Cardinale BJ, Duffy JE, Gonzalez A, Hooper DU, Perrings C, Venail P, et al. Biodiversity loss and its impact on humanity. Nature [Internet]. 2012;486(7401):59–67. https://doi.org/10.1038/nature11373.
Article
CAS
Google Scholar
Hooper DU, Chapin FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol Monogr [Internet]. 2005;75(1):3–35. https://doi.org/10.1890/04-0922.
Article
Google Scholar
Balvanera P, Pfisterer AB, Buchmann N, He JS, Nakashizuka T, Raffaelli D, et al. Quantifying the evidence for biodiversity effects on ecosystem functioning and services. Ecol Lett [Internet]. 2006;9(10):1146–56. https://doi.org/10.1111/j.1461-0248.2006.00963.x.
Article
Google Scholar
Balvanera P, Siddique I, Dee L, Paquette A, Isbell F, Gonzalez A, et al. Linking biodiversity and ecosystem services: current uncertainties and the necessary next steps. Bioscience [Internet]. 2014;64(1):49–57. https://doi.org/10.1093/biosci/bit003.
Article
Google Scholar
Cardinale BJ, Srivastava DS, Emmett Duffy J, Wright JP, Downing AL, Sankaran M, et al. Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature [Internet]. 2006;443(7114):989–92. https://doi.org/10.1038/nature05202.
Article
CAS
Google Scholar
Reiss J, Bridle JR, Montoya JM, Woodward G. Emerging horizons in biodiversity and ecosystem functioning research. Trends Ecol Evol [Internet]. 2009;24(9):505–14.
Article
Google Scholar
Cadotte MW, Carscadden K, Mirotchnick N. Beyond species: functional diversity and the maintenance of ecological processes and services. J Appl Ecol [Internet]. 2011;48(5):1079–87. https://doi.org/10.1111/j.1365-2664.2011.02048.x.
Article
Google Scholar
Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, et al. Let the concept of trait be functional! Oikos. 2007;116(5):882–92.
Article
Google Scholar
Díaz S, Purvis A, Cornelissen JHC, Mace GM, Donoghue MJ, Ewers RM, et al. Functional traits, the phylogeny of function, and ecosystem service vulnerability. Ecol Evol [Internet]. 2013;3(9):2958–75. https://doi.org/10.1002/ece3.601.
Article
Google Scholar
Luck GW, Lavorel S, Mcintyre S, Lumb K. Improving the application of vertebrate trait-based frameworks to the study of ecosystem services. J Anim Ecol. 2012;81(5):1065–76.
Article
Google Scholar
Lavorel S, Storkey J, Bardgett RD, De Bello F, Berg MP, Le Roux X, et al. A novel framework for linking functional diversity of plants with other trophic levels for the quantification of ecosystem services. J Veg Sci. 2013;24(5):942–8.
Article
Google Scholar
Lavorel S, Grigulis K. How fundamental plant functional trait relationships scale-up to trade-offs and synergies in ecosystem services. J Ecol. 2012;100(1):128–40.
Article
Google Scholar
Bolnick DI, Amarasekare P, Araujo MS, Burger R, Levine JM, Novak M, et al. Why intraspecific trait variation matters in community ecology. Trends Ecol Evol. 2011;26(4):183–92.
Article
Google Scholar
Stump SM, Song C, Saavedra S, Levine JM, Vasseur DA. Synthesizing the effects of individual-level variation on coexistence. Ecol Monogr. 2022;92(1):1–25.
Article
Google Scholar
Paine CET, Deasey A, Duthie AB. Towards the general mechanistic prediction of community dynamics. Funct Ecol. 2018;32(7):1681–92.
Article
Google Scholar
Zheng Z, Zeng Y, Schneider FD, Zhao Y, Zhao D, Schmid B, et al. Mapping functional diversity using individual tree-based morphological and physiological traits in a subtropical forest. Remote Sens Environ [Internet]. 2021;252:112170. https://doi.org/10.1016/j.rse.2020.112170.
Article
Google Scholar
McGill BJ, Enquist BJ, Weiher E, Westoby M. Rebuilding community ecology from functional traits. Trends Ecol Evol. 2006;21(4):178–85.
Article
Google Scholar
Nock CA, Vogt RJ, Beisner BE. Functional Traits. In: eLS [Internet]. Chichester, UK: John Wiley & Sons, Ltd; 2016. p. 1–8. https://doi.org/10.1002/9780470015902.a0026282.
Weiher E, Werf A, Thompson K, Roderick M, Garnier E, Eriksson O. Challenging Theophrastus: a common core list of plant traits for functional ecology. J Veg Sci [Internet]. 1999;10(5):609–20. https://doi.org/10.2307/3237076.
Article
Google Scholar
Bartomeus I, Gravel D, Tylianakis JM, Aizen MA, Dickie IA, Bernard-Verdier M. A common framework for identifying linkage rules across different types of interactions. Funct Ecol. 2016;30(12):1894–903.
Article
Google Scholar
Cornelissen JHC, Lavorel S, Garnier E, Díaz S, Buchmann N, Gurvich DE, et al. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Aust J Bot [Internet]. 2003;51(4):335.
Article
Google Scholar
Collins K, Gorovsky MA. Tetrahymena thermophila. Curr Biol [Internet]. 2005;15(9):R317–8.
Article
CAS
Google Scholar
Ormsbee RA. The normal growth and respiration of Tetrahymena geleii. Biol Bull [Internet]. 1942;82(3):423–37. https://doi.org/10.2307/1537988.
Article
Google Scholar
Collins K. Tetrahymena thermophila. In: Collins K, editor. Methods. New York: Academic Press; 2012. p. 1–452.
Google Scholar
Manners DJ, Ryley JF. Studies on the metabolism of the Protozoa. 2. The glycogen of the ciliate Tetrahymena pyriformis (Glaucoma piriformis). Biochem J. 1952;52(3):480–2.
Article
CAS
Google Scholar
Blum JJ. Metabolic pathways in Tetrahymena. Biol Chem. 1972;247(16):5199–209.
Article
Google Scholar
Blum JJ. Effect of AMP and related compounds on glycogen content ofTetrahymena. J Cell Physiol [Internet]. 1972;80(3):443–52.
Article
CAS
Google Scholar
Levy MR, Scherbaum OH. Glyconeogenesis in Growing and Non-growing Cultures of Tetrahymena pyriformis. J Gen Microbiol [Internet]. 1965;38(2):221–30. https://doi.org/10.1099/00221287-38-2-221.
Article
CAS
Google Scholar
Elliott AM, Hayes RE. Mating types in tetrahymena. Biol Bull [Internet]. 1953;105(2):269–84.
Article
Google Scholar
Doerder FP. Abandoning sex: multiple origins of asexuality in the ciliate Tetrahymena. BMC Evol Biol [Internet]. 2014;14(1):112.
Article
Google Scholar
Cervantes MD, Hamilton EP, Xiong J, Lawson MJ, Yuan D, Hadjithomas M, et al. Selecting one of several mating types through gene segment joining and deletion in tetrahymena thermophila. PLoS Biol [Internet]. 2013;11(3):e1001518. https://doi.org/10.1371/journal.pbio.1001518.
Article
CAS
Google Scholar
Ferracci J, Ueno H, Numayama-Tsuruta K, Imai Y, Yamaguchi T, Ishikawa T. Entrapment of ciliates at the water-air interface. PLoS One [Internet]. 2013;8(10):e75238. https://doi.org/10.1371/journal.pone.0075238.
Article
CAS
Google Scholar
Ishikawa T. Swimming of ciliates under geometric constraints. J Appl Phys. 2019;125(20).
Morel-Journel T, Thuillier V, Pennekamp F, Laurent E, Legrand D, Chaine AS, et al. A multidimensional approach to the expression of phenotypic plasticity. Funct Ecol. 2020;34(11):2338–49.
Article
Google Scholar
Raugi GJ, Liang T, Blum JJ. Effect of oxygen on the regulation of intermediate metabolism in Tetrahymena. J Biol Chem [Internet]. 1975;250(2):445–60.
Article
CAS
Google Scholar
Fronhofer EA, Altermatt F. Eco-evolutionary feedbacks during experimental range expansions. Nat Commun [Internet]. 2015;6(1):6844.
Article
CAS
Google Scholar
Fronhofer EA, Gut S, Altermatt F. Evolution of density-dependent movement during experimental range expansions. J Evol Biol [Internet]. 2017;30(12):2165–76. https://doi.org/10.1111/jeb.13182.
Article
CAS
Google Scholar
Fenchel T. Protozoa and oxygen. Acta Protozool. 2014;53(1):3–12.
CAS
Google Scholar
Steudel B, Hector A, Friedl T, Löfke C, Lorenz M, Wesche M, et al. Biodiversity effects on ecosystem functioning change along environmental stress gradients. Ecol Lett [Internet]. 2012;15(12):1397–405.
Article
Google Scholar
Fischer FM, Wright AJ, Eisenhauer N, Ebeling A, Roscher C, Wagg C, et al. Plant species richness and functional traits affect community stability after a flood event. Philos Trans R Soc B Biol Sci [Internet]. 2016;371(1694):20150276. https://doi.org/10.1098/rstb.2015.0276.
Article
Google Scholar
Shipley B, Vile D, Garnier E. From plant traits to plant communities: a statistical mechanistic approach to biodiversity. Science [Internet]. 2006;314(5800):812–4. https://doi.org/10.1126/science.1132595.
Article
CAS
Google Scholar
Viaene KPJ, De Laender F, Van den Brink PJ, Janssen CR. Using additive modelling to quantify the effect of chemicals on phytoplankton diversity and biomass. Sci Total Environ [Internet]. 2013;2013(449):71–80. https://doi.org/10.1016/j.scitotenv.2013.01.046.
Article
CAS
Google Scholar
Kersting K, van den Brink PJ. Effects of the insecticide Dursban®4e (active ingredient chlorpyrifos) in outdoor experimental ditches: responses of ecosystem metabolism. Environ Toxicol Chem [Internet]. 1997;16(2):251–9. https://doi.org/10.1002/etc.5620160222.
Article
CAS
Google Scholar
Mcmahon TA, Halstead NT, Johnson S, Raffel TR, Romansic JM, Crumrine PW, et al. Fungicide-induced declines of freshwater biodiversity modify ecosystem functions and services. Ecol Lett. 2012;15(7):714–22.
Article
Google Scholar
Hodgson JG, Wilson PJ, Hunt R, Grime JP, Thompson K. Allocating C-S-R plant functional types: a soft approach to a hard problem. Oikos [Internet]. 1999;85(2):282.
Article
Google Scholar
Pennekamp F, Mitchell KA, Chaine A, Schtickzelle N. Dispersal propensity in tetrahymena thermophila ciliates-a reaction norm perspective. Evolution [Internet]. 2014. https://doi.org/10.1111/evo.12428.
Article
Google Scholar
Pennekamp F. Swimming with ciliates—dispersal and movement ecology of Tetrahymena thermophila. Vol. PhD. 2014.
Fjerdingstad EJ, Schtickzelle N, Manhes P, Gutierrez A, Clobert J. Evolution of dispersal and life history strategies—tetrahymena ciliates. BMC Evol Biol [Internet]. 2007;7(1):133.
Article
Google Scholar
Chaine AS, Schtickzelle N, Polard T, Huet M, Clobert J. Kin-based recognition and social aggregation in a ciliate. Evolution [Internet]. 2009;64–5:1290–300. https://doi.org/10.1111/j.1558-5646.2009.00902.x.
Article
Google Scholar
Schtickzelle N, Fjerdingstad EJ, Chaine A, Clobert J. Cooperative social clusters are not destroyed by dispersal in a ciliate. BMC Evol Biol [Internet]. 2009;9(1):251.
Article
Google Scholar
Mlambo MC. Not all traits are ‘functional’: insights from taxonomy and biodiversity-ecosystem functioning research. Biodivers Conserv [Internet]. 2014;23(3):781–90. https://doi.org/10.1007/s10531-014-0618-5.
Article
Google Scholar
Mouillot D, Mason WHN, Dumay O, Wilson JB. Functional regularity: a neglected aspect of functional diversity. Oecologia [Internet]. 2005;142(3):353–9. https://doi.org/10.1007/s00442-004-1744-7.
Article
Google Scholar
Petchey OL, Gaston KJ. Functional diversity: back to basics and looking forward. Ecol Lett [Internet]. 2006;9(6):741–58. https://doi.org/10.1111/j.1461-0248.2006.00924.x.
Article
Google Scholar
Arnold PA, Kruuk LEB, Nicotra AB. How to analyse plant phenotypic plasticity in response to a changing climate. New Phytol [Internet]. 2019;222(3):1235–41.
Article
Google Scholar
Yang J, Cao M, Swenson NG. Why functional traits do not predict tree demographic rates. Trends Ecol Evol [Internet]. 2018;33(5):326–36.
Article
Google Scholar
Laughlin DC, Gremer JR, Adler PB, Mitchell RM, Moore MM. The net effect of functional traits on fitness. Trends Ecol Evol [Internet]. 2020;35(11):1037–47.
Article
Google Scholar
Abdi H, Williams LJ. Principal component analysis. Wiley Interdiscip Rev Comput Stat. 2010;2(4):433–59.
Article
Google Scholar
Onwuegbuzie AJ, Daniel LG. Uses and misuses of the correlation coefficient. Mid-South Educ Educ Res Assoc [Internet]. 1999;(7):58.
Alexander RM. The ideal and the feasible: physical constraints on evolution. Biol J Linn Soc [Internet]. 1985;26(4):345–58. https://doi.org/10.1111/j.1095-8312.1985.tb02046.x.
Article
Google Scholar
Bennett AF, Lenski RE. An experimental test of evolutionary trade-offs during temperature adaptation. Proc Natl Acad Sci [Internet]. 2007;104(Supplement 1):8649–54.
Article
CAS
Google Scholar
Garland T. Trade-offs. Curr Biol [Internet]. 2014;24(2):R60–1. https://doi.org/10.1016/j.cub.2013.11.036.
Article
CAS
Google Scholar
Wieczynski DJ, Singla P, Doan A, Singleton A, Han Z-Y, Votzke S, et al. Linking species traits and demography to explain complex temperature responses across levels of organization. Proc Natl Acad Sci [Internet]. 2021. https://doi.org/10.1073/pnas.2104863118.
Article
Google Scholar
Bennett AE, Bever JD. Trade-offs between arbuscular mycorrhizal fungal competitive ability and host growth promotion in Plantago lanceolata. Oecologia. 2009;160(4):807–16.
Article
Google Scholar
Nylin S, Wiklund C, Wiklund P-O, Garcia-Barros E. Abscence of trade-off between sexual size dimorphism and early emergence in a buttefly. Ecology. 1993;74(5):1414–27.
Article
Google Scholar
Brown GE, Smith RJF. Foraging trade-offs in fathead minnows (Pimephales promelas, Osteichthyes, Cyprinidae): acquired predator recognition in the absence of an alarm response. Ethology [Internet]. 1996;102(5):776–85. https://doi.org/10.1111/j.1439-0310.1996.tb01166.x.
Article
Google Scholar
Dorken ME, Van Drunen WE. Life-history trade-offs promote the evolution of dioecy. J Evol Biol. 2018;31(9):1405–12.
Article
Google Scholar
Van Drunen WE, Dorken ME. Trade-offs between clonal and sexual reproduction in sagittaria latifolia (alismataceae) scale up to affect the fitness of entire clones. New Phytol. 2012;196(2):606–16.
Article
Google Scholar
Rocha FB, Klaczko LB. Connecting the dots of nonlinear reaction norms unravels the threads of genotype-environment interaction in drosophila. Evolution (N Y). 2012;66(11):3404–16.
Google Scholar
Saatkamp A, Römermann C, Dutoit T. Plant functional traits show non-linear response to grazing. Folia Geobot [Internet]. 2010;45(3):239–52. https://doi.org/10.1007/s12224-010-9069-2.
Article
Google Scholar
Jenouvrier S, Holland M, Stroeve J, Barbraud C, Weimerskirch H, Serreze M, et al. Effects of climate change on an emperor penguin population: analysis of coupled demographic and climate models. Glob Chang Biol. 2012;18(9):2756–70.
Article
Google Scholar
Van De Pol M, Vindenes Y, Sæther BE, Engen S, Ens BJ, Oosterbeek K, et al. Effects of climate change and variability on population dynamics in a long-lived shorebird. Ecology. 2010;91(4):1192–204.
Article
Google Scholar
Jonzén N, Pople T, Knape J, Sköld M. Stochastic demography and population dynamics in the red kangaroo Macropus rufus. J Anim Ecol. 2010;79(1):109–16.
Article
Google Scholar
Anderson MJ, Walsh DCI, Sweatman WL, Punnett AJ. Non-linear models of species’ responses to environmental and spatial gradients. Ecol Lett [Internet]. 2022;25(12):2739–52. https://doi.org/10.1111/ele.14121.
Article
Google Scholar
Pérez-Ramos IM, Matías L, Gómez-Aparicio L, Godoy Ó. Functional traits and phenotypic plasticity modulate species coexistence across contrasting climatic conditions. Nat Commun [Internet]. 2019;10(1):2555. https://doi.org/10.1038/s41467-019-10453-0.
Article
CAS
Google Scholar
Boyer AG, Jetz W. Extinctions and the loss of ecological function in island bird communities. Glob Ecol Biogeogr [Internet]. 2014;23(6):679–88. https://doi.org/10.1111/geb.12147.
Article
Google Scholar
Laughlin DC, Messier J. Fitness of multidimensional phenotypes in dynamic adaptive landscapes. Trends Ecol Evol [Internet]. 2015;30(8):487–96. https://doi.org/10.1016/j.tree.2015.06.003.
Article
Google Scholar
Poff NL, Olden JD, Vieira NKM, Finn DS, Simmons MP, Kondratieff BC. Functional trait niches of North American lotic insects: traits-based ecological applications in light of phylogenetic relationships. J North Am Benthol Soc [Internet]. 2006;25(4):730–55. https://doi.org/10.1899/0887-3593(2006)025[0730:FTNONA]2.0.CO;2.
Article
Google Scholar
Bruns PJ, Brussard T. Pair formation in tetrahymena pyriformis, an inducible developmental system. J Exp Zool. 1974;188(3):337–44.
Article
CAS
Google Scholar
Wellnitz WR, Bruns PJ. The pre-pairing events in Tetrahymena thermophila. Exp Cell Res [Internet]. 1979;119(1):175–80.
Article
CAS
Google Scholar
Pennekamp F, Schtickzelle N. Implementing image analysis in laboratory-based experimental systems for ecology and evolution: a hands-on guide. Methods Ecol Evol [Internet]. 2013;4(5):483–92. https://doi.org/10.1111/2041-210X.12036.
Article
Google Scholar
Pennekamp F, Schtickzelle N, Petchey OL. BEMOVI, software for extracting behavior and morphology from videos, illustrated with analyses of microbes. Ecol Evol [Internet]. 2015;5(13):2584–95. Available from: http://www.scopus.com/inward/record.url?eid=2-s2.0-84937023585&partnerID=tZOtx3y1.
R Core Team. R: A Language and Environment for Statistical Computing. 2021; Available from: https://www.r-project.org/.
Kahm M, Hasenbrink G, Lichtenberg-Fraté H, Ludwig J, Kschischo M. Grofit: fitting biological growth curves with R. J Stat Softw. 2010;33(7):1–21.
Article
Google Scholar
Wood S. Generalized additive models: an introduction with R. 2nd ed. Chapman and Hall/CRC; 2017.
Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM. Things are not Always Linear; Additive Modelling. In 2009. p. 35–69. https://doi.org/10.1007/978-0-387-87458-6_3.
Lê S, Josse J, Husson F. FactoMineR: an R package for multivariate analysis. J Stat Softw. 2008;25(1):1–18.
Article
Google Scholar
Kassambara A, Mundt F. factoextra: Extract and Visualize the Results of Multivariate Data Analyses. 2020; Available from: https://cran.r-project.org/package=factoextra.