Wheeler W. Ants: their structure, development and behavior. Am Nat. 1910;91:5927–41.
Google Scholar
Brady L, Parr C, Abbott K. Ant ecology. Oxford: Oxford University Press; 2010.
Google Scholar
Brady S, Schultz T, Fisher B, Ward P. Evaluating alternative hypotheses for the early evolution and diversification of ants. Proc Natl Acad Sci USA. 2006;103:18172–7.
Article
CAS
Google Scholar
Moreau C, Bell C, Vila R, Archibald S, Pierce N. Phylogeny of the ants: diversification in the age of Angiosperms. Science. 2006;312:101–4.
Article
CAS
Google Scholar
Ward S. The phylogeny and evolution of ants. Annu Rev Ecol Evol S. 2014;45(1):23–43.
Article
Google Scholar
Romiguier J, Borowiec M, Weyna A, Helleu Q, Loire E, Mendola C, Rabeling C, Fisher B, Ward P, Keller L. Ant phylogenomics reveals a natural selection hotspot preceding the origin of complex eusociality. Curr Biol. 2022;32(13):2942–7.
Article
CAS
Google Scholar
Hölldobler B, Wilson E. The ants. Berlin: Springer; 1990. p. 732.
Book
Google Scholar
Kamhi J, Traniello J. Biogenic amines and collective organization in a superorganism: neuromodulation of social behavior in ants. Brain Behav Evolut. 2013;82:220–36.
Article
Google Scholar
Farris S. Insect societies and the social brain. Curr Opin Insect Sci. 2016. https://doi.org/10.1016/j.cois.2016.01.010.
Article
Google Scholar
Dahbi A, Lenoir A. Queen and colony odour in the multiple nest ant species, Cataglyphis iberica (Hymenoptera, Formicidae). Insect Soc. 1998;45:301–13.
Article
Google Scholar
Schultner E, Oettler J, Helanterä H. The role of brood in eusocial Hymenoptera. Q Rev Biol. 2017;92:39–78.
Article
Google Scholar
Barden P, Grimaldi D. Adaptive radiation in socially advanced stem-group ants from the Cretaceous. Curr Biol. 2016;26:515–21.
Article
CAS
Google Scholar
Boudinot B, Richter A, Katzke J, Chaul J, Keller R, Economo E, Beutel R, Yamamoto S. Evidence for the evolution of eusociality in stem ants anda systematic revision of †Gerontoformica (Hymenoptera: Formicidae). Zool J Linn Soc Lond. 2022;4:1355–89.
Article
Google Scholar
Richter A, Boudinot B, Yamamoto S, Katzke J, Beutel R. The first reconstruction of the head anatomy of a Cretaceous insect, † Gerontoformica gracilis (Hymenoptera: Formicidae), and the early evolution of ants. Insect Syst Diver. 2022;6(5):1–80.
Google Scholar
Sansom R, Gabbott S, Purnell M. Decay of vertebrate characters in hagfish and lamprey (Cyclostomata) and the implications for the vertebrate fossil record. Proc Biol Sci. 2010;278:1150–7.
Google Scholar
Grimaldi D, Bonwich E, Delannoy M, Doberstein S. Electron microscopic studies of mummified tissues in amber fossils. Am Mus Novit. 1994;3097.
Grimaldi D, Peñalver E, Barrón E, Herhold H, Engel M. Direct evidence for eudicot pollen-feeding in a Cretaceous stinging wasp (Angiospermae; Hymenoptera, Aculeata) preserved in Burmese amber. Commun Biol. 2019;2:408.
Article
Google Scholar
Li Y, Yamamoto S, Huang D, Cai C. New species of Paraodontomma from mid-Cretaceous Burmese amber with muscle tissue preservation (Coleoptera: Archostemata: Ommatidae). Pap Avulsos Zool. 2021;61:20216153.
Article
Google Scholar
Wang H, Matzke-Karasz R, Horne D, Zhao X, Cao M, Zhang H. Exceptional preservation of reproductive organs and giant sperm in Cretaceous ostracods. Proc Biol Sci. 2020;287:20201661.
Google Scholar
Xing L, Liu Y, McKellar R, Luque J, Li G, Wang Y, Yi Q, Sun R, Wang E, Audo D. The first shrimp preserved in mid-Cretaceous Kachin amber: systematics, palaeoecology, and taphonomy. Sci Bull. 2021;66:1723–6.
Article
Google Scholar
Pohl H, Wipfler B, Grimaldi D, Beckmann F, Beutel R. Reconstructing the anatomy of the 42-million-year-old fossil Mengea tertiaria (Insecta, Strepsiptera). Sci Nat. 2010;97:855–9.
Article
CAS
Google Scholar
Barden P, Grimaldi D. A new genus of highly specialized ants in Cretaceous Burmese amber (Hymenoptera: Formicidae). Zootaxa. 2013;3681:405–12.
Article
Google Scholar
Perrichot V. A new species of the Cretaceous ant Zigrasimecia based on the worker caste reveals placement of the genus in the Sphecomyrminae (Hymenoptera: Formicidae). Myrmecol News. 2014;19:165–9.
Google Scholar
Cao H, Boudinot B, Wang Z, Miao X, Shih C, Ren D, Gao T. Two new iron maiden ants from Burmese amber (Hymenoptera: Formicidae: Zigrasimeciini). Myrmecol News. 2020;30:161–73.
Google Scholar
Cao H, Boudinot B, Shih C, Dong R, Gao T. Cretaceous ants shed new light on the origins of worker polymorphism. Sci China Life Sci. 2020;63:1085–8.
Article
Google Scholar
Zhuang Y, Ran H, Li X, Feng C, Liu Y. A new species of the stem-group ants based on an alate female from Burmese amber (Hymenoptera: Formicidae: †Zigrasimecia). Cretac Res. 2022;130: 105056.
Article
Google Scholar
Boudinot B, Perrichot V, Chaul J. †Camelosphecia gen. nov., lost ant-wasp intermediates from the mid-Cretaceous (Hymenoptera, Formicoidea). ZooKeys. 2020;1005:21–55.
Article
Google Scholar
Shi G, Grimaldi D, Harlow G, Wang J, Wang J, Yang M, Lei W, Li Q, Li X. Age constraint on Burmese amber based on U-Pb dating of zircons. Cretac Res. 2012;37:155–63.
Article
Google Scholar
Yu T, Kelly R, Lin M, Ross A, Kennedy J, Broly P, Xia F, Zhang H, Dilcher D. An ammonite trapped in Burmese amber. Proc Natl Acad Sci USA. 2019;116:11345–50.
Article
CAS
Google Scholar
Bolton B. Identification guide to the ant genera of the world. Cambridge: Harvard University Press; 1994.
Google Scholar
Limaye A, Stock S. Drishti: a volume exploration and presentation tool. Proc SPIE. 2012;8506:85060X.
Article
Google Scholar
Richter A, Keller R, Baumgarten Rosumek F, Economo E, Hita Garcia F, Beutel R. The cephalic anatomy of workers of the ant species Wasmannia affinis (Formicidae, Hymenoptera, Insecta) and its evolutionary implications. Arthropod Struct Dev. 2019;49:26–49.
Article
Google Scholar
Richter A, Hita Garcia F, Keller R, Billen J, Economo E, Beutel R. Comparative analysis of worker head anatomy of Formica and Brachyponera (Hymenoptera: Formicidae). Arthropod Syst Phylo. 2020;78:133–70.
Google Scholar
Richter A, Schoeters E, Billen J. Morphology and closing mechanism of the mandibular gland orifice in ants (Hymenoptera: Formicidae). J Morphol. 2021;282:1127–40.
Article
Google Scholar
Richter A, Hita Garcia F, Keller R, Billen J, Katzke J, Boudinot B, Economo E, Beutel R, Unit B. The head anatomy of Protanilla lini (Hymenoptera: Formicidae: Leptanillinae), with a hypothesis of their mandibular movement. Myrmecol News. 2021;31:85–114.
Google Scholar
Kornilowitsch N. Has the structure ofstriated muscle been retained in amber fossils? Naturf Gesell Zu Dorpat. 1903;13:198–206.
Google Scholar
Petrunkevitch A. Striated muscles of an amber insect. Nature. 1935;135:760–1.
Article
Google Scholar
Henwood A. Exceptional preservation of dipteran flight muscle and the taphonomy of insects in amber. Palaios. 1992;7:203–12.
Article
Google Scholar
Mierzejewski P. On application of scanning electron microscope to the study of organic inclusion from baltic amber. Ann Soc Geol Pol. 1976;46:291–5.
Google Scholar
Poinar G. Life in Amber. Redwood City: Stanford University Press; 1992.
Book
Google Scholar
Ma X, Hou X, Edgecombe G, Strausfeld N. Complex brain and optic lobes in an early Cambrian arthropod. Nature. 2012;490:258–61.
Article
CAS
Google Scholar
Tanaka G, Hou X, Ma X, Edgecombe G, Strausfeld N. Chelicerate neural ground pattern in a Cambrian great appendage arthropod. Nature. 2013;502:364–7.
Article
CAS
Google Scholar
Cong P, Ma X, Hou X, Edgecombe G, Strausfeld N. Brain structure resolves the segmental affinity of anomalocaridid appendages. Nature. 2014;513:538–42.
Article
CAS
Google Scholar
Yang J, Ortega-Hernández J, Butterfield N, Liu Y, Boyan G, Hou J, Lan T, Zhang X. Fuxianhuiid ventral nerve cord and early nervous system evolution in Panarthropoda. Proc Natl Acad Sci USA. 2016;113:2988–93.
Article
CAS
Google Scholar
Bicknell R, Ortega-Hernández J, Edgecombe G, Gaines R, Paterson J. Central nervous system of a 310-m.y.-old horseshoe crab: expanding the taphonomic window for nervous system preservation. Geology. 2021;49:1381–5.
Article
CAS
Google Scholar
Ortega-Hernández J, Lerosey-Aubril R, Losso S, Weaver J. Neuroanatomy in a middle Cambrian mollisoniid and the ancestral nervous system organization of chelicerates. Nat Commun. 2022;13:410.
Article
Google Scholar
Ma X, Cong P, Hou X, Edgecombe G, Strausfeld N. An exceptionally preserved arthropod cardiovascular system from the early Cambrian. Nat Commun. 2014;5:3560.
Article
Google Scholar
Heethoff M, Helfen L, Norton R. Description of Neoliodes dominicus n. sp. (Acari, Oribatida) from dominican amber, aided by synchrotron x-ray microtomography. J Paleontol. 2009;83:153–9.
Article
Google Scholar
Parry L, Smithwick F, Nordén K, Saitta E, Lozano-Fernandez J, Tanner A, Caron J, Edgecombe G, Briggs D, Vinther J. Soft-bodied fossils are not simply rotten carcasses—toward a holistic understanding of exceptional fossil preservation. BioEssays. 2018;40:1700167.
Article
Google Scholar
Edgecombe G, Ma X, Strausfeld N. Unlocking the early fossil record of the arthropod central nervous systemPhil. Trans R Soc B. 2015;370:20150038.
Article
Google Scholar
Liu J, Steiner M, Dunlop J, Shu D. Microbial decay analysis challenges interpretation of putative organ systems in Cambrian fuxianhuiids. Proc R Soc B. 2018;285:20180051.
Article
Google Scholar
Jiang H, Tomaschek F, Muscente AD, Niu C, Nyunt TT, Fang Y, Schmidt U, Chen J, Lönartz M, Mähler B, Wappler T, Jarzembowski EA, Szwedo J, Zhang H, Rust J, Wang B. Widespread mineralization of soft-bodied insects in Cretaceous amber. Geobiology. 2022;00:1–14.
Google Scholar
Henwood A. Soft-part preservation of beetles in Tertiary amber from the Dominican Republic. Palaeontology. 1992;35:901–12.
Google Scholar
Poinar G, Hess R. Ultrastructure of 40-million-year-old insect tissue. Science. 1982;215:1241–2.
Article
Google Scholar
Poinar G, Hess R. Preservative qualities of recent and fossil resins: Electron micrograph studies on tissue preserved in Baltic amber. J Baltic Stud. 1985;16:222–30.
Article
Google Scholar
Strausfeld N. Aarthropod brains. Evolution, functional elegance, and historical significance. Cambridge: Harvard University Press; 2012. p. 830.
Book
Google Scholar
Gronenberg W. Structure and function of ant (hymenoptera: formicidae) brains: strength in numbers. Myrmecol News. 2008;11:25.
Google Scholar
Strausfeld N. Brain organization and the origin of insects: an assessment. Proc R Soc B. 2009;276:1929–37.
Article
Google Scholar
Makoto M. Alarm pheromone processing in the ant brain: an evolutionary perspective. Front Behav Neurosci. 2010;4:28.
Google Scholar
Odonnell S. Brain development and brain evolution. In: Starr C, editor. Encyclopedia of social insects. Cham: Springer; 2020.
Google Scholar
Paul J, Roces F, Hölldobler B. How do ants stick out their tongues? J Morphol. 2002;254(1):39–52.
Article
Google Scholar
Eisner T, Happ G. The infrabuccal pocket of a formicine ant: a social filtration device. Psyche J Entomol. 1962;69:107–16.
Article
Google Scholar
Barden P, Perrichot V, Wang B. Specialized predation drives aberrant morphological integration and diversity in the earliest ants. Curr Biol. 2020;30:3818–24.
Article
CAS
Google Scholar
Petersen-Braun M. Buschinger, Entstehung und Funktion eines thorakalen Kropfes bei Formiciden-Kniginnen. Insect Soc. 1975;22:51–66.
Article
Google Scholar
Glancey BM, Glover A, Lofgren CS. Thoracic crop formation following dealation by virgin females of two species of Solenopsis. Fla Entomol. 1981;64:454.
Article
Google Scholar
Meer R, Glance BM, Lofgren CS. Biochemical changes in the crop, oesophagus and postpharyngeal gland of colony-founding red imported fire ant queens (Solenopsis invicta). Insect Biochem. 1982;12:123–7.
Article
Google Scholar
Casadei-Ferreira A, Fischer G, Economo E. Evidence for a thoracic crop in the workers of some Neotropical Pheidole species (Formicidae: Myrmicinae). Arthropod Struct Dev. 2020;59: 100977.
Article
CAS
Google Scholar
Hölldobler B, Maschwitz U. Der Hochzeitsschwarm der Rossameise Camponotus herculeanus L. (Hymenoptera, Formicidae). J Comp Physiol. 1964;50:551–68.
Google Scholar
Tulloch G, Shapiro J, Hershenov B. The ultrastructure of the metasternal glands of ants. Bull Brooklyn Entomol Soc. 1962;57:91–101.
Google Scholar
Maschwitz U, Koob K, Schildknecht H. Ein Beitrag zur Funktion der Metathoracaldrüse der Ameisen. J Insect Physiol. 1970;16:387–404.
Article
CAS
Google Scholar
Yek S, Mueller U. The metapleural gland of ants. Biol Rev. 2011;86:774–91.
Article
Google Scholar
Hölldobler B, Engel-Siegel H. On the metapleural gland of ants. Psyche. 1985;91:201–24.
Article
Google Scholar
Bagnères A, Morgan E. The postpharyngeal glands and the cuticle of Formicidae contain the same characteristic hydrocarbons. Experientia. 1991;47:106–11.
Article
Google Scholar
Soroker V, Vienne C, Hefetz A, Nowbahari E. The postpharyngeal gland as a gestalt organ for nestmate recognition in the ant Cataglyphis niger. Sci Nat. 1994;81:510–3.
CAS
Google Scholar
Gama V, Cruz Landim C. Estudo comparative das glândulas do sistema salivar de formigas (Hymenoptera, Formicidae). Naturalia. 1982;7:145–65.
Google Scholar