on mitochondrial DNA sequences. Environ Entomol. 2005, 34 (4): 977-983. 10.1603/0046-225X-34.4.977.
Article
Google Scholar
Vargas RI, Stark JD, Nishida T: Population dynamics, habitat preferences, and seasonal distribution patterns of Oriental Fruit Fly and Melon Fly (Diptera: Tephritidae) in an agricultural area. Environ Entomol. 1990, 19 (6): 1820-1828.
Article
Google Scholar
Wan X, Nardi F, Zhang B, Liu Y: The Oriental Fruit Fly, Bactrocera dorsalis, in China: origin and gradual inland range expansion associated with population growth. PLoS One. 2011, 6 (10): e25238-10.1371/journal.pone.0025238.
Article
PubMed
CAS
PubMed Central
Google Scholar
Iwahashi O: Movement of the Oriental fruit fly adults among islets of the Ogasawara Islands. Environ Entomol. 1972, 1 (2): 176-179.
Article
Google Scholar
Froerer KM, Peck SL, McQuate GT, Vargas RI, Jang EB, McInnis DO: Long distance movement of Bactrocera dorsalis (Diptera: Tephritidae) in Puna, Hawaii: How far can they go?. Am Entomol. 2010, 56: 88-94.
Article
Google Scholar
Liang F, Wu JJ, Liang GQ: The first report of the test on the flight ability of oriental fruit fly. Acta Agric Univ Jiangxiensis. 2001, 23 (2): 259-260.
Google Scholar
Chen P, Ye H, Mu QA: Migration and dispersal of the oriental fruit fly, Bactrocera dorsalis, in regions of Nujiang River based on fluorescence mark. Acta Ecol Sin. 2007, 27 (6): 2468-2476.
Google Scholar
Hall R: Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, models and animations. J Asian Earth Sci. 2002, 20: 353-431. 10.1016/S1367-9120(01)00069-4.
Article
Google Scholar
Voris HK: Maps of Pleistocene sea levels in Southeast Asia: shorelines, river systems and time durations. J Biogeogr. 2000, 27: 1153-1167. 10.1046/j.1365-2699.2000.00489.x.
Article
Google Scholar
Bird MI, Taylor D, Hunt C: Palaeoenvironments of insular Southeast Asia during the Last Glacial Period: a savanna corridor in Sundaland?. Quaternary Sci Rev. 2005, 24: 2228-2242. 10.1016/j.quascirev.2005.04.004.
Article
Google Scholar
Louys J, Meijaard E: Palaeoecology of southeast Asian megafauna-bearing sites from the Pleistocene and a review of environmental changes in the region. J Biogeogr. 2010, 37 (8): 1432-1449.
Google Scholar
Mollengraaff GAF: Modern deep-sea research in the east Indian archipelago. Geogr J. 1921, 57: 95-121. 10.2307/1781559.
Article
Google Scholar
Bruyn M, Nugroho E, Hossain MM, Wilson JC, Mather P: Phylogeographic evidence for the existence of an ancient biogeographic barrier: the Isthmus of Kra Seaway. Heredity. 2005, 94: 370-378. 10.1038/sj.hdy.6800613.
Article
PubMed
Google Scholar
Hamada Y, Suryobroto B, Goto S, Malaivijitnond S: Morphological and body color variation in Thai Macaca fascicularis fascicularis north and south of the Isthmus of Kra. Int J Primatol. 2008, 29: 1271-1294. 10.1007/s10764-008-9289-y.
Article
Google Scholar
Heaney LR: Biogeography of mammals in SE Asia: estimates of rates of colonization, extinction and speciation. Biol J Linnean Soc. 1986, 28: 127-165. 10.1111/j.1095-8312.1986.tb01752.x.
Article
Google Scholar
Hughes JB, Round PD, Woodruff DS: The Indochinese–Sundaic faunal transition at the Isthmus of Kra: an analysis of resident forest bird species distributions. J Biogeogr. 2003, 30: 569-580. 10.1046/j.1365-2699.2003.00847.x.
Article
Google Scholar
Pauwels OSG, David P, Chimsunchart C, Thirakhupt K: Reptiles of Phetchaburi Province, Western Thailand: a list of species, with natural history notes, and a discussion on the biogeography at the Isthmus of Kra. Nat Hist J Chulalongkorn Univ. 2003, 3 (1): 23-53.
Google Scholar
Smith DR, Villafuerte L, Otis G, Palmer MR: Biogeography of Apis cerana F. and A. nigrocincta Smith: insights from mtDNA studies. Apidologie. 2000, 31: 265-279. 10.1051/apido:2000121.
Article
CAS
Google Scholar
Turner H, Hovenkamp P, Welzen PC: Biogeography of Southeast Asia and the West Pacific. J Biogeogr. 2001, 28: 217-230.
Article
Google Scholar
Wishart MJ, Hughes JM: Genetic population structure of the net-winged midge, Elporia barnadi (Diptera: Blephariceridae) in streams of the south-western Cape, South Africa: implications for dispersal. Freshwater Biol. 2003, 48: 28-38. 10.1046/j.1365-2427.2003.00958.x.
Article
CAS
Google Scholar
Baker AM, Hughes JM, Dean JC, Bunn SE: Mitochondrial DNA reveals phylogenetic structuring and cryptic diversity in Australian freshwater macroinvertebrate assemblages. Mar Freshwater Res. 2004, 55: 629-640. 10.1071/MF04050.
Article
CAS
Google Scholar
Finn DS, Adler PH: Population genetic structure of a rare high-elevation black fly, Metacnephia coloradensis, occupying lake outlet streams. Freshwater Biol. 2006, 51: 2240-2251. 10.1111/j.1365-2427.2006.01647.x.
Article
CAS
Google Scholar
Krosch MN: Phylogeography of Echinocladius martini Cranston (Diptera: Chironomidae) in closed forest streams of eastern Australia. Aust J Entomol. 2011, 50: 258-268.
Google Scholar
Krosch MN, Baker AM, McKie BG, Mather PB, Cranston PS: Deeply divergent mitochondrial lineages reveal patterns of local endemism in chironomids of the Australian Wet Tropics. Austral Ecol. 2009, 34: 317-328. 10.1111/j.1442-9993.2009.01932.x.
Article
Google Scholar
Smith PJ, McVeagh SM, Collier KJ: Population-genetic structure in the New Zealand caddisfly Orthopsyche fimbriata revealed with mitochondrial DNA. New Zeal J Mar Fresh. 2006, 40: 141-148. 10.1080/00288330.2006.9517408.
Article
Google Scholar
Ballard JWO DMR: The population biology of mitochondrial dna and its phylogenetic implications. Annu Rev Ecol Evol Syst. 2005, 36: 621-642. 10.1146/annurev.ecolsys.36.091704.175513.
Article
Google Scholar
Galtier N, Nabholz B, Glémin S, Hurst GDD: Mitochondrial DNA as a marker of molecular diversity: a reappraisal. Mol Ecol. 2009, 18: 4541-4550. 10.1111/j.1365-294X.2009.04380.x.
Article
PubMed
CAS
Google Scholar
Ballard JWO, Whitlock MC: The incomplete natural history of mitochondria. Mol Ecol. 2004, 13: 729-744. 10.1046/j.1365-294X.2003.02063.x.
Article
PubMed
Google Scholar
Rohlf FJ, Marcus LF: A revolution in morphometrics. Trends Ecol Evol. 1993, 8 (4): 129-132. 10.1016/0169-5347(93)90024-J.
Article
Google Scholar
Rohlf FJ: Shape statistics: Procrustes superimpositions and tangent spaces. J Classif. 1999, 16: 197-223. 10.1007/s003579900054.
Article
Google Scholar
Aytekin AM, Terzo M, Rasmont P, Çağatay N: Landmark based geometric morphometric analysis of wing shape in Sibiricobombus Vogt (Hymenoptera: Apidae: Bombus Latreille). Ann Soc Entomol Fr. 2007, 43 (1): 95-102.
Google Scholar
Bouyer J, Ravel S, Jujardin J-P, Meeüs T, Vial L, Thévenon S, Guerrini L, Sidibé I, Solano P: Population structuring of Glossina palpalis gambiensis (Diptera: Glossinidae) according to landscape fragmentation in the Mouhoun River, Burkina Faso. J Med Entomol. 2007, 44 (5): 788-795. 10.1603/0022-2585(2007)44[788:PSOGPG]2.0.CO;2.
Article
PubMed
CAS
Google Scholar
Dujardin J-P, Pont FL, Baylac M: Geographical versus interspecific differentiation of sand flies (Diptera: Psychodidae): a landmark data analysis. Bull Entomol Res. 2003, 93: 87-90.
Article
PubMed
Google Scholar
Gilchrist AS, Crisafulli DCA: Using variation in wing shape to distinguish between wild and mass-reared individuals of Queensland fruit fly, Bactrocera tryoni. Entomol Exp Appl. 2006, 119: 175-178. 10.1111/j.1570-7458.2006.00395.x.
Article
Google Scholar
Schutze MK, Jessup A, Clarke AR: Wing shape as a potential discriminator of morphologically similar pest taxa within the Bactrocera dorsalis species complex (Diptera: Tephritidae). Bull Entomol Res. 2011, 102 (1): 103-111.
Article
PubMed
Google Scholar
D’Anatro A, Lessa EP: Geometric morphometric analysis of geographic variation in the Río Negro tuco-tuco, Ctenomys rionegrensis (Rodentia: Ctenomyidae). Mamm Biol. 2006, 71: 288-298. 10.1016/j.mambio.2006.02.001.
Google Scholar
Francoy TM, Wittmann D, Steinhage V, Drauschke M, Müller S, Cunha DR, Nascimento AM, Figueiredo VLC, Simões ZLP, Jong DD, et al: Morphometric and genetic changes in a population of Apis mellifera after 34 years of Africanization. Genet Mol Res. 2009, 8 (2): 709-717. 10.4238/vol8-2kerr019.
Article
PubMed
CAS
Google Scholar
Arbogast BS, Edwards SV, Wakeley JW, Beerli P, Slowinski JB: Estimating divergence times from molecular data on phylogenetic and population genetic timescales. Annu Rev Ecol Syst. 2002, 33: 707-740. 10.1146/annurev.ecolsys.33.010802.150500.
Article
Google Scholar
Zarowiecki M, Walton C, Torres E, McAlister E, Htun PT, Sumrandee C, Sochanta T, Dinh TH, Ng LC, Linton YM: Pleistocene genetic connectivity in a widespread, open-habitat-adapted mosquito in the Indo-Oriental region. J Biogeogr. 2011, 38: 1422-1432. 10.1111/j.1365-2699.2011.02477.x.
Article
Google Scholar
O'Higgins P, Jones N: Morphologika, tools for statistical shape analysis. 2006, Hull York Medical School, University of York, York
Google Scholar
Klingenberg CP: MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour. 2011, 11: 353-357. 10.1111/j.1755-0998.2010.02924.x.
Article
PubMed
Google Scholar
Drake AG, Klingenberg CP: The pace of morphological change: Historical transformation of skull shape in St. Bernard dogs. Proc R Soc B. 2008, 275: 71-76.
Article
PubMed
Google Scholar
Wright S: Isolation by distance. Genetics. 1943, 28 (2): 114-138.
PubMed
CAS
PubMed Central
Google Scholar
Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R: DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol. 1994, 3: 294-299.
PubMed
CAS
Google Scholar
Hall TA: BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. 1999, 41: 95-98.
CAS
Google Scholar
Tamura K, Dudley J, Nei M, Kumar S: MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Mol Biol Evol. 2007, 24 (8): 1596-1599. 10.1093/molbev/msm092.
Article
PubMed
CAS
Google Scholar
Excoffier L, Laval G, Schneider S: Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online. 2005, 1: 47-50.
CAS
PubMed Central
Google Scholar
Bandelt H-J, Forster P, Rohl A: Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol. 1999, 16: 37-48. 10.1093/oxfordjournals.molbev.a026036.
Article
PubMed
CAS
Google Scholar
Tamura K, Nei M: Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol. 1993, 10: 512-526.
PubMed
CAS
Google Scholar
Excoffier L, Smouse PE, Quattro JM: Analysis of molecular variance inferred from metric distances among DNA haplotypes: applications to human mitochondrial DNA restriction data. Genetics. 1992, 131: 479-491.
PubMed
CAS
PubMed Central
Google Scholar
Lessa EP: Multidimensional analysis of geographic genetic structure. Syst Zool. 1990, 39 (3): 242-252. 10.2307/2992184.
Article
Google Scholar
Fu Y: Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics. 1997, 147: 915-925.
PubMed
CAS
PubMed Central
Google Scholar
Librado P, Rozas J: DNAsp v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009, 25: 1451-1452. 10.1093/bioinformatics/btp187.
Article
PubMed
CAS
Google Scholar
Minin VN, Bloomquist EW, Suchard MA: Smooth Skyride through a rough Skyline: Bayesian coalescent-based inference of population dynamics. Mol Biol Evol. 2008, 25 (7): 1459-1471. 10.1093/molbev/msn090.
Article
PubMed
CAS
PubMed Central
Google Scholar
Drummond AJ, Rambaut A: BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol. 2007, 7: 214-10.1186/1471-2148-7-214.
Article
PubMed
PubMed Central
Google Scholar
Wahlberg N: That awkward age for butterflies: Insights from the age of the butterfly subfamily Nymphalinae (Lepidoptera: Nymphalidae). Syst Biol. 2006, 55: 703-714. 10.1080/10635150600913235.
Article
PubMed
Google Scholar
Zakharov EV, Caterino MS, Sperling FAH: Molecular phylogeny, historical biogeography, and divergence time estimates for swallowtail butterflies of the genus Papilio (Lepidoptera: Papilionidae). Syst Biol. 2004, 53: 193-215. 10.1080/10635150490423403.
Article
PubMed
Google Scholar
Brower AV: Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. Proc Natl Acad Sci USA. 1994, 91 (14): 6491-6495. 10.1073/pnas.91.14.6491.
Article
PubMed
CAS
PubMed Central
Google Scholar
Lemey P, Rambaut A, Drummond AJ, Suchard MA: Bayesian phylogeography finds its roots. PLoS Comput Biol. 2009, 5: e1000520-10.1371/journal.pcbi.1000520.
Article
PubMed
PubMed Central
Google Scholar
Bielejec F, Rambaut A, Suchard MA, Lemey P: SPREAD: Spatial Phylogenetic Reconstruction of Evolutionary Dynamics. Bioinformatics. 2011, 27 (20): 2910-2912. 10.1093/bioinformatics/btr481.
Article
PubMed
CAS
PubMed Central
Google Scholar
Clarke AR, Allwood A, Chinajariyawong A, Drew RAI, Hengsawad C, Jirasurat M, Krong CK, Kritsaneepaiboon S, Vijaysegaran S: Seasonal abundance and host use patterns of seven Bactrocera Macquart species (Diptera: Tephritidae) in Thailand and Peninsuar Malaysia. Raffles Bull Zool. 2001, 49 (2): 207-220.
Google Scholar