Brosius J: Retroposons-seeds of evolution. Science. 1991, 251 (4995): 753-10.1126/science.1990437.
Article
PubMed
CAS
Google Scholar
Betran E, Thornton K, Long M: Retroposed new genes out of the X in Drosophila. Genome Res. 2002, 12 (12): 1854-1859. 10.1101/gr.6049.
Article
PubMed
CAS
PubMed Central
Google Scholar
Wang W, Brunet FG, Nevo E, Long M: Origin of sphinx, a young chimeric RNA gene in Drosophila melanogaster. Proc Natl Acad Sci USA. 2002, 99 (7): 4448-4453. 10.1073/pnas.072066399.
Article
PubMed
CAS
PubMed Central
Google Scholar
Nisole S, Lynch C, Stoye JP, Yap MW: A Trim5-cyclophilin A fusion protein found in owl monkey kidney cells can restrict HIV-1. Proc Natl Acad Sci USA. 2004, 101 (36): 13324-13328. 10.1073/pnas.0404640101.
Article
PubMed
CAS
PubMed Central
Google Scholar
Sayah DM, Sokolskaja E, Berthoux L, Luban J: Cyclophilin A retrotransposition into TRIM5 explains owl monkey resistance to HIV-1. Nature. 2004, 430 (6999): 569-573. 10.1038/nature02777.
Article
PubMed
CAS
Google Scholar
Zhang J, Dean AM, Brunet F, Long M: Evolving protein functional diversity in new genes of Drosophila. Proc Natl Acad Sci USA. 2004, 101 (46): 16246-16250. 10.1073/pnas.0407066101.
Article
PubMed
CAS
PubMed Central
Google Scholar
Baertsch R, Diekhans M, Kent WJ, Haussler D, Brosius J: Retrocopy contributions to the evolution of the human genome. BMC Genomics. 2008, 9 (1): 466-10.1186/1471-2164-9-466.
Article
PubMed
PubMed Central
Google Scholar
Fablet M, Bueno M, Potrzebowski L, Kaessmann H: Evolutionary origin and functions of retrogene introns. Mol Biol Evol. 2009, 26 (9): 2147-2156. 10.1093/molbev/msp125.
Article
PubMed
CAS
Google Scholar
Lahn BT, Page DC: Retroposition of autosomal mRNA yielded testis-specific gene family on human Y chromosome. Nat Genet. 1999, 21 (4): 429-433. 10.1038/7771.
Article
PubMed
CAS
Google Scholar
Zhu Z, Zhang Y, Long M: Extensive structural renovation of retrogenes in the evolution of the Populus genome. Plant Physiol. 2009, 151 (4): 1943-1951. 10.1104/pp.109.142984.
Article
PubMed
CAS
PubMed Central
Google Scholar
Irimia M, Rukov JL, Penny D, Vinther J, Garcia-Fernandez J, Roy SW: Origin of introns by 'intronization' of exonic sequences. Trends Genet. 2008, 24 (8): 378-381. 10.1016/j.tig.2008.05.007.
Article
PubMed
CAS
Google Scholar
Roy SW, Fedorov A, Gilbert W: Large-scale comparison of intron positions in mammalian genes shows intron loss but no gain. Proc Natl Acad Sci USA. 2003, 100 (12): 7158-7162. 10.1073/pnas.1232297100.
Article
PubMed
CAS
PubMed Central
Google Scholar
Coulombe-Huntington J, Majewski J: Characterization of intron loss events in mammals. Genome Res. 2007, 17 (1): 23-32.
Article
PubMed
CAS
PubMed Central
Google Scholar
Szczesniak MW, Ciomborowska J, Nowak W, Rogozin IB, Makalowska I: Primate and rodent specific intron gains and the origin of retrogenes with splice variants. Mol Biol Evol. 2011, 28 (1): 33-37. 10.1093/molbev/msq260.
Article
PubMed
CAS
PubMed Central
Google Scholar
Emerson JJ, Kaessmann H, Betran E, Long M: Extensive gene traffic on the mammalian X chromosome. Science. 2004, 303 (5657): 537-540. 10.1126/science.1090042.
Article
PubMed
CAS
Google Scholar
Marques AC, Dupanloup I, Vinckenbosch N, Reymond A, Kaessmann H: Emergence of young human genes after a burst of retroposition in primates. PLoS Biol. 2005, 3 (11): e357-10.1371/journal.pbio.0030357.
Article
PubMed
PubMed Central
Google Scholar
Vinckenbosch N, Dupanloup I, Kaessmann H: Evolutionary fate of retroposed gene copies in the human genome. Proc Natl Acad Sci USA. 2006, 103 (9): 3220-3225. 10.1073/pnas.0511307103.
Article
PubMed
CAS
PubMed Central
Google Scholar
Karolchik D, Hinrichs AS, Furey TS, Roskin KM, Sugnet CW, Haussler D, Kent WJ: The UCSC Table Browser data retrieval tool. Nucleic Acids Res. 2004, 32 (Database issue): D493-496.
Article
PubMed
CAS
PubMed Central
Google Scholar
Kuhn RM, Karolchik D, Zweig AS, Wang T, Smith KE, Rosenbloom KR, Rhead B, Raney BJ, Pohl A, Pheasant M, Meyer L, Hsu F, Hinrichs AS, Harte RA, Giardine B, Fujita P, Diekhans M, Dreszer T, Clawson H, Barber GP, Haussler D, Kent WJ: The UCSC Genome Browser Database: update 2009. Nucleic Acids Res. 2009, 37 (Database issue): D755-761.
Article
PubMed
CAS
PubMed Central
Google Scholar
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997, 25 (17): 3389-3402. 10.1093/nar/25.17.3389.
Article
PubMed
CAS
PubMed Central
Google Scholar
Zhang Z, Carriero N, Zheng D, Karro J, Harrison PM, Gerstein M: PseudoPipe: an automated pseudogene identification pipeline. Bioinformatics. 2006, 22 (12): 1437-1439. 10.1093/bioinformatics/btl116.
Article
PubMed
CAS
Google Scholar
Hubbard T, Barker D, Birney E, Cameron G, Chen Y, Clark L, Cox T, Cuff J, Curwen V, Down T, Durbin R, Eyras E, Gilbert J, Hammond M, Huminiecki L, Kasprzyk A, Lehvaslaiho H, Lijnzaad P, Melsopp C, Mongin E, Pettett R, Pocock M, Potter S, Rust A, Schmidt E, Searle S, Slater G, Smith J, Spooner W, Stabenau A, Stalker J, Stupka E, Ureta-Vidal A, Vastrik I, Clamp M: The Ensembl genome database project. Nucleic Acids Res. 2002, 30 (1): 38-41. 10.1093/nar/30.1.38.
Article
PubMed
CAS
PubMed Central
Google Scholar
Hubbard TJ, Aken BL, Ayling S, Ballester B, Beal K, Bragin E, Brent S, Chen Y, Clapham P, Clarke L, Coates G, Fairley S, Fitzgerald S, Fernandez-Banet J, Gordon L, Graf S, Haider S, Hammond M, Holland R, Howe K, Jenkinson A, Johnson N, Kahari A, Keefe D, Keenan S, Kinsella R, Kokocinski F, Kulesha E, Lawson D, Longden I, Megy K, Meidl P, Overduin B, Parker A, Pritchard B, Rios D, Schuster M, Slater G, Smedley D, Spooner W, Spudich G, Trevanion S, Vilella A, Vogel J, White S, Wilder S, Zadissa A, Birney E, Cunningham F, Curwen V, Durbin R, Fernandez-Suarez XM, Herrero J, Kasprzyk A, Proctor G, Smith J, Searle S, Flicek P: Ensembl 2009. Nucleic Acids Res. 2009, 37 (suppl 1): D690-697.
Article
PubMed
CAS
PubMed Central
Google Scholar
Kent WJ: BLAT–the BLAST-like alignment tool. Genome Res. 2002, 12 (4): 656-664.
Article
PubMed
CAS
PubMed Central
Google Scholar
Nei M, Gojobori T: Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol. 1986, 3 (5): 418-426.
PubMed
CAS
Google Scholar
Yang Z: PAML: a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci. 1997, 13 (5): 555-556.
PubMed
CAS
Google Scholar
Desiere F, Deutsch EW, Nesvizhskii AI, Mallick P, King NL, Eng JK, Aderem A, Boyle R, Brunner E, Donohoe S, Fausto N, Hafen E, Hood L, Katze MG, Kennedy KA, Kregenow F, Lee H, Lin B, Martin D, Ranish JA, Rawlings DJ, Samelson LE, Shiio Y, Watts JD, Wollscheid B, Wright ME, Yan W, Yang L, Yi EC, Zhang H, Aebersold R: Integration with the human genome of peptide sequences obtained by high-throughput mass spectrometry. Genome Biol. 2005, 6 (1): R9-
Article
PubMed
PubMed Central
Google Scholar
Deutsch EW, Lam H, Aebersold R: PeptideAtlas: a resource for target selection for emerging targeted proteomics workflows. EMBO Rep. 2008, 9 (5): 429-434. 10.1038/embor.2008.56.
Article
PubMed
CAS
PubMed Central
Google Scholar
Farrah T, Deutsch EW, Omenn GS, Campbell DS, Sun Z, Bletz JA, Mallick P, Katz JE, Malmström J, Ossola R, Watts JD, Lin B, Zhang H, Moritz RL, Aebersold R: A high-confidence human plasma proteome reference set with estimated concentrations in PeptideAtlas. Mol Cell Proteomics. 2011, 10 (9): M110.006353-10.1074/mcp.M110.006353.
Article
PubMed
PubMed Central
Google Scholar
Jones P, Cote RG, Martens L, Quinn AF, Taylor CF, Derache W, Hermjakob H, Apweiler R: PRIDE: a public repository of protein and peptide identifications for the proteomics community. Nucleic Acids Res. 2006, 34 (Database issue): D659-663.
Article
PubMed
CAS
PubMed Central
Google Scholar
Vizcaino JA, Cote R, Reisinger F, Foster JM, Mueller M, Rameseder J, Hermjakob H, Martens L: A guide to the Proteomics Identifications Database proteomics data repository. Proteomics. 2009, 9 (18): 4276-4283. 10.1002/pmic.200900402.
Article
PubMed
CAS
PubMed Central
Google Scholar
Jenuth JP: The NCBI. Publicly available tools and resources on the Web. Methods Mol Biol. 2000, 132: 301-312.
PubMed
CAS
Google Scholar
Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL: NCBI BLAST: a better web interface. Nucleic Acids Res. 2008, 36 (Web Server issue): W5-9.
Article
PubMed
CAS
PubMed Central
Google Scholar
Zhang YE, Vibranovski MD, Landback P, Marais GA, Long M: Chromosomal redistribution of male-biased genes in mammalian evolution with two bursts of gene gain on the X chromosome. PLoS Biol. 2010, 8 (10): e1000494-10.1371/journal.pbio.1000494.
Article
PubMed
PubMed Central
Google Scholar
Wu NW, Jalkanen S, Streeter PR, Butcher EC: Evolutionary conservation of tissue-specific lymphocyte-endothelial cell recognition mechanisms involved in lymphocyte homing. J Cell Biol. 1988, 107 (5): 1845-1851. 10.1083/jcb.107.5.1845.
Article
PubMed
CAS
Google Scholar
Trusov YA, Dear PH: A molecular clock based on the expansion of gene families. Nucleic Acids Res. 1996, 24 (6): 995-999. 10.1093/nar/24.6.995.
Article
PubMed
CAS
PubMed Central
Google Scholar
Thomas JW, Touchman JW: Vertebrate genome sequencing: building a backbone for comparative genomics. Trends Genet. 2002, 18 (2): 104-108. 10.1016/S0168-9525(02)02599-4.
Article
PubMed
CAS
Google Scholar
Zhao S, Shetty J, Hou L, Delcher A, Zhu B, Osoegawa K, de Jong P, Nierman WC, Strausberg RL, Fraser CM: Human, mouse, and rat genome large-scale rearrangements: stability versus speciation. Genome Res. 2004, 14 (10A): 1851-1860. 10.1101/gr.2663304.
Article
PubMed
CAS
PubMed Central
Google Scholar
Falkowski PG, Katz ME, Milligan AJ, Fennel K, Cramer BS, Aubry MP, Berner RA, Novacek MJ, Zapol WM: The rise of oxygen over the past 205 million years and the evolution of large placental mammals. Science. 2005, 309 (5744): 2202-2204. 10.1126/science.1116047.
Article
PubMed
CAS
Google Scholar
Waters PD, Delbridge ML, Deakin JE, El-Mogharbel N, Kirby PJ, Carvalho-Silva DR, Graves JA: Autosomal location of genes from the conserved mammalian X in the platypus (Ornithorhynchus anatinus): implications for mammalian sex chromosome evolution. Chromosome Res. 2005, 13 (4): 401-410. 10.1007/s10577-005-0978-5.
Article
PubMed
CAS
Google Scholar
Schwartz S, Hall E, Ast G: SROOGLE: webserver for integrative, user-friendly visualization of splicing signals. Nucleic Acids Res. 2009, 37 (Web Server issue): W189-192.
Article
PubMed
CAS
PubMed Central
Google Scholar
Cavalier-Smith T: Selfish DNA and the origin of introns. Nature. 1985, 315: 283-284.
Article
PubMed
CAS
Google Scholar
Castillo-Davis CI, Bedford TBC, Hart DL: Accelerated rates of intron gain/loss and protein evolution in duplicate genes in human and mouse malaria parasites. Mol Biol Evol. 2004, 21 (7): 1422-1427. 10.1093/molbev/msh143.
Article
PubMed
CAS
Google Scholar
Li W, Tucker AE, Sung W, Thomas WK, Lynch M: Extensive, recent intron gains in Daphnia populations. Science. 2009, 326 (5957): 1260-1262. 10.1126/science.1179302.
Article
PubMed
CAS
Google Scholar
Roy SW, Gilbert W: Rates of intron loss and gain: implications for early eukaryotic evolution. Proc Natl Acad Sci USA. 2005, 102: 5773-5778. 10.1073/pnas.0500383102.
Article
PubMed
CAS
PubMed Central
Google Scholar
The 1000 Genomes Project Consortium: A map of human genome variation from population-scale sequencing. Nature. 2010, 467 (7319): 1061-1073. 10.1038/nature09534.
Article
PubMed Central
Google Scholar
Kol G, Lev-Maor G, Ast G: Human-mouse comparative analysis reveals that branch-site plasticity contributes to splicing regulation. Hum Mol Genet. 2005, 14 (11): 1559-1568. 10.1093/hmg/ddi164.
Article
PubMed
CAS
Google Scholar
Schwartz SH, Silva J, Burstein D, Pupko T, Eyras E, Ast G: Large-scale comparative analysis of splicing signals and their corresponding splicing factors in eukaryotes. Genome Res. 2008, 18 (1): 88-103.
Article
PubMed
CAS
PubMed Central
Google Scholar