Swanson WJ, Vacquier VD: The rapid evolution of reproductive proteins. Nat Rev Genet. 2002, 3: 137-144. 10.1038/nrg733.
Article
CAS
PubMed
Google Scholar
Clark NL, Aagaard JE, Swanson WJ: Evolution of reproductive proteins from animals and plants. Reproduction. 2006, 131: 11-22. 10.1530/rep.1.00357.
Article
CAS
PubMed
Google Scholar
Parker GA: Sexual selection and sexual conflict. Sexual Selection and Reproductive Competition in Insects. Edited by: Blum MS, Blum NA. 1979, New York: Academic Press, 123-166.
Chapter
Google Scholar
Eberhard WG: Female control: sexual selection by cryptic female choice. 1996, Princeton, NJ: Princeton University Press
Google Scholar
Holland B, Rice WR: Experimental removal of sexual selection reverses intersexual antagonistic coevolution and removes a reproductive load. Proc Natl Acad Sci USA. 1999, 96: 5083-5088. 10.1073/pnas.96.9.5083.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arnqvist G, Edvardsson M, Friberg U, Nilsson T: Sexual conflict promotes speciation in insects. Proc Natl Acad Sci USA. 2000, 97: 10460-10464. 10.1073/pnas.97.19.10460.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tripet F, Toure YT, Dolo G, Lanzaro GC: Frequency of multiple inseminations in field-collected Anopheles gambiae females revealed by DNA analysis of transferred sperm. Am J Trop Med Hyg. 2003, 68: 1-5.
PubMed
Google Scholar
Rogers DW, Baldini F, Battaglia F, Panico M, Dell A, Morris HR, Catteruccia F: Transglutaminase-mediated semen coagulation controls sperm storage in the malaria mosquito. PLoS Biol. 2009, 7: e1000272-10.1371/journal.pbio.1000272.
Article
PubMed
PubMed Central
Google Scholar
Davidson G: Anopheles gambiae, a complex of species. Bull World Health Organ. 1964, 31: 625-634.
CAS
PubMed
PubMed Central
Google Scholar
della Torre A, Fanello C, Akogbeto M, Dossou-yovo J, Favia G, Petrarca V, Coluzzi M: Molecular evidence of incipient speciation within Anopheles gambiae s.s. in West Africa. Insect Mol Biol. 2001, 10: 9-18. 10.1046/j.1365-2583.2001.00235.x.
Article
Google Scholar
Coluzzi M, Sabatini A, della Torre A, Di Deco MA, Petrarca V: A polytene chromosome analysis of the Anopheles gambiae species complex. Science. 2002, 298: 1415-1418. 10.1126/science.1077769.
Article
CAS
PubMed
Google Scholar
Giglioli MEC, Mason GF: The mating plug in anopheline mosquitoes. Proceedings of the Royal Entomological Society London. 1966, A: 123-129.
Google Scholar
Tripet F, Thiemann T, Lanzaro GC: Effect of seminal fluids in mating between M and S forms of Anopheles gambiae. J Med Entomol. 2005, 42: 596-603. 10.1603/0022-2585(2005)042[0596:EOSFIM]2.0.CO;2.
Article
CAS
PubMed
Google Scholar
Rogers DW, Whitten MM, Thailayil J, Soichot J, Levashina EA, Catteruccia F: Molecular and cellular components of the mating machinery in Anopheles gambiae females. Proc Natl Acad Sci USA. 2008, 105: 19390-19395. 10.1073/pnas.0809723105.
Article
CAS
PubMed
PubMed Central
Google Scholar
Parmakelis A, Moustaka M, Poulakakis N, Christos L, Slotman MA, Marshall JC, Awono-Ambene PH, Antonio-Nkondjio C, Simard F, Caccone A, Powell JR: Anopheles immune genes and amino acid sites evolving under the effect of positive selection. PLoS One. 2010, 5: e8885-10.1371/journal.pone.0008885.
Article
PubMed
PubMed Central
Google Scholar
Obbard DJ, Welch JJ, Little TJ: Inferring selection in the Anopheles gambiae species complex: an example from immune-related serine protease inhibitors. Malar J. 2009, 8: 117-10.1186/1475-2875-8-117.
Article
PubMed
PubMed Central
Google Scholar
Tu Z: Eight novel families of miniature inverted repeat transposable elements in the African malaria mosquito, Anopheles gambiae. Proc Natl Acad Sci USA. 2001, 98: 1699-1704. 10.1073/pnas.041593198.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goldman N, Yang Z: A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol Biol Evol. 1994, 11: 725-736.
CAS
PubMed
Google Scholar
Rocha EP, Smith JM, Hurst LD, Holden MT, Cooper JE, Smith NH, Feil EJ: Comparisons of dN/dS are time dependent for closely related bacterial genomes. J Theor Biol. 2006, 239: 226-235. 10.1016/j.jtbi.2005.08.037.
Article
CAS
PubMed
Google Scholar
Wolf JB, Kunstner A, Nam K, Jakobsson M, Ellegren H: Nonlinear dynamics of nonsynonymous (dN) and synonymous (dS) substitution rates affects inference of selection. Genome Biol Evol. 2009, 1: 308-319. 10.1093/gbe/evp030.
Article
PubMed
PubMed Central
Google Scholar
Kryazhimskiy S, Plotkin JB: The population genetics of dN/dS. PLoS Genet. 2008, 4: e1000304-10.1371/journal.pgen.1000304.
Article
PubMed
PubMed Central
Google Scholar
Gutacker MM, Smoot JC, Migliaccio CA, Ricklefs SM, Hua S, Cousins DV, Graviss EA, Shashkina E, Kreiswirth BN, Musser JM: Genome-wide analysis of synonymous single nucleotide polymorphisms in Mycobacterium tuberculosis complex organisms: resolution of genetic relationships among closely related microbial strains. Genetics. 2002, 162: 1533-1543.
CAS
PubMed
PubMed Central
Google Scholar
Sigler PB, Blow DM, Matthews BW, Henderson R: Structure of crystalline -chymotrypsin. II. A preliminary report including a hypothesis for the activation mechanism. J Mol Biol. 1968, 35: 143-164. 10.1016/S0022-2836(68)80043-9.
Article
CAS
PubMed
Google Scholar
Blow DM: Structure and mechanism of chymotrypsin. Accounts of chemical research. 1976, 9: 145-152. 10.1021/ar50100a004.
Article
CAS
Google Scholar
Kraut J: Serine proteases: structure and mechanism of catalysis. Annu Rev Biochem. 1977, 46: 331-358. 10.1146/annurev.bi.46.070177.001555.
Article
CAS
PubMed
Google Scholar
Steitz TA, Shulman RG: Crystallographic and NMR studies of the serine proteases. Annu Rev Biophys Bioeng. 1982, 11: 419-444. 10.1146/annurev.bb.11.060182.002223.
Article
CAS
PubMed
Google Scholar
Bazan JF, Fletterick RJ: Structural and catalytic models of trypsin-like viral proteases. Seminars in Virology. 1990, 1: 311-322.
CAS
Google Scholar
Ayala FJ, Coluzzi M: Chromosome speciation: humans, Drosophila, and mosquitoes. Proc Natl Acad Sci USA. 2005, 102: 6536-6542. 10.1073/pnas.0501847102.
Article
Google Scholar
Ohno S: Evolution by Gene Duplication. 1970, Berlin: Springer-Verlag
Book
Google Scholar
Hughes AL: The evolution of functionally novel proteins after gene duplication. Proc Biol Sci. 1994, 256: 119-124. 10.1098/rspb.1994.0058.
Article
CAS
PubMed
Google Scholar
Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J: Preservation of duplicate genes by complementary, degenerative mutations. Genetics. 1999, 151: 1531-1545.
CAS
PubMed
PubMed Central
Google Scholar
Kelleher ES, Swanson WJ, Markow TA: Gene duplication and adaptive evolution of digestive proteases in Drosophila arizonae female reproductive tracts. PLoS Genet. 2007, 3: e148-10.1371/journal.pgen.0030148.
Article
PubMed
PubMed Central
Google Scholar
Kelleher ES, Markow TA: Duplication, selection and gene conversion in a Drosophila mojavensis female reproductive protein family. Genetics. 2009, 181: 1451-1465. 10.1534/genetics.108.099044.
Article
CAS
PubMed
PubMed Central
Google Scholar
Quesneville H, Nouaud D, Anxolabehere D: P elements and MITE relatives in the whole genome sequence of Anopheles gambiae. BMC Genomics. 2006, 7: 214-10.1186/1471-2164-7-214.
Article
PubMed
PubMed Central
Google Scholar
Obbard DJ, Linton YM, Jiggins FM, Yan G, Little TJ: Population genetics of Plasmodium resistance genes in Anopheles gambiae: no evidence for strong selection. Mol Ecol. 2007, 16: 3497-3510. 10.1111/j.1365-294X.2007.03395.x.
Article
CAS
PubMed
Google Scholar
Donnelly MJ, Licht MC, Lehmann T: Evidence for recent population expansion in the evolutionary history of the malaria vectors Anopheles arabiensis and Anopheles gambiae. Mol Biol Evol. 2001, 18: 1353-1364.
Article
CAS
PubMed
Google Scholar
Onyabe DY, Conn JE: Population genetic structure of the malaria mosquito Anopheles arabiensis across Nigeria suggests range expansion. Mol Ecol. 2001, 10: 2577-2591. 10.1046/j.0962-1083.2001.01387.x.
Article
CAS
PubMed
Google Scholar
Crawford JE, Lazzaro BP: The demographic histories of the M and S molecular forms of Anopheles gambiae s.s. Mol Biol Evol. 2010, 27: 1739-1744. 10.1093/molbev/msq070.
Article
CAS
PubMed
PubMed Central
Google Scholar
Simard F, Licht M, Besansky NJ, Lehmann T: Polymorphism at the defensin gene in the Anopheles gambiae complex: testing different selection hypotheses. Infect Genet Evol. 2007, 7: 285-292. 10.1016/j.meegid.2006.11.004.
Article
CAS
PubMed
Google Scholar
Slotman MA, Parmakelis A, Marshall JC, Awono-Ambene PH, Antonio-Nkondjo C, Simard F, Caccone A, Powell JR: Patterns of selection in anti-malarial immune genes in malaria vectors: evidence for adaptive evolution in LRIM1 in Anopheles arabiensis. PLoS One. 2007, 2: e793-10.1371/journal.pone.0000793.
Article
PubMed
PubMed Central
Google Scholar
Parmakelis A, Slotman MA, Marshall JC, Awono-Ambene PH, Antonio-Nkondjio C, Simard F, Caccone A, Powell JR: The molecular evolution of four anti-malarial immune genes in the Anopheles gambiae species complex. BMC Evol Biol. 2008, 8: 79-10.1186/1471-2148-8-79.
Article
PubMed
PubMed Central
Google Scholar
Lehmann T, Hume JC, Licht M, Burns CS, Wollenberg K, Simard F, Ribeiro JM: Molecular evolution of immune genes in the malaria mosquito Anopheles gambiae. PLoS One. 2009, 4: e4549-10.1371/journal.pone.0004549.
Article
PubMed
PubMed Central
Google Scholar
Mendes C, Felix R, Sousa AM, Lamego J, Charlwood D, do Rosario VE, Pinto J, Silveira H: Molecular evolution of the three short PGRPs of the malaria vectors Anopheles gambiae and Anopheles arabiensis in East Africa. BMC Evol Biol. 2010, 10: 9-10.1186/1471-2148-10-9.
Article
PubMed
PubMed Central
Google Scholar
Swanson WJ, Wong A, Wolfner MF, Aquadro CF: Evolutionary expressed sequence tag analysis of Drosophila female reproductive tracts identifies genes subjected to positive selection. Genetics. 2004, 168: 1457-1465. 10.1534/genetics.104.030478.
Article
CAS
PubMed
PubMed Central
Google Scholar
Panhuis TM, Swanson WJ: Molecular evolution and population genetic analysis of candidate female reproductive genes in Drosophila. Genetics. 2006, 173: 2039-2047. 10.1534/genetics.105.053611.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lawniczak MK, Begun DJ: Molecular population genetics of female-expressed mating-induced serine proteases in Drosophila melanogaster. Mol Biol Evol. 2007, 24: 1944-1951. 10.1093/molbev/msm122.
Article
CAS
PubMed
Google Scholar
Prokupek A, Hoffmann F, Eyun SI, Moriyama E, Zhou M, Harshman L: An evolutionary expressed sequence tag analysis of Drosophila spermatheca genes. Evolution. 2008, 62: 2936-2947. 10.1111/j.1558-5646.2008.00493.x.
Article
CAS
PubMed
Google Scholar
Begun DJ, Whitley P, Todd BL, Waldrip-Dail HM, Clark AG: Molecular population genetics of male accessory gland proteins in Drosophila. Genetics. 2000, 156: 1879-1888.
CAS
PubMed
PubMed Central
Google Scholar
Holloway AK, Begun DJ: Molecular evolution and population genetics of duplicated accessory gland protein genes in Drosophila. Mol Biol Evol. 2004, 21: 1625-1628. 10.1093/molbev/msh195.
Article
CAS
PubMed
Google Scholar
Almeida FC, Desalle R: Orthology, function and evolution of accessory gland proteins in the Drosophila repleta group. Genetics. 2009, 181: 235-245. 10.1534/genetics.108.096263.
Article
CAS
PubMed
PubMed Central
Google Scholar
Innocenti P, Morrow EH: Immunogenic males: a genome-wide analysis of reproduction and the cost of mating in Drosophila melanogaster female. J Evol Biol. 2009, 22: 964-973. 10.1111/j.1420-9101.2009.01708.x.
Article
CAS
PubMed
Google Scholar
Odoul F, Xu J, Niare O, Natarajan R, Vernick KD: Genes identified by an expression screen of the vector mosquito Anopheles gambiae display differential molecular immune response to malaria parasites and bacteria. Proc Natl Acad Sci USA. 2000, 97: 11397-11402. 10.1073/pnas.180060997.
Article
Google Scholar
Xia A, Sharakhova MV, Leman SC, Tu Z, Bailey JA, Smith CD, Sharakhov IV: Genome landscape and evolutionary plasticity of chromosomes in malaria mosquitoes. PLoS One. 2010, 5: e10592-10.1371/journal.pone.0010592.
Article
PubMed
PubMed Central
Google Scholar
Kubli E: Sex-peptides: seminal peptides of the Drosophila male. Cell Mol Life Sci. 2003, 60: 1689-1704. 10.1007/s00018-003-3052.
Article
CAS
PubMed
Google Scholar
Fanello C, Santolamazza F, della Torre A: Simultaneous identification of species and molecular forms of the Anopheles gambiae complex by PCR-RFLP. Med Vet Entomol. 2002, 16: 461-464. 10.1046/j.1365-2915.2002.00393.x.
Article
CAS
PubMed
Google Scholar
Santolamazza F, Mancini E, Simard F, Qi Y, Tu Z, della Torre A: Insertion polymorphisms of SINE200 retrotransposons within speciation islands of Anopheles gambiae molecular forms. Malar J. 2008, 7: 163-10.1186/1475-2875-7-163.
Article
PubMed
PubMed Central
Google Scholar
Rozen S, Skaletsky H: Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol. 2000, 132: 365-386.
CAS
PubMed
Google Scholar
Staden R, Beal KF, Bonfield JK: The Staden package, 1998. Methods Mol Biol. 2000, 132: 115-130.
CAS
PubMed
Google Scholar
Stephens M, Smith NJ, Donnelly P: A new statistical method for haplotype reconstruction from population data. Am J Hum Genet. 2001, 68: 978-989. 10.1086/319501.
Article
CAS
PubMed
PubMed Central
Google Scholar
Librado P, Rozas J: DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009, 25: 1451-1452. 10.1093/bioinformatics/btp187.
Article
CAS
PubMed
Google Scholar
Katoh K, Kuma K, Toh H, Miyata T: MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res. 2005, 33: 511-518. 10.1093/nar/gki198.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yang Z: PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol. 2007, 24: 1586-1591. 10.1093/molbev/msm088.
Article
CAS
PubMed
Google Scholar
Posada D: jModelTest: phylogenetic model averaging. Mol Biol Evol. 2008, 25: 1253-1256. 10.1093/molbev/msn083.
Article
CAS
PubMed
Google Scholar
Huelsenbeck JP, Ronquist F: MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics. 2001, 17: 754-755. 10.1093/bioinformatics/17.8.754.
Article
CAS
PubMed
Google Scholar
Besansky NJ, Krzywinski J, Lehmann T, Simard F, Kern M, Mukabayire O, Fontenille D, Toure Y, Sagnon N: Semipermeable species boundaries between Anopheles gambiae and Anopheles arabiensis: evidence from multilocus DNA sequence variation. Proc Natl Acad Sci USA. 2003, 100: 10818-10823. 10.1073/pnas.1434337100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Donnelly MJ, Pinto J, Girod R, Besansky NJ, Lehmann T: Revisiting the role of introgression vs shared ancestral polymorphisms as key processes shaping genetic diversity in the recently separated sibling species of the Anopheles gambiae complex. Heredity. 2004, 92: 61-68. 10.1038/sj.hdy.6800377.
Article
CAS
PubMed
Google Scholar
Cummings MP, Neel MC, Shaw KL: A genealogical approach to quantifying lineage divergence. Evolution. 2008, 62: 2411-2422. 10.1111/j.1558-5646.2008.00442.x.
Article
PubMed
Google Scholar
Yang Z, Bielawski JP: Statistical methods for detecting molecular adaptation. Trends Ecol Evol. 2000, 15: 496-503. 10.1016/S0169-5347(00)01994-7.
Article
PubMed
Google Scholar
McDonald JH, Kreitman M: Adaptive protein evolution at the Adh locus in Drosophila. Nature. 1991, 351: 652-654. 10.1038/351652a0.
Article
CAS
PubMed
Google Scholar
Anisimova M, Yang Z: Multiple hypothesis testing to detect lineages under positive selection that affects only a few sites. Mol Biol Evol. 2007, 24: 1219-1228. 10.1093/molbev/msm042.
Article
CAS
PubMed
Google Scholar
Pond SL, Frost SD: Datamonkey: rapid detection of selective pressure on individual sites of codon alignments. Bioinformatics. 2005, 21: 2531-2533. 10.1093/bioinformatics/bti320.
Article
CAS
PubMed
Google Scholar
Anisimova M, Nielsen R, Yang Z: Effect of recombination on the accuracy of the likelihood method for detecting positive selection at amino acid sites. Genetics. 2003, 164: 1229-1236.
CAS
PubMed
PubMed Central
Google Scholar
Bielawski JP, Yang Z: Maximum likelihood methods for detecting adaptive evolution after gene duplication. J Struct Funct Genomics. 2003, 3: 201-212. 10.1023/A:1022642807731.
Article
CAS
PubMed
Google Scholar
Martin DP, Williamson C, Posada D: RDP2: recombination detection and analysis from sequence alignments. Bioinformatics. 2005, 21: 260-262. 10.1093/bioinformatics/bth490.
Article
CAS
PubMed
Google Scholar
Pond SL, Posada D, Gravenor MB, Woelk CH, Frost SD: GARD: a genetic algorithm for recombination detection. Bioinformatics. 2006, 22: 3096-3098. 10.1093/bioinformatics/btl474.
Article
CAS
Google Scholar
Soding J: Protein homology detection by HMM-HMM comparison. Bioinformatics. 2005, 21: 951-960. 10.1093/bioinformatics/bti125.
Article
PubMed
Google Scholar
Pei J, Tang M, Grishin NV: PROMALS3D web server for accurate multiple protein sequence and structure alignments. Nucleic Acids Res. 2008, 36: W30-34. 10.1093/nar/gkn322.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sali A, Blundell TL: Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol. 1993, 234: 779-815. 10.1006/jmbi.1993.1626.
Article
CAS
PubMed
Google Scholar
Botos I, Meyer E, Nguyen M, Swanson SM, Koomen JM, Russell DH, Meyer EF: The structure of an insect chymotrypsin. J Mol Biol. 2000, 298: 895-901. 10.1006/jmbi.2000.3699.
Article
CAS
PubMed
Google Scholar
Perona JJ, Tsu CA, Craik CS, Fletterick RJ: Crystal structure of an ecotin-collagenase complex suggests a model for recognition and cleavage of the collagen triple helix. Biochemistry. 1997, 36: 5381-5392. 10.1021/bi9617522.
Article
CAS
PubMed
Google Scholar
Fodor K, Harmat V, Neutze R, Szilagyi L, Graf L, Katona G: Enzyme:substrate hydrogen bond shortening during the acylation phase of serine protease catalysis. Biochemistry. 2006, 45: 2114-2121. 10.1021/bi0517133.
Article
CAS
PubMed
Google Scholar
Shen MY, Sali A: Statistical potential for assessment and prediction of protein structures. Protein Sci. 2006, 15: 2507-2524. 10.1110/ps.062416606.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wallner B, Larsson P, Elofsson A: Pcons.net: protein structure prediction meta server. Nucleic Acids Res. 2007, 35: W369-374. 10.1093/nar/gkm319.
Article
PubMed
PubMed Central
Google Scholar
Pawlowski M, Gajda MJ, Matlak R, Bujnicki JM: MetaMQAP: a meta-server for the quality assessment of protein models. BMC Bioinformatics. 2008, 9: 403-10.1186/1471-2105-9-403.
Article
PubMed
PubMed Central
Google Scholar
Sharakhova MV, Xia A, McAlister SI, Sharakhov IV: A standard cytogenetic photomap for the mosquito Anopheles stephensi (Diptera: Culicidae): application for physical mapping. J Med Entomol. 2006, 43: 861-866. 10.1603/0022-2585(2006)43[861:ASCPFT]2.0.CO;2.
Article
CAS
PubMed
Google Scholar