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Abstract
Background Climate change coupled with other anthropogenic pressures may affect the extent of suitable habitat 
for species and thus their distributions. This is particularly true for species occupying high-altitude habitats such as 
the gelada (Theropithecus gelada) of the Ethiopian highlands. To explore the impact of climate change on species 
distributions, Species Distribution Modelling (SDM) has been extensively used. Here we model the current and future 
extent of sutibale habitat for geladas. Our modelling was based on 285 presence locations of geladas, covering their 
complete current distribution. We used different techniques to generate pseudoabsence datasets, MaxEnt model 
complexities, and cut-off thresholds to map the potential distribution of gelada under current and future climates 
(2050 and 2070). We assembled maps from these techniques to produce a final composite map. We also evaluated 
the change in the topographic features of gelada over the past 200 years by comparing the topography in current 
and historical settings.

Results All model runs had high performances, AUC = 0.87–0.96. Under the current climate, the suitable habitat 
predicted with high certainty was 90,891 km2, but it decreased remarkably under future climates, -36% by 2050 and 
− 52% by 2070. However, since the habitats of geladas already extend to mountaintop grasslands, no remarkable 
range shifts across elevation gradients were predicted under future climates.

Conclusions Our findings indicated that climate change most likely results in a loss of suitable habitat for geladas, 
particularly south of the Rift Valley. Currently geladas are confined to higher altitudes and steep slopes compared 
to historical sightings, probably qualifying geladas as refugee species. The difference in topography is potentially 
associated with anthropogenic pressures that drove niche truncation to higher altitudes, undermining the climatic 
and topographic niche our models predicted. We recommend protecting the current habitats of geladas even when 
they are forecasted to become climatically unsuitable in the future, in particular for the population south of the Rift 
Valley.
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Introduction
The Anthropocene is a proposed geological era marked 
by the significant influence of human actions on the 
Earth’s natural processes. This epoch began around the 
mid-20th century and has brought about profound reper-
cussions for biodiversity, including habitat deterioration, 
species extinctions, alterations to ecosystems and cli-
mate in general [1]. Climate change stands as one of the 
foremost factors driving the ongoing global biodiversity 
crisis [2–4]. Climate change is triggering alterations and 
shifts in ecosystems worldwide, causing changes in the 
distribution and availability of suitable habitats for many 
species, including primates [2–7]. For most taxa distribu-
tion models predict substantial habitat loss by 2100 due 
to climate change [8]. In particular, the expected upslope 
shift of habitats in mountain areas is expected to lead to a 
reduction of suitable habitats and the extinction of range-
restricted high-altitude species [9–12].

Among primates, a few species belong to such range-
restricted high-altitude species, e.g., snub-nosed mon-
keys (Rhinopithecus spp.) in China and Myanmar [13, 14] 
and geladas (Theropithecus gelada) in Ethiopia [15]. Gela-
das are endemic to the Afro-alpine grasslands of Ethio-
pia at elevations from 1800 to 4400 m asl [16–19]. Three 
populations, whose taxonomic status is unclear, are rec-
ognized: T. g. gelada in northern Ethiopia, mainly in the 

Simien Mountains, T. g. obscurus, in the central high-
lands of Ethiopia, and a small population south of the 
Rift Valley in the Arsi Mountains (T. g.) [19–21; Fig.  1]. 
Interestingly, Chiou et al. [21] found a chromosomal 
polymorphism in geladas that could potentially contrib-
ute to reproductive barriers between populations, which 
suggests specific status for the three populations (subspe-
cies). The ecological niches of the three taxa are highly 
congruent. They are diet specialists (the only graminivo-
rous primate), depend largely on high-altitude grassland 
and show the same social organization [22–24].

Even without taking the effects of climate change 
into account, the population size of geladas is generally 
decreasing due to the conversion of their habitat into 
farmland, grazing grounds for livestock, and settlements 
[19]. T. g. obscurus is listed as of Least Concern by IUCN 
[25], whereas T. g. gelada is listed as Vulnerable [26, 27], 
and T. g. arsi as Endangered [28]. Since geladas already 
occupy the grasslands of the highest plateaus in Ethiopia, 
a further shift towards higher altitudes is no longer pos-
sible, which makes conservation of their current habitat 
even more important.

In general, the effects of climate change on Ethiopia’s 
biodiversity have not been well studied [29], but recently 
the effects of climate change on habitat suitability of two 
other endemic high-altitude species of the Ethiopian 

Fig. 1 Topographic map of Ethiopia indicating the relief and geographic positions of occurrence locations of geladas (Theropithecus gelada, red dots) 
after 2000. The broken lines encircle the assumed distribution ranges of the northern (T. g. gelada, green), the central (T. g. obscurus, yellow), and the south-
ern (T. g. ssp. nov., orange) populations [20, 37]
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highlands have been modelled, the Walia ibex (Capra 
walie) and the giant lobelia (Lobelia rhynchopetalum). In 
both studies, significant reductions in the size of the spe-
cies ranges have been projected [10, 30]. In a pioneering 
study on geladas, Dunbar [31] already estimated that for 
every 2 °C rise in the mean temperature, the lowest alti-
tude geladas may inhabit will rise by 500 m.

For adequate conservation strategies under climate 
change, it is essential to include information on future 
potential distributions of suitable habitats [29, 32]. Spe-
cies distribution models (SDMs) based on current pres-
ence-absence data or presence data alone in combination 
with climate change models can be applied to predict 
the spatiotemporal changes in suitable habitats [33–36]. 
However, since further elevational shifts of the high-ali-
tude grassland in Ethiopia is very restricted by topology, 
we expect reduction rather than shift of suitable gelada 
habitat. Since all the three gelada taxa occupy the same 
ecological niche, in our study, we applied species distri-
bution modelling on the genus level to project the distri-
bution and extent of suitable habitats for geladas in the 
Ethiopian highlands under 2050 and 2070 climate change 
scenarios.

Materials and methods
Occurrence data
We assembled occurrence points for the three subspe-
cies of geladas from different sources such as personal 
surveys (n = 396), literature [17, 37–40; see also Table 
S1) and from GBIF.org [41]. These occurrence data were 

collected after 1999 to represent the current presence 
data of geladas. To explore whether gelada occurrence 
already changed topographically (e.g., altitude of occur-
rence), we compared historical occurrence data [16, 38] 
collected before 2000 with the current data. For this com-
parison, we divided the historical data into data collected 
before 1900 and data collected between 1900 and 1999 
(108 occurrence point). We included only data collected 
after 1999 in our modelling approach. We further filtered 
this data by removing duplicates, and, in cases where we 
detected multiple occurrence points within 1 km × 1 km 
grid area, we included only one point. Finally, we retained 
285 occurrence points for our modelling (Fig.  1). Since 
the number of occurrence points for each subspecies was 
not sufficient for proper modelling at subspecies level, we 
restricted our analysis to the species (genus) level.

Environmental variables
We initially considered 23 environmental variables for 
the modelling including 19 bioclimatic variables, land 
cover (https://cds.climate.copernicus.eu/) and vegetation 
type (http://landscapeportal.org/layers/geonode:veg_
ethiopia), and two topographic variables (slope and slope 
SD). We obtained the bioclimatic variables from the 
WorldClim v2.1 at a spatial resolution of 30 arc seconds 
(~ 1 km2) [42]. Geladas frequently use more or less flat 
areas on plateaus for foraging and steep cliffs as a refuge 
from predators and as sleeping sites [18; Fig.  2]. There-
fore, we added slope data. We derived the slope angle 
map from a digital elevation model downloaded from 

Fig. 2 Gelada herd (Theropithecus gelada obscurus) in the Afro-alpine grassland in the highlands of cental Ethiopia (Guassa Community Conservation 
Area). Photos credit - Jeffrey T. Kerby
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the Shuttle Radar Topography Mission Digital Elevation 
Model [SRTM DEM; 43]. In the previous study, it was 
shown that manually collected occurrence points for ani-
mals adapted to complex topographic landscapes tend 
to be confined to their foraging sites and not to places 
where the animals are in their inactive phases (sleeping 
sites) and taking refuge from predators [30]. This rela-
tionship most likely caused that slope was not found to 
be an important predictor variable for the Walia ibex 
(Capra walie), although this species is a steep-slope spe-
cialist [30]. Hence, topographic complexity may better 
predict the topographic requirements of geladas. Thus, to 
represent topographic complexity, we additionally com-
puted the slope standard deviation as a proxy from pixels 
within a radius of three 1-km2 grid cells around one cen-
tral grid cell for the whole landscape of the study area and 
used it as an additional predictor.

To avoid multi-collinearity, we stacked all 23 environ-
mental variables and extracted their values at each of the 
occurrence points and additionally at 10,000 randomly 
generated points. Based on these points, we computed 
Pearson’s pairwise correlations among all variables. From 
variables with a pairwise correlation coefficient of r > 
|0.8|, we retained only those variables that had the lowest 
variable inflation factor values, computed in the ‘USDM’ 
R package [44; Fig. S1]. With this procedure, we reduced 
the number of environmental variables from 23 to 13 for 
the final model run (Table 1).

For the temporal projections, we used the HadGEM3-
GC global circulation model (GCMs) with three shared 
socioeconomic pathways (SSPs): (1) the straightest emis-
sion pathway scenario (SSP 2.6), (2) the intermediate 
(SSP 4.5), (3) the worst (SSP 8.5) and applied them for 
two periods (2041–2060 [2050] and 2061–2080 [2070] 
[45]. In Ethiopia the population has increased by over 
four times in the past three to four decades, with more 
than 80% of the population residing in rural areas, land 
cover changes are occurring rapidly and are difficult to 
anticipate. There is also ongoing trend of rural-to-urban 
migration which may potentially relieve the less pro-
ductive high mountain regions in the future. Thus, we 
think that projecting or relying on projected land cover 
changes for the future climate in our region would intro-
duce a high degree of uncertainty into our modeling. 
Therefore, we have chosen to use the current land cover 
type as a fixed variable.

Model fitting
We used the maximum entropy algorithm MaxEnt v3.4.4 
[46] to model suitable habitats for geladas under the cur-
rent climate and for the projection to future climate sce-
narios. MaxEnt is a commonly used algorithm to predict 
species distributions and is robust even with small sam-
ple sizes [34, 47, 48]. One factor that affects the model 

performance of MaxEnt is the spatial extent from which 
pseudo-absence points are taken [49–51]. Generating 
pseudo-absence points over larger areas that are already 
known to be unsuitable to the model species may exag-
gerate model performance. Thus, restricting the spatial 
extent of pseudo-absence points is important [10, 30, 52–
54]. We generated 10,000 pseudoabsence points as imple-
mented in default MaxEnt [46]. However, we restricted 
these points to areas where we expect suitable habitats 
for geladas by two approaches. First, we used a bias file 
[53]. The bias file works by minimizing omission (false 
negatives) and commission errors (false positives), which 
may improve the prediction performance of the model 
[55]. We created a bias file in ArcGIS version 10.7 by 
mapping species records on a 1-km2 grid and producing 
a minimum convex polygon. Second, we restricted the 
area to the elevation range where geladas currently are 
known to occur. We extracted the altitude of each gelada 
occurrence point and generated pseudoabsence points 
within 90% of the total elevation range, omitting 2.5% of 
lower and upper ranges.

We combined the gelada occurrence points with both 
datasets for pseudoabsence and used them and the val-
ues of the selected environmental variables as input into 
MaxEnt. We split both combined datasets into ten equal 
parts using a cross-validation technique and run ten rep-
licates of two versions of the MaxEnt model [56], one 
simple and one complex. The complex model was run by 
setting the regularization multiplier value to 1 which is 
the default MaxEnt setting [57], and to 8 for the simple 
model [30]. Eventually, we run four MaxEnt models: two 
complex models, one using the pseudo-absence points 
generated using bias file and one using the pseudo-
absence points generated within the elevation limits of 
geladas occurrence points, and two simple models using 
the same two datasets. For all model runs, we used 90% 
of the combined occurrence and pseudo absence points 
for model training and (10%) of the data for validation. 
The robustness of the models was evaluated with 5000 
iterations [46, 58]. All four MaxEnt models were pro-
jected into the three emission scenarios by 2050 and 
2070 (see above). We classified the output maps from 
all models and model projections into binary suitable/
unsuitable classes using three probability threshold cri-
teria: (1) 10 percentile logistic training threshold, which 
is the predicted probability at a 10% omission rate of the 
training data; (2) using maximum test sensitivity plus 
specificity, which is the probability threshold at which 
the sum of fractions of correctly predicted presence and 
pseudo-absence points is the highest; and (3) using equal 
test sensitivity and specificity, which is the probability 
thresholds at which the difference between fractions of 
correctly predicted presence and pseudo-absence points 
are the lowest. In sum, we produced 12 binary maps for 
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the current climate (four versions of the MaxEnt model 
with three threshold criteria for each version; Fig. S2) and 
36 binary maps for future climate (four versions of the 
MaxEnt model times three threshold criteria times three 
emission scenarios).

We ensemble the binary maps from both, current and 
future climate scenarios, and produced three habitat suit-
ability classes based on agreements among the maps in 
predicting habitat suitability [10]: (1) highly suitable, 
when pixels from more than 60% of the binary maps pre-
dict habitat as suitable (≥ 8 maps for the current climate 
and ≥ 22 maps for future climates); (2) uncertain, when 
30–60% of the maps predict habitat suitability (4–7 maps 
for current climate and 12–21 maps for future climate 
conditions); and (3) unsuitable, when < 30% of the maps 
(up to three maps under current climate and 10 maps 
under future climates conditions) predicted habitat suit-
ability. We further grouped the habitat suitability maps 
into two classes by assigning “1” to the pixels that were 
classified as suitable with high certainty and “0” to the 
rest to represent suitable and unsuitable habitats, respec-
tively. We overlaid these maps to detect spatiotemporal 
changes in habitat suitability and quantify the impact of 
climate change.

Model evaluation
We evaluated the accuracy of each model run by using 
the receiver operating characteristic curve (ROC), a 
threshold-independent measure of a model’s ability to 
discriminate between the pseudo-absence and the pres-
ence data [59]. This is a standard method to evaluate the 
accuracy of predictive distribution models [60] AUC 
values vary from 0 (random discrimination) to 1 (per-
fect discrimination) [61]. An AUC value of 0.5 or smaller 

indicates that the model has no predictive power, whereas 
perfect discrimination between suitable and unsuitable 
cells will give an AUC value approaching 1.0 [46].

Historical changes in gelada elevation range
To assess whether the elevation range of geladas already 
changed in historical times, we compared elevations of 
historical gelada sightings from the periods before 1900 
and before 2000 with the elevations of current sightings 
(after 2000). We extracted the corresponding elevation 
range as the difference between maximum and minimum 
elevation within a radius of four 90-m grid cells around 
the recorded localities (49 neighbour cells), elevation, 
and slope standard deviations which are the standard 
deviation of elevations and slope among these neigh-
bouring grid cells, respectively (ArcGIS version 10.7). We 
additionally computed slope maximum – the maximum 
slope among these neighbouring cells and slope range – 
the difference between maximum and minimum slope 
values. We further extracted the value of elevation from 
current and future (2050 and 2070) modelled suitable 
habitats and compared the change in elevation with the 
historical data (Fig. S3).

Results
Variables that predict the distribution of suitable gelada 
habitat under climate change
Under all settings, mean temperature of the wettest quar-
ter (Bio8), vegetation, slope standard deviation, and pre-
cipitation of the wettest month (Bio13) explained most in 
predicting gelada occurrence (Table 1).

Table 1 Contributions of the predictor variables to the four MaxEnt models
Variables Variable contribution (%) Average 

contribu-
tion (%)

Reg_1 Reg_8 Reg_1_WB Reg_8_WB

Mean temperature of wettest quarter 31.3 36.5 39.9 37 36.2

Vegetation 27.3 26.6 13.6 13.4 20.2

Slope standard deviation 10.6 10.2 20.2 19.6 15.2

Precipitation of wettest month 11.0 7.3 5.1 8.8 8.1

Annual precipitation 10.1 7.0 6.5 4.3 7.0

Precipitation of coldest quarter 3.7 2.9 4.2 3.9 3.7

Isothermality 1.6 3.5 1.8 7.7 3.7

Mean diurnal range 0.7 3.8 1.4 3.5 2.4

Temperature seasonality 1.0 1.1 1.6 0.9 1.2

Precipitation of driest month 0.8 0.8 2.3 0.7 1.2

land use land cover 0.9 0.0 1.7 0.0 0.7

Precipitation of warmest quarter 0.4 0.2 0.8 0.2 0.4

Slope 0.6 0.0 0.8 0.1 0.4
Reg_1: complex MaxEnt model run with pseudo-absence points generated within the elevation range of geladas; Reg_8: simple MaxEnt model run with pseudo-
absence points generated within the elevation range of geladas; Reg_1_WB: complex MaxEnt model run with pseudo-absence points generated using bias file; 
Reg_8_WB: simple MaxEnt model run with pseudo-absence points generated using bias file
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Habitat suitability modeling
All model versions had high predictive performance 
on both training and test data, with AUC values ≥ 0.87 
(Table 2). Models in which a bias file was used for gen-
erating pseudo-absence points had relatively lower AUC 
values (0.88 for the simple model and 0.87 for the com-
plex model), whereas generating pseudo-absence points 
within the elevation range of gelada, resulted in rela-
tively higher AUC values (0.95 for complex and 0.95 for 
simple model). No remarkable differences were observed 
between the AUC values computed on training and test 
data in the predicted models. The AUC standard devia-
tions of our results demonstrate that there was nearly 
zero variability or consistency (Std between 0.01 and 
0.03), indicating that our data set was accurate enough 
to make predictions about the suitability of geladas 
(Table  2). Overall, our prediction was consistent across 
the model complexity levels, runs, and datasets.

Under the current climate, the models predicted 
an area of 90,891 km2 to be suitable for geladas (Fig.  3; 
Table 3). As expected, the suitable habitat mainly concen-
trates in the northern and central highlands of Ethiopia, 
where the density of occurrence points is also the high-
est (Fig.  1). Under future climates conditions, the area 
predicted to be suitable with high certainty declined to 
55,829 km2 by 2050 and to 43,576 km2 by 2070 (Table 3; 
Figs.  3, 4 and S4), a reduction of 39% and 58% by 2050 
and 2070, respectively.

Under both, current and future climate conditions, the 
majority of the highly suitable habitat is predicted for the 
central and northern Ethiopian Highlands (Figs. 3 and 5). 
The model projections also show some suitable habitat 
in northern Tigray. In the southern and eastern Ethio-
pian Highlands, only a few areas with suitable habitat are 
predicted. In particular, for the Bale, Arsi, and Ahmar 
Mountains south of the Rift Valley, and for some areas 
in the central highlands, the models show a loss of habi-
tat. In addition, in these areas, the models indicate not 
only loss of habitat, but also fragmentation. However, the 

models also predict a gain in suitable habitat for 2050 and 
2070 in northern Ethiopia, specifically in eastern Tigray 
(Figs. 5 and S4).

Elevation and slope of the occurrence points increased 
over time (1800 to 2000 s) (Fig. 6), but elevation did not 
increase in our projections for 2050 and 2070, compared 
to the current scenario. The predicted suitable habitat 
had an average elevation of 2749 m, 2685 m, and 2809 m 
for the current and future climates, respectively. Simi-
larly, slopes became steeper and the topography more 
complex over time (Fig. 6).

The number of pixels per 1 km x 1 km grid cell of suit-
able habitat varied with elevation (Fig. S3) and the high-
est number, for all scenarios, was found between 2000 
and 3000  m asl. However, the absolute number of pix-
els under the current (2000) condition was greater than 
under future scenarios (Fig. S3).

Discussion
We modelled the distribution of the currently suitable 
habitat of a high-altitude primate, the gelada, and pro-
jected the distribution to future climate scenarios. Our 
MaxEnt modelling showed high predictive performance 
for the current distribution and suggests a significant 
reduction of suitable habitats for geladas under future cli-
mates (by 2050 and 2070).

Modelling
In response to the need for species conservation and 
management planning in times of climate change, many 
species distribution modelling approaches have been 
developed [33, 62]. Though ensemble or model averaging 
has greater predictive capacity than individual modelling 
approaches, MaxEnt is commonly used to infer species 
distributions and environmental tolerances from occur-
rence data, particularly when optimized well. In this 
study, we applied different complexity levels, datasets, 
and cut-off threshold values to tune the predictive per-
formance of the MaxEnt predictions to use the averaged 
result of our prediction for designing conservation plans 
for gelada in the Ethiopian highlands.

Although all models had a high performance 
(AUC > 0.87), the model in which bias files were used to 
generate pseudo-absence points had a relatively lower 
AUC, (test AUC = 0.87 for the simple model and 0.88 
for the complex model) than the model produced by 
using pseudo-absence points generated within the eleva-
tion range of gelada (0.95 test AUC for both simple and 
complex models). This may be due to the restriction of 
randomly generated points in proximity to the presence 
points when bias file is used. The predicted suitable areas 
were also lower when bias files were used [53]. Never-
theless, the differences among the modelling approaches 
were not remarkable. In general, we found consistent 

Table 2 Average training and testing AUC values for the four 
MaxEnt model versions and their average cut-off of threshold 
values
Models AUC Cut-off thresholds

Training Test Diff ETSS MTSS 10%
Reg_1 0.96 0.95 0.01 0.23 0.24 0.14

Reg_8 0.95 0.95 0.00 0.29 0.31 0.17

Reg_1_WB 0.90 0.88 0.02 0.18 0.13 0.19

Reg_8_WB 0.87 0.87 0.00 0.22 0.17 0.20
Reg_1: complex MaxEnt model run with pseudo-absence points generated 
within the elevation range of geladas; Reg_8: simple MaxEnt model run with 
pseudo-absence points generated within the elevation range of geladas; 
Reg_1_WB: complex MaxEnt model run with pseudo-absence points generated 
using bias file; Reg_8_WB: simple MaxEnt model run with pseudo-absence 
points generated using bias file. Diff: the differences between the training and 
test AUC values
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results across different model complexities and runs, 
little difference between test and training AUCs, and 
similar patterns of prediction among different cut-off 
thresholds, which indicates the reliability of our approach 
and the robustness of the models we used. The consistent 
results across different model complexities and runs indi-
cate acceptable data quality for predictions and the ability 
of the MaxEnt models to identify the Ethiopian highlands 
as providing suitable habitat for geladas.

Our modelling shows that the mean temperature of the 
wettest quarter (Bio 8) was the most influential predic-
tor variable for the distribution of suitable habitat. In a 

previous study on the consequences of climate change 
on gelada distribution, Dunbar [31] predicted that gela-
das will be forced to live only on a few isolated mountain 
summits if the temperature would increase by 7 °C. How-
ever, the Intergovernmental Panel on Climate Change 
[63] estimates that anthropogenically driven climate 
warming in the 21st century is likely to exceed 1.5 °C rela-
tive to the 1850–1900 period in all scenarios and exceeds 
2.0  °C in many scenarios. Though a 7  °C temperature 
increase may not happen within the next 100 years, the 
result is concerning.

Table 3 Loss and gain of suitable habitat for geladas under future climate conditions (2050 and 2070)
Scenarios Current extent km2 Remain suitable km2 Loss km2 Loss % Gain km2 Gain % Future extent km2 Change %
2050 90,891 50,362 40,529 44.6 5467 6.0 55,829 -38.6

2070 90,891 42,696 48,195 53.0 881 0.9 43,576 -52.1

Fig. 3 Distribution and extent of suitable gelada habitat produced from 12 binary maps for current climate (current; 2 techniques to generate pseudo-
absence points x 2 model complexity levels x 3 threshold values; see also Fig. S2), and from 36 binary maps for future scenarios (future 2050 and 2070); 
two techniques to generate pseudo-absence points x 2 model complexity levels x 3 threshold values x 3 emission scenarios). When grid cells in 30% or 
less of the binary maps (3 maps for current and 10 maps for future climates) predict suitability, we considered them unsuitable. When grid cells of > 30 
− 60% maps (4–7 maps for the current climate and 11–21 maps for the future climate conditions) predicted suitability, we considered them uncertain 
in terms of suitability. When grid cells from > 60% binary maps (> 7 maps for the current and > 21 maps for the future) predict suitability, we considered 
them as suitable
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We also found that the distribution of geladas is influ-
enced by annual precipitation and the precipitation of the 
wettest month. Annual precipitation is associated with 
food availability and habitat quality [31], and it can affect 
space useand distribution directly or indirectly by its 
impact on population dynamics. Results of a recent study 
on the demography of geladas in the Simien Mountains 
from 2008 to 2019 suggest that these primates are less 

resilient to climate variability than previously thought 
[64].

Although slope had the least average contribution to 
our models, interestingly slope standard deviation was 
one of the three most important predictor variables 
(Table 2). Geladas use the Afro-alpine grasslands on flat 
plateaus for foraging and steep cliffs as sleeping sites and 
as refuges in case of predation [18, 65–70]. Slope stan-
dard deviation is a good proxy to landscape complexity 

Fig. 5 Predicted change in habitat suitablities of geladas by 2050 (Curr_2050) and by 2070 (curr_2070). Green, pixels that are predicted to be suitable 
under both current and future climates; blue, pixels that are not currently predicted to be suitable but forecasted to be suitable in the future; yellow; cur-
rently suitable but not in the future; and grey, unsuitable both under current and future climates

 

Fig. 4 The area of suitable gelada habitats predicted under current and different future emission scenarios (2050 and 2070) produced using two levels of 
model complexity by setting a regularization multiplier values to 1 (Reg_1) and 8 (Reg_8) and by using three cut-off threshold values without and with 
bias file (WB): 10% (10 percentile omission rate), MTSS (maximum test sensitivity and specificity), and ETSS (equal test sensitivity and specificity). HG stands 
for Hadley Centre Global Environment Model version 2 (HadGEM2-ES). We used three emission scenarios (2.6, 4.5 and 8.5)
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and thus can capture these topographic niche require-
ments of gelada as well as other animals with similar 
adaptations. Thus we recommend the use of slope stan-
dard deviation as input especially when distribution 
models are used to map habitat suitabilities of high-alti-
tude animals.

Future projection of habitat distribution for T. gelada
Our averaged model prediction for T. gelada shows that 
the current predicted suitable area covers 90,891 km2, 
while an additional 25,621 km2 of potential habitat is 
considered suitable with uncertainty. Geographically, 
highly suitable areas were more concentrated in the cen-
tral highlands, in northern Showa, Wollo, and South 
Gondar, and the Debre-Libanos area.

Compared to the size of the current suitable habitat, 
our projections suggested a massive loss of suitable habi-
tats under future climates. Also, small new areas were 
forecasted to become suitable under climate change 
in the northern and central parts of Ethiopia, over-
all the suitable habitat is predicted to decrease by 36% 
(2050) and 52% (2070), respectively. The most dramatic 
decline of suitable habitat, however, was projected for 
the population south of the Rift Valley. Here the size of 
suitable habitat is already small due to extreme anthro-
pogenic pressure caused by expansions of agriculture, 

overgrazing, and human-wildlife conflicts as a conse-
quence [23, 24, 71]. As expected, our projections do not 
indicate any major elevational shifts of suitable habitat, 
because in most areas gelada habitat is already at the 
elevational limit. That, however, means that conservation 
efforts have to concentrate on the habitat that is currently 
available and the conversion of natural high-altitude 
grassland should be minimized.

Anthropogenic pressure
Given the strong anthropogenic pressures on gelada 
habitat overall in Ethiopia, the elevation shift of occur-
rence points in historical times can most likely be more 
attributed to agricultural expansion than to the impact 
of climate change. These pressures at the lower eleva-
tion most likely have pushed geladas already to a higher 
elevation where their climatic resilience might be close 
to its limit [64]. If geladas are currently living in marginal 
habitats they might represent a refugee species, which 
undermines the topographic and climatic tolerances 
our models predicted. Thus we recommend protecting 
the current habitats of geladas even when they are fore-
casted to become climatically unsuitable in the future, in 
particular for the population south of the Rift Valley. We 
also recommend conservation efforts even in areas where 
our models predicted suitable habitats with uncertainty. 

Fig. 6 Changes in topographic features (elevation and slope) of gelada occurrence localities during the last 200 years. Box plots depict medians (horizon-
tal lines), quartiles (box), ranges (whiskers), and means (red dots). The temporal variation in elevation of gelada occurrence locations is based on reported 
sighting from the 1800s, 1900s, and 2000s. For elevation change, we also added elevation of suitable habitat under the current climate (cur), and future 
climate conditions (2050 and 2070)
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Furthermore, the predicted suitable habitat for geladas 
can be used comprehensively for conservation purposes, 
particularly for identification of refugia areas, high-risk 
areas for gelada and potential translocation sites.

It is important to note that the excessive expansions 
of anthropogenic pressures can indeed be indicative of 
changes in land use and land cover. These changes can 
have significant implications for the distribution of spe-
cies. Future research should consider incorporating a 
more comprehensive analysis of anthropogenic pressures 
and their relationship with land cover to provide a more 
robust understanding of the factors influencing species 
dynamics.

Global landcover maps with limited thematic detail or 
themes that don not align with our geographical region 
are not suitable for our needs. Creating a high resolu-
tion temporal land cover map specific to our study area 
is imperative. However, this undertaking requires the 
collection of ground truth data and significant computa-
tional expertise. In particular, generating such a tempo-
ral map would vividly reveal the narrative of historical 
changes at the sites, reinforcing our argument regarding 
whether gelada is a refugee species. Such projects hold 
substantial importance and should be pursued.

Conclusion
Our species distribution modelling demonstrates that 
the current suitable habitat of geladas is vulnerable to cli-
mate change. Geladas will lose large parts of their current 
suitable habitat in the Ethiopian highlands. Even though 
species range shift was not evident in our models, signifi-
cant elevational changes appeared between current and 
historical occurrence points, which potentially are asso-
ciated with anthropogenic pressures at lower elevations. 
The findings of our study can be used to revisit or align 
the boundaries of existing protected areas with the future 
predicted habitats that encompass climate refugia for this 
high-altitude species. In particular, the population south 
of the Rift Valley will be severely affected. This is all the 
more dramatic because no protected areas exist for this 
(sub)species, thus there is an urgent need to create a pro-
tected area for this population.
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