Hughes AL, Packer B, Welch R, Chanock SJ, Yeager M: High level of functional polymorphism indicates a unique role of natural selection at human immune system loci. Immunogenetics. 2005, 57: 821-827. 10.1007/s00251-005-0052-7.
Article
PubMed
CAS
Google Scholar
Park SG, Choi SS: Expression breadth and expression abundance behave differently in correlations with evolutionary rates. BMC Evol Biol. 2010, 10: 241-10.1186/1471-2148-10-241.
Article
PubMed
PubMed Central
Google Scholar
Limaye N, Belobrajdic KA, Wandstrat AE, Bonhomme F, Edwards SV, Wakeland EK: Prevalence and evolutionary origins of autoimmune susceptibility alleles in natural mouse populations. Genes Immun. 2008, 9: 61-68. 10.1038/sj.gene.6364446.
Article
PubMed
CAS
Google Scholar
Hahn MW, Demuth JP, Han SG: Accelerated rate of gene gain and loss in primates. Genetics. 2007, 177: 1941-1949. 10.1534/genetics.107.080077.
Article
PubMed
PubMed Central
Google Scholar
Bustamante CD, Fledel-Alon A, Williamson S, Nielsen R, Hubisz MT, Glanowski S, Tanenbaum DM, White TJ, Sninsky JJ, Hernandez RD, et al: Natural selection on protein-coding genes in the human genome. Nature. 2005, 437: 1153-1157. 10.1038/nature04240.
Article
PubMed
CAS
Google Scholar
Thomas JK, Richard AG, Barbara AO, Janis K: Kuby Immunology. 2006, W.h.freeman & Co Ltd, 6
Google Scholar
Henderson RD, Bain CJ, Pender MP: The occurrence of autoimmune diseases in patients with multiple sclerosis and their families. J Clin Neurosci. 2000, 7: 434-437. 10.1054/jocn.2000.0693.
Article
PubMed
CAS
Google Scholar
Aune TM, Parker JS, Maas K, Liu Z, Olsen NJ, Moore JH: Co-localization of differentially expressed genes and shared susceptibility loci in human autoimmunity. Genet Epidemiol. 2004, 27: 162-172. 10.1002/gepi.20013.
Article
PubMed
Google Scholar
Wegner N, Wait R, Venables PJ: Evolutionarily conserved antigens in autoimmune disease: implications for an infective aetiology. Int J Biochem Cell Biol. 2009, 41: 390-397. 10.1016/j.biocel.2008.09.012.
Article
PubMed
CAS
Google Scholar
Ng B, Yang F, Huston DP, Yan Y, Yang Y, Xiong Z, Peterson LE, Wang H, Yang XF: Increased noncanonical splicing of autoantigen transcripts provides the structural basis for expression of untolerized epitopes. J Allergy Clin Immunol. 2004, 114: 1463-1470. 10.1016/j.jaci.2004.09.006.
Article
PubMed
CAS
PubMed Central
Google Scholar
Huang H, Winter EE, Wang H, Weinstock KG, Xing H, Goodstadt L, Stenson PD, Cooper DN, Smith D, Albà MM, et al: Evolutionary conservation and selection of human disease gene orthologs in the rat and mouse genomes. Genome Biol. 2004, 5: R47-10.1186/gb-2004-5-7-r47.
Article
PubMed
PubMed Central
Google Scholar
Podder S, Ghosh TC: Exploring the differences in evolutionary rates between monogenic and polygenic disease genes in human. Mol Biol Evol. 2010, 27: 934-941. 10.1093/molbev/msp297.
Article
PubMed
CAS
Google Scholar
Podder S, Ghosh TC: Insights into the molecular correlates modulating functional compensation between monogenic and polygenic disease gene duplicates in human. Genomics. 2011, 97: 200-204. 10.1016/j.ygeno.2011.01.004.
Article
PubMed
CAS
Google Scholar
Sabeti PC, Varilly P, Fry B, Lohmueller J, Hostetter E, Cotsapas C, Xie X, Byrne EH, McCarroll SA, Gaudet R, et al: Genome-wide detection and characterization of positive selection in human populations. Nature. 2007, 449: 913-918. 10.1038/nature06250.
Article
PubMed
CAS
PubMed Central
Google Scholar
Chen FC, Wang SS, Chen CJ, Li WH, Chuang TJ: Alternatively and constitutively spliced exons are subject to different evolutionary forces. Mol Biol Evol. 2006, 23: 675-682.
Article
PubMed
Google Scholar
Stephan W, Langley CH: Molecular genetic variation in the centromeric region of the X chromosome in three Drosophila ananassae populations. I. Contrasts between the vermilion and forked loci. Genetics. 1989, 121: 89-99.
PubMed
CAS
PubMed Central
Google Scholar
Begun DJ, Aquadro CF: Molecular population genetics of the distal portion of the X chromosome in Drosophila: evidence for genetic hitchhiking of the yellow-achaete region. Genetics. 1991, 129: 1147-1158.
PubMed
CAS
PubMed Central
Google Scholar
Nachman MW, Bauer VL, Crowell SL, Aquadro CF: DNA variability and recombination rates at X-linked loci in humans. Genetics. 1998, 150: 1133-1141.
PubMed
CAS
PubMed Central
Google Scholar
Dvorák J, Luo MC, Yang ZL: Restriction fragment length polymorphism and divergence in the genomic regions of high and low recombination in self-fertilizing and cross-fertilizing aegilops species. Genetics. 1998, 148: 423-434.
PubMed
PubMed Central
Google Scholar
Hill WG, Robertson A: The effect of linkage on limits to artificial selection. Genet Res. 1966, 8: 269-294. 10.1017/S0016672300010156.
Article
PubMed
CAS
Google Scholar
Connallon T, Knowles LL: Recombination rate and protein evolution in yeast. BMC Evol Biol. 2007, 7: 235-10.1186/1471-2148-7-235.
Article
PubMed
PubMed Central
Google Scholar
Pál C, Papp B, Hurst LD: Does the recombination rate affect the efficiency of purifying selection? The yeast genome provides a partial answer. Mol Biol Evol. 2001, 18: 2323-2326. 10.1093/oxfordjournals.molbev.a003779.
Article
PubMed
Google Scholar
Zhang L, Lu HH, Chung WY, Yang J, Li WH: Patterns of segmental duplication in the human genome. Mol Biol Evol. 2005, 22: 135-141.
Article
PubMed
CAS
Google Scholar
Sen K, Podder S, Ghosh TC: Insights into the genomic features and evolutionary impact of the genes configuring duplicated pseudogenes in human. FEBS Lett. 2010, 584: 4015-4018. 10.1016/j.febslet.2010.08.012.
Article
PubMed
CAS
Google Scholar
Jordan IK, Wolf YI, Koonin EV: Duplicated genes evolve slower than singletons despite the initial rate increase. BMC Evol Biol. 2004, 4: 22-10.1186/1471-2148-4-22.
Article
PubMed
PubMed Central
Google Scholar
Hastings PJ, Lupski JR, Rosenberg SM, Ira G: Mechanisms of change in gene copy number. Nat Rev Genet. 2009, 10: 551-564.
Article
PubMed
CAS
PubMed Central
Google Scholar
Nguyen DQ, Webber C, Hehir-Kwa J, Pfundt R, Veltman J, Ponting CP: Reduced purifying selection prevails over positive selection in human copy number variant evolution. Genome Res. 2008, 18: 1711-1723. 10.1101/gr.077289.108.
Article
PubMed
CAS
PubMed Central
Google Scholar
Nguyen DQ, Webber C, Ponting CP: Bias of selection on human copy-number variants. PLoS Genet. 2006, 2: e20-10.1371/journal.pgen.0020020.
Article
PubMed
PubMed Central
Google Scholar
Modrek B, Lee C: A genomic view of alternative splicing. Nat Genet. 2002, 30: 13-19. 10.1038/ng0102-13.
Article
PubMed
CAS
Google Scholar
Ramensky VE, Nurtdinov RN, Neverov AD, Mironov AA, Gelfand MS: Positive selection in alternatively spliced exons of human genes. Am J Hum Genet. 2008, 83: 94-98. 10.1016/j.ajhg.2008.05.017.
Article
PubMed
CAS
PubMed Central
Google Scholar
Chen FC, Wang SS, Chen CJ, Li WH, Chuang TJ: Alternatively and constitutively spliced exons are subject to different evolutionary forces. Mol Biol Evol. 2006, 23: 675-682.
Article
PubMed
Google Scholar
Lynch KW: Consequences of regulated pre-mRNA splicing in the immune system. Nat Rev Immunol. 2004, 4: 931-940. 10.1038/nri1497.
Article
PubMed
CAS
Google Scholar
Zhang H, Wang L, Song L, Zhao J, Qiu L, Gao Y, Song X, Li L, Zhang Y, Zhang L: The genomic structure, alternative splicing and immune response of Chlamys farreri thioester-containing protein. Dev Comp Immunol. 2009, 33: 1070-1076. 10.1016/j.dci.2009.05.007.
Article
PubMed
Google Scholar
Lewis BP, Green RE, Brenner SE: Evidence for the widespread coupling of alternative splicing and nonsense-mediated mRNA decay in humans. Proc Natl Acad Sci USA. 2003, 100: 189-192. 10.1073/pnas.0136770100.
Article
PubMed
CAS
PubMed Central
Google Scholar
McGlincy NJ, Smith CW: Alternative splicing resulting in nonsense-mediated mRNA decay: what is the meaning of nonsense?. Trends Biochem Sci. 2008, 33: 385-393. 10.1016/j.tibs.2008.06.001.
Article
PubMed
CAS
Google Scholar
Edwards YJ, Lobley AE, Pentony MM, Jones DT: Insights into the regulation of intrinsically disordered proteins in the human proteome by analyzing sequence and gene expression data. Genome Biol. 2009, 10: R50-10.1186/gb-2009-10-5-r50.
Article
PubMed
PubMed Central
Google Scholar
Romero PR, Zaidi S, Fang YY, Uversky VN, Radivojac P, Oldfield CJ, Cortese MS, Sickmeier M, LeGall T, Obradovic Z, Dunker AK: Alternative splicing in concert with protein intrinsic disorder enables increased functional diversity in multicellular organisms. Proc Natl Acad Sci USA. 2006, 103: 8390-8395. 10.1073/pnas.0507916103.
Article
PubMed
CAS
PubMed Central
Google Scholar
Kovacs E, Tompa P, Liliom K, Kalmar L: Dual coding in alternative reading frames correlates with intrinsic protein disorder. Proc Natl Acad Sci USA. 2010, 107: 5429-5434. 10.1073/pnas.0907841107.
Article
PubMed
CAS
PubMed Central
Google Scholar
Uversky VN, Oldfield CJ, Dunker AK: Showing your ID: intrinsic disorder as an ID for recognition, regulation and cell signaling. J Mol Recognit. 2005, 18: 343-384. 10.1002/jmr.747.
Article
PubMed
CAS
Google Scholar
Brown CJ, Takayama S, Campen AM, Vise P, Marshall TW, Oldfield CJ, Williams CJ, Dunker AK: Evolutionary rate heterogeneity in proteins with long disordered regions. J Mol Evol. 2002, 55: 104-110. 10.1007/s00239-001-2309-6.
Article
PubMed
CAS
Google Scholar
Montgomery SB, Sammeth M, Gutierrez-Arcelus M, Lach RP, Ingle C, Nisbett J, Guigo R, Dermitzakis ET: Transcriptome genetics using second generation sequencing in a Caucasian population. Nature. 2010, 464: 773-777. 10.1038/nature08903.
Article
PubMed
CAS
Google Scholar
Krawczak M, Reiss J, Cooper DN: The mutational spectrum of single base-pair substitutions in mRNA splice junctions of human genes: causes and consequences. Hum Genet. 1992, 90: 41-54.
Article
PubMed
CAS
Google Scholar
Krawczak M, Thomas NS, Hundrieser B, Mort M, Wittig M, Hampe J, Cooper DN: Single base-pair substitutions in exon-intron junctions of human genes: nature, distribution, and consequences for mRNA splicing. Hum Mutat. 2007, 28: 150-158. 10.1002/humu.20400.
Article
PubMed
CAS
Google Scholar
Walsh CT: Posttranslational modification of proteins: expanding nature's inventory. 2006, Englewood, CO: Roberts and Company Publishers
Google Scholar
Cloos PA, Christgau S: Post-translational modifications of proteins: implications for aging, antigen recognition, and autoimmunity. Biogerontology. 2004, 5: 139-158.
Article
PubMed
CAS
Google Scholar
Gray VE, Kumar S: Rampant purifying selection conserves positions with posttranslational modifications in human proteins. Mol Biol Evol. 2011, 28: 1565-1568. 10.1093/molbev/msr013.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ponder JW, Richards FM: Tertiary templates for proteins. Use of packing criteria in the enumeration of allowed sequences for different structural classes. J Mol Biol. 1987, 193: 775-791. 10.1016/0022-2836(87)90358-5.
Article
PubMed
CAS
Google Scholar
Goldman N, Thorne JL, Jones DT: Assessing the impact of secondary structure and solvent accessibility on protein evolution. Genetics. 1998, 149: 445-458.
PubMed
CAS
PubMed Central
Google Scholar
Sunyaev S, Ramensky V, Koch I, Lathe W, Kondrashov AS, Bork P: Prediction of deleterious human alleles. Hum Mol Genet. 2001, 10: 591-597. 10.1093/hmg/10.6.591.
Article
PubMed
CAS
Google Scholar
Chakraborty S, Kahali B, Ghosh TC: Protein complex forming ability is favored over the features of interacting partners in determining the evolutionary rates of proteins in the yeast protein-protein interaction networks. BMC Syst Biol. 2010, 4: 155-10.1186/1752-0509-4-155.
Article
PubMed
PubMed Central
Google Scholar
Smith NG, Eyre-Walker A: Human disease genes: patterns and predictions. Gene. 2003, 318: 169-175.
Article
PubMed
CAS
Google Scholar
López-Bigas N, Ouzounis CA: Genome-wide identification of genes likely to be involved in human genetic disease. Nucleic Acids Res. 2004, 32: 3108-3114. 10.1093/nar/gkh605.
Article
PubMed
PubMed Central
Google Scholar
Greco D, Somervuo P, Di Lieto A, Raitila T, Nitsch L, Castrén E, Auvinen P: Physiology, pathology and relatedness of human tissues from gene expression meta-analysis. PLoS One. 2008, 3: e1880-10.1371/journal.pone.0001880.
Article
PubMed
PubMed Central
Google Scholar
Conrad B, Antonarakis SE: Gene duplication: a drive for phenotypic diversity and cause of human disease. Annu Rev Genomics Hum Genet. 2007, 8: 17-35. 10.1146/annurev.genom.8.021307.110233.
Article
PubMed
CAS
Google Scholar
Su Z, Wang J, Yu J, Huang X, Gu X: Evolution of alternative splicing after gene duplication. Genome Res. 2006, 16: 182-189.
Article
PubMed
CAS
PubMed Central
Google Scholar
Cuccurese M, Russo G, Russo A, Pietropaolo C: Alternative splicing and nonsense-mediated mRNA decay regulate mammalian ribosomal gene expression. Nucleic Acids Res. 2005, 33: 5965-5977. 10.1093/nar/gki905.
Article
PubMed
CAS
PubMed Central
Google Scholar
Khadra A, Santamaria P, Edelstein-Keshet L: The pathogenicity of self-antigen decreases at high levels of autoantigenicity: a computational approach. Int Immunol. 2010, 22: 571-582. 10.1093/intimm/dxq041.
Article
PubMed
CAS
PubMed Central
Google Scholar
Becker KG, Barnes KC, Bright TJ, Wang SA: The genetic association database. Nat Genet. 2004, 36: 431-432. 10.1038/ng0504-431.
Article
PubMed
CAS
Google Scholar
Collison LW, Chaturvedi V, Henderson AL, Giacomin PR, Guy C, Bankoti J, Finkelstein D, Forbes K, Workman CJ, Brown SA, et al: IL-35-mediated induction of a potent regulatory T cell population. Nat Immunol. 2010, 11: 1093-1101. 10.1038/ni.1952.
Article
PubMed
CAS
PubMed Central
Google Scholar
Flicek P, Amode MR, Barrell D, Beal K, Brent S, Chen Y, Clapham P, Coates G, Fairley S, Fitzgerald S, et al: Ensembl 2011. Nucleic Acids Res. 2011, 39: D800-806. 10.1093/nar/gkq1064.
Article
PubMed
CAS
PubMed Central
Google Scholar
Su AI, Wiltshire T, Batalov S, Lapp H, Ching KA, Block D, Zhang J, Soden R, Hayakawa M, Kreiman G, et al: A gene atlas of the mouse and human protein-encoding transcriptomes. Proc Natl Acad Sci USA. 2004, 101: 6062-6067. 10.1073/pnas.0400782101.
Article
PubMed
CAS
PubMed Central
Google Scholar
Podder S, Mukhopadhyay P, Ghosh TC: Multifunctionality dominantly determines the rate of human housekeeping and tissue specific interacting protein evolution. Gene. 2009, 439: 11-16. 10.1016/j.gene.2009.03.005.
Article
PubMed
CAS
Google Scholar
Jegga AG, Gowrisankar S, Chen J, Aronow BJ: PolyDoms: a whole genome database for the identification of non-synonymous coding SNPs with the potential to impact disease. Nucleic Acids Res. 2007, 35: D700-706. 10.1093/nar/gkl826.
Article
PubMed
CAS
PubMed Central
Google Scholar
Zhang J, Feuk L, Duggan GE, Khaja R, Scherer SW: Development of bioinformatics resources for display and analysis of copy number and other structural variants in the human genome. Cytogenet Genome Res. 2006, 115: 205-214. 10.1159/000095916.
Article
PubMed
CAS
Google Scholar
Thorisson GA, Smith AV, Krishnan L, Stein LD: The International HapMap Project Web site. Genome Res. 2005, 15: 1592-1593. 10.1101/gr.4413105.
Article
PubMed
CAS
PubMed Central
Google Scholar
Kato M, Miya F, Kanemura Y, Tanaka T, Nakamura Y, Tsunoda T: Recombination rates of genes expressed in human tissues. Hum Mol Genet. 2008, 17: 577-586.
Article
PubMed
CAS
Google Scholar
Lee C, Atanelov L, Modrek B, Xing Y: ASAP: the Alternative Splicing Annotation Project. Nucleic Acids Res. 2003, 31: 101-105. 10.1093/nar/gkg029.
Article
PubMed
CAS
PubMed Central
Google Scholar
Yang JO, Kim WY, Bhak J: ssSNPTarget: genome-wide splice-site Single Nucleotide Polymorphism database. Hum Mutat. 2009, 30: E1010-1020. 10.1002/humu.21128.
Article
PubMed
Google Scholar
Shionyu M, Yamaguchi A, Shinoda K, Takahashi K, Go M: AS-ALPS: a database for analyzing the effects of alternative splicing on protein structure, interaction and network in human and mouse. Nucleic Acids Res. 2009, 37: D305-309. 10.1093/nar/gkn869.
Article
PubMed
CAS
PubMed Central
Google Scholar
Prilusky J, Felder CE, Zeev-Ben-Mordehai T, Rydberg EH, Man O, Beckmann JS, Silman I, Sussman JL: FoldIndex: a simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics. 2005, 21: 3435-3438. 10.1093/bioinformatics/bti537.
Article
PubMed
CAS
Google Scholar
Uversky VN, Gillespie JR, Fink AL: Why are "natively unfolded" proteins unstructured under physiologic conditions?. Proteins. 2000, 41: 415-427. 10.1002/1097-0134(20001115)41:3<415::AID-PROT130>3.0.CO;2-7.
Article
PubMed
CAS
Google Scholar
Blom N, Gammeltoft S, Brunak S: Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol. 1999, 294: 1351-1362. 10.1006/jmbi.1999.3310.
Article
PubMed
CAS
Google Scholar
Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A: ExPASy: The proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res. 2003, 31: 3784-3788. 10.1093/nar/gkg563.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ahmad S, Gromiha MM, Sarai A: RVP-net: online prediction of real valued accessible surface area of proteins from single sequences. Bioinformatics. 2003, 19: 1849-1851. 10.1093/bioinformatics/btg249.
Article
PubMed
CAS
Google Scholar
D'Onofrio G, Jabbari K, Musto H, Bernardi G: The correlation of protein hydropathy with the base composition of coding sequences. Gene. 1999, 238: 3-14. 10.1016/S0378-1119(99)00257-7.
Article
PubMed
Google Scholar