Sites JW, Marshall JC: Delimiting species: a Renaissance issue in systematic biology. Trends in Ecology & Evolution. 2003, 18: 462-470. 10.1016/S0169-5347(03)00184-8.
Article
Google Scholar
Rissler LJ, Apodaca JJ: Adding more ecology into species delimitation: ecological niche models and phylogeography help define cryptic species in the black salamander (Aneides flavipunctatus). Systematic Biology. 2007, 56: 924-942. 10.1080/10635150701703063.
Article
PubMed
Google Scholar
Wiens JJ: Species delimitation: new approaches for discovering diversity. Systematic Biology. 2007, 56: 875-878. 10.1080/10635150701748506.
Article
PubMed
Google Scholar
Savage JM: Systematics and the biodiversity crisis. BioScience. 1995, 45: 673-679. 10.2307/1312672.
Article
Google Scholar
Pfenninger M, Schwenk K: Cryptic animal species are homogeneously distributed among taxa and biogeographical regions. BMC Evolutionary Biology. 2007, 7: 121-10.1186/1471-2148-7-121.
Article
PubMed Central
PubMed
Google Scholar
Bickford D, Lohman DJ, Sodhi NS, Ng PKL, Meier R, Winker K, Ingram KK, Das I: Cryptic species as a window on diversity and conservation. Trends in Ecology & Evolution. 2007, 22: 148-155. 10.1016/j.tree.2006.11.004.
Article
Google Scholar
de Queiroz K: The general lineage concept of species, species criteria, and the process of speciation: A conceptual unification and terminological recommendations. Endless forms: Species and speciation. Edited by: Howard DJ, Berlocher SH. 1998, New York: Oxford University Press, 57-75.
Google Scholar
Janzen DH: Now is the time. Philosophical Transaction of the Royal Society of London Series B. 2004, 359: 731-732. 10.1098/rstb.2003.1444.
Article
Google Scholar
de Queiroz K: Species concepts and species delimitation. Systematic Biology. 2007, 56: 879-886. 10.1080/10635150701701083.
Article
PubMed
Google Scholar
Funk DJ, Omland KE: Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annual Review of Ecology, Evolution, and Systematics. 2003, 34: 397-423. 10.1146/annurev.ecolsys.34.011802.132421.
Article
Google Scholar
Doyle JJ: The irrelevance of allele tree topologies for species delimitation, and a non-topological alternative. Systematic Botany. 1995, 20: 574-588. 10.2307/2419811.
Article
Google Scholar
Carson H: The species as a field for recombination. The species problem. Edited by: Mayr E. 1957, Washington: American Association for the Advancement of Science, 23-38.
Google Scholar
Miller JT, Spooner DM: Collapse of species boundaries in the wild potato Solanum brevicaule complex (Solanaceae, S. sect. Petota): molecular data. Plant Systematics and Evolution. 1999, 214: 103-130. 10.1007/BF00985734.
Article
Google Scholar
Marshall JC, Arévalo E, Benavides E, Sites JL, Sites JW: Delimiting species: comparing methods for Mendelian characters using lizards of the Sceloporus grammicus (Squamata: Phrynosomatidae) complex. Evolution. 2006, 60: 1050-1065.
Article
PubMed
Google Scholar
Hausdorf B, Hennig C: Species delimitation using dominant and codominant multilocus markers. Systematic Biology. 2010, 59: 491-503. 10.1093/sysbio/syq039.
Article
CAS
PubMed
Google Scholar
Flot J-F, Tillier A, Samadi S, Tillier S: Phase determination from direct sequencing of length-variable DNA regions. Molecular Ecology Notes. 2006, 6: 627-630. 10.1111/j.1471-8286.2006.01355.x.
Article
CAS
Google Scholar
Harrigan RJ, Mazza ME, Sorenson MD: Computation vs. cloning: evaluation of two methods for haplotype determination. Molecular Ecology Resources. 2008, 8: 1239-1248. 10.1111/j.1755-0998.2008.02241.x.
Article
CAS
PubMed
Google Scholar
Palumbi S, Baker C: Contrasting population structure from nuclear intron sequences and mtDNA of humpback whales. Molecular Biology and Evolution. 1994, 11: 426-435.
CAS
PubMed
Google Scholar
Miyamoto MM, Fitch WM: Testing species phylogenies and phylogenetic methods with congruence. Systematic Biology. 1995, 44: 64-76.
Article
Google Scholar
Li B, Lecointre G: Formalizing reliability in the taxonomic congruence approach. Zoologica Scripta. 2009, 38: 101-112. 10.1111/j.1463-6409.2008.00361.x.
Article
CAS
Google Scholar
Forsman ZH, Hunter CL, Fox GE, Wellington GM: Is the ITS region the solution to the 'species problem' in corals? Intragenomic variation and alignment permutation in Porites, Siderastrea and outgroup taxa. Proceedings of the 10th International Coral Reef Symposium. 2006, 1: 14-23.
Google Scholar
Flot J-F, Tillier S: The mitochondrial genome of Pocillopora (Cnidaria: Scleractinia) contains two variable regions: The putative D-loop and a novel ORF of unknown function. Gene. 2007, 401: 80-87. 10.1016/j.gene.2007.07.006.
Article
CAS
PubMed
Google Scholar
Posada D, Crandall KA: Intraspecific gene genealogies: trees grafting into networks. Trends in Ecology and Evolution. 2001, 16: 37-45. 10.1016/S0169-5347(00)02026-7.
Article
PubMed
Google Scholar
Knowles LL, Carstens BC: Delimiting species without monophyletic gene trees. Systematic Biology. 2007, 56: 887-895. 10.1080/10635150701701091.
Article
PubMed
Google Scholar
O'Meara BC: New heuristic methods for joint species delimitation and species tree inference. Systematic Biology. 2010, 59: 59-73. 10.1093/sysbio/syp077.
Article
PubMed
Google Scholar
Flot J-F, Magalon H, Cruaud C, Couloux A, Tillier S: Patterns of genetic structure among Hawaiian corals of the genus Pocillopora yield clusters of individuals that are compatible with morphology. Comptes Rendus Biologies. 2008, 331: 239-247. 10.1016/j.crvi.2007.12.003.
Article
PubMed
Google Scholar
Lopez JV, Yuhki N, Masuda R, Modi W, O'Brien SJ: Numt, a recent transfer and tandem amplification of mitochondrial DNA to the nuclear genome of the domestic cat. Journal of Molecular Evolution. 1994, 39: 174-190.
CAS
PubMed
Google Scholar
Sorenson MD, Fleischer RC: Multiple independent transpositions of mitochondrial DNA control region sequences to the nucleus. Proceedings of the National Academy of Sciences of the United States of America. 1996, 93: 15239-15243. 10.1073/pnas.93.26.15239.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bensasson D, Zhang D-X, Hartl DL, Hewitt GM: Mitochondrial pseudogenes: evolution's misplaced witnesses. Trends in Ecology & Evolution. 2001, 16: 314-321. 10.1016/S0169-5347(01)02151-6.
Article
Google Scholar
Williams ST, Knowlton N: Mitochondrial pseudogenes are pervasive and often insidious in the snapping shrimp genus Alpheus. Molecular Biology and Evolution. 2001, 18: 1484-1493.
Article
CAS
PubMed
Google Scholar
Richly E, Leister D: NUMTs in sequenced eukaryotic genomes. Molecular Biology and Evolution. 2004, 21: 1081-1084. 10.1093/molbev/msh110.
Article
CAS
PubMed
Google Scholar
Schmitz J, Piskurek O, Zischler H: Forty million years of independent evolution: a mitochondrial gene and its corresponding nuclear pseudogene in primates. Journal of Molecular Evolution. 2005, 61: 1-11. 10.1007/s00239-004-0293-3.
Article
CAS
PubMed
Google Scholar
Ibarguchi G, Friesen VL, Lougheed SC: Defeating numts: Semi-pure mitochondrial DNA from eggs and simple purification methods for field-collected wildlife tissues. Genome. 2006, 49: 1438-1450. 10.1139/G06-107.
Article
CAS
PubMed
Google Scholar
Combosch DJ, Guzman HM, Schuhmacher H, Vollmer SV: Interspecific hybridization and restricted trans-Pacific gene flow in the Tropical Eastern Pacific Pocillopora. Molecular Ecology. 2008, 17: 1304-1312. 10.1111/j.1365-294X.2007.03672.x.
Article
CAS
PubMed
Google Scholar
Veron JEN, Stafford-Smith M: Corals of the world. 2000, Australian Institute of Marine Science
Google Scholar
Kluge AG: A concern for evidence and a phylogenetic hypothesis of relationships among Epicrates (Boidae, Serpentes). Systematic Biology. 1989, 39: 7-25.
Article
Google Scholar
Kluge AG: Total evidence or taxonomic congruence: cladistics or consensus classification. Cladistics. 1998, 14: 151-158. 10.1111/j.1096-0031.1998.tb00328.x.
Article
Google Scholar
Sanderson MJ, Purvis A, Henze C: Phylogenetic supertrees: assembling the trees of life. Trends in Ecology & Evolution. 1998, 13: 105-109. 10.1016/S0169-5347(97)01242-1.
Article
CAS
Google Scholar
Wiens JJ: Missing data, incomplete taxa, and phylogenetic accuracy. Systematic Biology. 2003, 52: 528-538. 10.1080/10635150390218330.
Article
PubMed
Google Scholar
Sargent TD, Jamrich M, Dawid IB: Cell interactions and the control of gene activity during early development of Xenopus laevis. Developmental Biology. 1986, 114: 238-246. 10.1016/0012-1606(86)90399-4.
Article
CAS
PubMed
Google Scholar
Fukami H, Budd AF, Levitan DR, Jara J, Kersanach R, Knowlton N: Geographic differences in species boundaries among members of the Montastraea annularis complex based on molecular and morphological markers. Evolution. 2004, 38: 324-337.
Article
Google Scholar
Flot J-F, Tillier S: Molecular phylogeny and systematics of the scleractinian coral genus Pocillopora in Hawaii. Proceedings of the 10th International Coral Reef Symposium. 2006, 1: 24-29.
Google Scholar
Creer S, Malhotra A, Thorpe RS, Pook CE: Targeting optimal introns for phylogenetic analyses in non-model taxa: experimental results in Asian pitvipers. Cladistics. 2005, 21: 390-395. 10.1111/j.1096-0031.2005.00072.x.
Article
Google Scholar
Flot J-F: Champuru 1.0: a computer software for unraveling mixtures of two DNA sequences of unequal lengths. Molecular Ecology Notes. 2007, 7: 974-977. 10.1111/j.1471-8286.2007.01857.x.
Article
CAS
Google Scholar
Flot J-F: SeqPHASE: a web tool for interconverting PHASE input/output files and FASTA sequence alignments. Molecular Ecology Resources. 2010, 10: 162-166. 10.1111/j.1755-0998.2009.02732.x.
Article
CAS
PubMed
Google Scholar
Stephens M, Smith NJ, Donnelly P: A new statistical method for haplotype reconstruction from population data. The American Journal of Human Genetics. 2001, 68: 978-989. 10.1086/319501.
Article
CAS
Google Scholar
Tamura K, Dudley J, Nei M, Kumar S: MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution. 2007, 24: 1596-1599. 10.1093/molbev/msm092.
Article
CAS
PubMed
Google Scholar
Librado P, Rozas J: DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics. 2009, 25: 1451-1452. 10.1093/bioinformatics/btp187.
Article
CAS
PubMed
Google Scholar
Bandelt HJ, Forster P, Röhl A: Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution. 1999, 16: 37-48.
Article
CAS
PubMed
Google Scholar
Hertlein LG, Emerson WK: Additional notes on the invertebrate fauna of Clipperton Island. American Museum novitates. 1957, 1859: 1-9.
Google Scholar
Glynn PW, Veron JEN, Wellington GM: Clipperton Atoll (eastern Pacific): oceanography, geomorphology, reef-building coral ecology and biogeography. Coral Reefs. 1996, 15: 71-99.
Article
Google Scholar
Carricart-Ganivet JP, Reyes-Bonilla H: New and previous records of scleractinian corals from Clipperton Atoll, eastern Pacific. Pacific Science. 1999, 53: 370-375.
Google Scholar
Flot J-F, Adjeroud M: Les coraux. Clipperton, environnement et biodiversité d'un microcosme océanique. Edited by: Charpy L. 2009, Paris, Marseille: Muséum national d'Histoire naturelle, IRD, 155-162.
Google Scholar
Flot J-F, Licuanan W, Nakano Y, Payri C, Cruaud C, Tillier S: Mitochondrial sequences of Seriatopora corals show little agreement with morphology and reveal the duplication of a tRNA gene near the control region. Coral Reefs. 2008, 27: 789-794. 10.1007/s00338-008-0407-2.
Article
Google Scholar